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Abstract

NER model has achieved promising perfor-
mance on standard NER benchmarks. How-
ever, recent studies show that previous ap-
proaches may over-rely on entity mention in-
formation, resulting in poor performance on
out-of-vocabulary (OOV) entity recognition.
In this work, we propose MINER, a novel
NER learning framework, to remedy this is-
sue from an information-theoretic perspective.
The proposed approach contains two mutual
information-based training objectives: i) gen-
eralizing information maximization, which en-
hances representation via deep understanding
of context and entity surface forms; ii) super-
fluous information minimization, which dis-
courages representation from rote memorizing
entity names or exploiting biased cues in data.
Experiments on various settings and datasets
demonstrate that it achieves better performance
in predicting OOV entities.

1 Introduction

Named Entity Recognition (NER) aims to identify
and classify entity mentions from unstructured text,
e.g., extracting location mention "Berlin" from the
sentence "Berlin is wonderful in the winter". NER
is a key component in information retrieval (Tan
et al., 2021), question answering (Min et al., 2021),
dialog systems (Wang et al., 2020), etc. Traditional
NER models are feature-engineering and machine
learning based (Zhou and Su, 2002; Takeuchi and
Collier, 2002; Agerri and Rigau, 2016). Benefiting
from the development of deep learning, neural-
network-based NER models have achieved state-
of-the-art results on several public benchmarks
(Lample et al., 2016; Peters et al., 2018; Devlin
et al., 2018; Yamada et al., 2020; Yan et al., 2021).

Recent studies (Lin et al., 2020; Agarwal et al.,
2021) show that, context does influence predictions
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Precision Recall
InDict OutDict Diff InDict OutDict Diff

PER 88.03 75.40 14% 92.90 85.20 8%
ORG 73.51 72.77 1% 81.93 76.56 7%
GPE 79.55 78.21 2% 85.37 77.22 10%
FAC 65.91 65.67 0% 86.05 65.67 24%
ALL 83.37 71.97 12% 89.08 79.11 11%

Table 1: The comparison between the in-dictionary and
out-of-dictionary parts of the CoNLL 2003 baseline
(Lin et al., 2020), which was tested on Bert-CRF. It is
obvious that the performance gap between InDict and
OutDict is significantly large.

of NER models, but the main factor driving high
performance is learning the named tokens them-
selves. Consequently, NER models underperform
when predicting entities that have not been seen
during training (Fu et al., 2020; Lin et al., 2020),
which is referred to as an Out-of-Vocabulary (OOV)
problem.

There are three classical strategies to alleviate
the OOV problem: external knowledge, OOV word
embedding, and contextualized embedding. The
first one is to introduce additional features, e.g.,
entity lexicons (Zhang and Yang, 2018), part-of-
speech tags (Li et al., 2018), which alleviates the
model’s dependence on word embeddings. How-
ever, the external knowledge is not always easy
to obtain. The second strategy is to get a better
OOV word embedding (Peng et al., 2019; Fukuda
et al., 2020). The strategy is learning a static OOV
embedding representation, but not directly utilizing
the context. Last one is fine-tune pre-trained
models, e.g., ELMo (Peters et al., 2018), BERT
(Devlin et al., 2018), which provide contextualized
word representations. Unfortunately, Agarwal et al.
(2021) shows that the higher performance of pre-
trained models could be the results of learning the
subword structure better.

How do we make the model focus on contextual
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information to tackle the OOV problem? Motivated
by the information bottleneck principle (Tishby
et al., 2000), we propose a novel learning frame-
work - Mutual Information based Named Entity
Recognition (MINER). The proposed method pro-
vides an information-theoretic perspective to the
OOV problem by training an encoder to minimize
task-irrelevant nuisances while keeping predictive
information.

Specifically, MINER contains two mutual infor-
mation based learning objectives: i) generalizing in-
formation maximization, which aims to maximize
the mutual information between representations
and well-generalizing features, i.e., context and
entity surface forms; ii) superfluous information
minimization, which prevents the model from rote
memorizing the entity names or exploiting biased
cues via eliminating entity name information. Our
codes1 are publicly available.

Our main contributions are summarized as fol-
lows:

1. We propose a novel learning framework, i.e.,
MINER, from an information theory perspective,
aiming to improve the robustness of entity changes
by eliminating entity-specific and maximizing well-
generalizing information.

2. We show its effectiveness on several settings
and benchmarks, and suggest that MINER is a
reliable approach to better OOV entity recognition.

2 Background

In this section, we highlight the information bot-
tleneck principle. Subsequently, the analysis of
possible issues was provided when applying it to
OOV entity recognition. Furthermore, we review
related techniques in deriving our framework.

Information Bottleneck (IB) principle origi-
nated in information theory, and provides a theoret-
ical framework for analyzing deep neural networks.
It formulates the goal of representation learning
as an information trade-off between predictive
power and representation compression. Given the
input dataset (X,Y), it seeks to learn the internal
representation Z of some intermediate layers by:

LIB = −I(Z;Y ) + β ∗ I(Z;X),

where I represents the mutual information(MI), a
measure of the mutual dependence between the two
variables. The trade-off between the two MI terms

1https://github.com/BeyonderXX/MINER

is controlled by the Lagrange multiplier β. A low
loss indicates that representation Z does not keep
too much information from X while still retaining
enough information to predict Y.

Section 5 suggests that directly applying IB to
NER can not bring obvious improvement. We
argue that IB cannot guarantee well-generalizing
representation.

On the one hand, it has been shown that it is
challenging to find a trade-off between high com-
pression and high predictive power (Tishby et al.,
2000; Wang et al., 2019; Piran et al., 2020). When
compressing task-irrelevant nuisances, however,
useful information will inevitably be left out. On
the other hand, it is unclear for the IB principle
which parts of features are well-generalizing and
which are not, as we usually train a classifier to
solely maximize accuracy. Consequently, neural
networks tend to use any accessible signal to do
so (Ilyas et al., 2019), which is referred to as a
shortcut learning problem (Geirhos et al., 2020).
For training sets with limited size, it may be easier
for neural networks to memorize entity names
rather than to classify them by context and common
entity features (Agarwal et al., 2021). In Section 4,
we demonstrate how we extend IB to the NER task
and address these issues.

3 Model Architecture

In recent years, NER systems have undergone
a paradigm shift from sequence labeling, which
formulates NER as a token-level tagging task
(Chiu and Nichols, 2016; Akbik et al., 2018; Yan
et al., 2019), to span prediction (SpanNER), which
regards NER as a span-level classification task
(Mengge et al., 2020; Yamada et al., 2020; Fu et al.,
2021). We choose SpanNER as base architecture
for two reasons:

1) SpanNER can yield the whole span repre-
sentation, which can be directly used for optimize
information. 2) Compared with sequence labeling,
SpanNER does better in sentences with more OOV
words (Fu et al., 2021).

Overall, SpanNER consists of three major mod-
ules: token representation layer, span representa-
tion layer, and span classification layer. Besides,
our method inserts a bottleneck layer to the archi-
tecture for information optimization.
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3.1 Token Representation Layer

Let X = {x1, x2, · · · , xn} represents the input
sentence, thus, the token representation hi is as
follows:

u1, · · · , un = Embedding(x1, · · · , xn) (1)

h1, · · · , hn = Encoder(u1, · · · , un) (2)

where Embedding() is the non-contextualized
word embeddings, e.g., Glove (Pennington et al.,
2014) or contextualized word embeddings, e.g.,
ELMo (Peters et al., 2018), BERT (Devlin et al.,
2018). Encoder() can be any network struc-
tures with context encoding function, e.g., LSTM
(Hochreiter and Schmidhuber, 1997), CNN (LeCun
et al., 1995), transformer (Vaswani et al., 2017),
and so on.

3.2 Span Representation Layer

For all possible spans S = {s1, s2, · · · , sm}
of sentence X , we re-assign a label y ∈ Y
for each span. Take "Berlin is wonderful"
as an example, its possible spans and labels
are {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)} and
{LOC,O,O,O,O,O}, respectively.

Given the start index bi and end index ei, the
representation of span si can be calculated by
two parts: boundary embedding and span length
embedding.

Boundary embedding: This part is calculated
by concatenating the start and end tokens’ repre-
sentation tbi = [hbi ;hei ].

Span length embedding: In order to introduce
the length feature, we additionally provide the
length embedding tli, which can be obtained by
a learnable look-up table.

Finally, the span representation can be obtained
as: ti = [tbi ; t

l
i].

3.3 Information Bottleneck Layer

In order to optimize the information in the span
representation, our method additionally adds an
information bottleneck layer of the form:

p(z|t) = N
(
z | fµ

e (t), f
Σ
e (t)

)
(3)

where fe is an MLP which outputs both the K-
dimensional mean µ of z as well as the K ∗ K
covariance matrix Σ. Then we can use the reparam-
eterization trick ((Kingma and Welling, 2013)) to
get the compressed representation zi.

3.4 Span Classification Layer
Once the information bottleneck layer is finished,
zi is fed into the classifier to obtain the probability
of its label yi. Based on the probability, the basic
loss function can be calculated as follows:

Lbase = − score(zi, yi)∑
y′∈Y score(zi, y′)

, (4)

where score() is a function that measures the
compatibility between a specified label and a span
representation:

score(zi, y
k) = exp(zTi y

k), (5)

where yk is a learnable representation of class k.
Heuristic Decoding A heuristic decoding so-

lution for the flat NER is provided to avoid the
prediction of over-lapped spans. For those over-
lapped spans, we keep the span with the highest
prediction probability and drop the others.

It’s worth noting that our method is flexible and
can be used with any other NER model based
on span classification. In next section, we will
introduce two additional objectives to tackle the
OOV problem of NER.

4 MI-based objectives

Motivated by IB (Tishby et al., 2000; Federici
et al., 2020), we can subdivide I(X;Z) into two
components by using the chain rule of mutual
information(MI):

I(X;Z) = I(Y ;Z)︸ ︷︷ ︸
predictive

+ I(X;Z|Y )︸ ︷︷ ︸
superfluous

, (6)

The first term determines how much informa-
tion about Y is accessible from Z. While the
second term, conditional mutual information term
I(X;Z|Y ), denotes the information in Z that is
not predictive of Y .

For NER, which parts of the information re-
trieved from input are useful and which are redun-
dant?

From human intuition, text context should be
the main predictive information for NER. For
example, "The CEO of X resigned", the type of X
in each of these contexts should always be "ORG".
Besides, entity mentions also provide much in-
formation for entity recognition. For example,
nearly all person names capitalize the first letter
and follow the "firstName lastName" or "lastName
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Figure 1: Visualization of MINER, where x1 and x2 share the same context and entity labels, while their entity words
are different. z1 and z2 are compressed entity representations sampled by p(z1|x1) and p(z2|x2), respectively, which
are implemented by information bottleneck(IB) layer. Our method add two additional learning objectives to basic
architecture. The first one is to maximize the mutual information, i.e., I(z1; z2), to enhance context information and
entity surface form information of z1 and z2. The second objective is to minimize the Jensen-Shannon divergence,
representing an upper bound of I(x1; z1|x2), aiming to eliminate task-irrelevant nuisances.

firstName" patterns. However, entity name is not a
well-generalizing features. By simply memorizing
the fact which span is an entity, it may be possible
for it to fit the training set, but it is impossible to
predict entities that have never been seen before.

We convert the targets of Eq. (6) into a form
that is easier to solve via a contrastive strategy.
Specifically, consider x1 and x2 are two contrastive
samples of similar context, and contains different
entity mentions of the same entity category, i.e., s1
and s2, respectively. Assuming both x1 and x2 are
both sufficient for inferring label y. The mutual
information between x1 and z1 can be factorized
to two parts.

I(x1; z1) = I(z1;x2)︸ ︷︷ ︸
consistent

+ I(x1; z1|x2)︸ ︷︷ ︸
specific

, (7)

where z1 and z2 are span representations of s1 and
s2, respectively, I(z1;x2) denotes the information
that isn’t entity-specific. And I(x1; z1|x2) repre-
sents the information in z1 which is unique to x1
but is not predictable by sentence x2, i.e., entity-
specific information.

Thus any representation z containing all informa-
tion shared from both sentences would also contain
the necessary label information, and sentence-
specific information is superfluous. So Eq. (6)
can be approximated by Eq. (7) by:

maximize I(z1; y) ∼ I(z1;x2), (8)

minimize I(x1; z1|y) ∼ I(x1; z1|x2), (9)

The target of Eq. (8) is defined as generaliz-

ing information maximization. We proved that
I(z1; z2) is a lower bound of I(z1;x2)(proof could
be found in appendix 7). InfoNCE (Oord et al.,
2018) was used as a lower bound on MI and can
be used to approximate I(z1; z2). Subsequently, it
can be optimized by:

Lgi = −Ep

[
gw(z1, z2)− Ep′ log

∑
z′

exp gw(z1, z
′)

]
,

(10)

where gw(·, ·) is a compatible score function ap-
proximated by a neural network, z2 are the positive
entity representations from the joint distribution
p of original sample and corresponding generated
sample, z′ are the negative entity representations
drawn from the joint distribution of the original
sample and other samples.

The target of Eq. (9) is defined as superfluous
information minimization. To restrict this term,
we can minimize an upper bound of I(x1; z1|x2)
(proofs could be found in appendix 7) as follows:

Lsi = Ex1,x2Ez1,z2 [DJS [pz1 ||pz2 ]] , (11)

where DJS means Jensen-Shannon divergence,
pz1 and pz2 represent p(z1|x1) and p(z2|x2), re-
spectively. In practice, Eq. (11) encourage z to
be invariant to entity changes. The resulting Mu-
tual Information based Named Entity Recognition
model is visualized in Figure 1.

4.1 Contrastive sample generation
It is difficult to obtain samples with similar con-
texts but different entity words. We generate
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Datasets sents entities OOV Rate
WNUT2017 1286 947 1.00
TwitterNER 3257 3990 0.62
BioNER 3856 4344 0.77
Conll2003-Typos 2676 4130 0.71
Conll2003-OOV 3684 5648 0.96

Table 2: Number of OOV entities in the test sets.

contrastive samples by the mention replacement
mechanism(Dai and Adel, 2020). For each mention
in the sentence, we replace it by another mention
from the original training set, which has the same
entity type. The corresponding span label can be
changed accordingly. For example, "LOC" mention
"Berlin" in sentence "Berlin is wonderful in the
winter" is replaced by "Iceland".

4.2 Training
Combine Eq. (4), (10), and (11), we can get the fol-
lowing objective function, which try to minimize:

L = Lbase + γ ∗ Lgi + β ∗ Lsi, (12)

where γ and β are the weights of the generaliz-
ing information loss and superfluous information
loss, respectively.

5 Experiment

In this section, we verify the performance of the
proposed method on five OOV datasets, and com-
pared it with other methods. In addition, We tested
the universality of the proposed method in various
pre-trained models.

5.1 Datasets and Metrics
Datasets We performed experiments on:

1. WNUT2017 (Derczynski et al., 2017), a
dataset focus on unusual, previous-unseen
entities in training data, and is collected from
social media.

2. TwitterNER (Zhang et al., 2018), an English
NER dataset created from Tweets.

3. BioNER (Kim et al., 2004), the JNLPBA 2004
Bio-NER dataset focus on technical terms in
the biology domain.

4. Conll03-Typos (Wang et al., 2021), which
is generated from Conll2003 (Sang and
De Meulder, 2003). The entities in the test

set are replaced by typos version(character
modify, insert, and delete operation).

5. Conll03-OOV (Wang et al., 2021), which
is generated from Conll2003 (Sang and
De Meulder, 2003). The entities in the test
set are replaced by another out-of-vocabulary
entity in test set.

Table 2 reports the statistic results of the OOV
problem on the test sets of each dataset. As shown
in the table, the test set of these datasets comprises
a substantial amount of OOV entities.

Metrics We measured the entity-level micro av-
erage F1 score on the test set to compare the results
of different models.

5.2 Baseline methods
Li et al. (2020) share the same intuition as us,
enriching word representations with context. How-
ever, the work is neither open source nor reported
on the same dataset, so this method cannot be
compared with MINER. We compare our method
with baselines as follows:

• Fu et al. (2021) (SpanNER), which is trained
by original SpanNER framework, without any
constraint and extra data processing.

• Vanilla information bottleneck(VaniIB), a
method employs the original information bot-
tleneck constraint to the SpanNER, which is
optimized based on Alemi et al. (2016). Com-
pared with our method, it directly compresses
all the information from the input.

• Dai and Adel (2020) (DataAug) , which trains
model with data augmentation strategy, while
keeps the same model architecture as Span-
NER. This model is trained by 1:1 original
training set and entity replacement training set,
which keeps the same input as the proposed
method.

• Shahzad et al. (2021) (InferNER), a method
focus on word-, character-, and sentence-level
information for NER in short-text, without
recurring to external sources. In addition,
it is able to incorporate visual information
and introduce an attention component which
computes attention weight probabilities over
textual and text-relevant visual contexts sepa-
rately.
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CoNLL 2003
Methods WNUT2017 BioNER TwitterNER

Typos OOV

VaniIB 51.60 73.41 71.19 83.49 70.12

DataAug 52.29 75.85 73.69 81.73 69.6

InferNER 50.52 - 74.17 - -

MIN 49.93 77.97 - - -

CoFEE 39.1 - 69.5 - -

MAML 24.19 76.36 - - -

SA-NER 50.36 - - - -

SpanNER (Bert large) 51.83 73.78 71.57 81.83 64.43

SpanNER (Roberta large) 51.65 74.49 71.7 82.85 64.7

SpanNER (AlBert large) 49.13 71.08 70.33 82.49 64.12

MINER (Bert large) 54.52 77.03 75.26 87.09 78.03

MINER (Roberta large) 54.86 76.43 75.38 87.57 79.15
MINER (Albert large) 51.94 75.23 72.67 86.53 77.95

Table 3: Performance of the proposed method compared with state-of-the-arts.

• Li et al. (2021) (MIN), which utilizes both
segment-level information and word-level de-
pendencies, and incorporates an interaction
mechanism to support information sharing be-
tween boundary detection and type prediction,
enhancing the performance for the NER task.

• Fukuda et al. (2020) (CoFEE), which refer
to pre-trained word embeddings for known
words with similar surfaces to target OOV
words.

• Nie et al. (2020) (SA-NER), which utilize
semantic enhancement methods to reduce
the negative impact of data sparsity prob-
lems. Specifically, the method obtains the
augmented semantic information from a large-
scale corpus, and proposes an attentive seman-
tic augmentation module and a gate module
to encode and aggregate such information,
respectively.

To verify the universality of our method, we
measured its performance on various pre-trained
models, i.e., Bert (Devlin et al., 2018), Roberta
(Liu et al., 2019), Albert (Lan et al., 2019).

5.3 Implementation Details
Bert-large released by Devlin et al. (2018) is se-
lected as our base encoder. The learning rate is set
to 5e-5, and the dropout is set to 0.2. The output

dim of the information bottleneck layer is 50. In
order to make a trade-off for the performance and
efficiency, on the one hand, we truncate the part
of the sentence whose tokens exceeds 128. On
the other hand, we count the length distribution
of entity length in different datasets, and finally
choose 4 as the maximum enumerated entity length.
The values of β and γ differ for different datasets.
Empirically, 1e-5 for β and 0.01 for γ can get
promised results. The model is trained in an
NVIDIA GeForce RTX 2080Ti GPU. Checkpoints
with top-3 performance are finally evaluated on the
test set to report averaged results.

5.4 Main Results
We demonstrate the effectiveness of MINER
against other state-of-the-art models. As shown
in table 3, we conducted the following comparison
and analysis:

1) Our baseline model, i.e., SpanNER, does an
excellent job of predicting OOV entities. Com-
pared with sequence labeling, the span classifi-
cation could model the relation of entity tokens
directly;2) The performance of SpanNER is fur-
ther boosted with our proposed approach, which
proved the effectiveness of our method. As shown
in table 3, MINER almost outperforms all other
SOTA methods without any external resource;3)
Compared with Typos data transformation, it is
more difficult for models to predict OOV words.
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Figure 3: Illustration of f1 score in different β values.
The results are obtained by testing MINER (Bert large)
on TwitterNER (Zhang et al., 2018). We fix γ = 1e04,
and the orange line is f1 score when β = 0.

To pre-trained model, typos word may not appear
in training set, but they share most subwords with
the original token. Moreover, the subword of OOV
entity may be rare; 4) It seems that the traditional
information bottleneck will not significantly im-
prove the OOV prediction ability of the model. We
argue that the traditional information bottlenecks
will indiscriminately compress the information in
the representation, leading to underfitting; 5) Our
model has significantly improved the performance
of the model on the entity perturbed methods of
typos and OOV, demonstrating that MI improve
the robustness substantially in the face of noise; 6)
It is clear that our proposed method is universal
and can further improve OOV prediction perfor-
mance for different embedding models, as we get
improvements on Bert, Roberta, and Albert stably.

5.5 Ablation Study
We also perform ablation studies to validate the
effectiveness of each part in MINER. Table 4

Dataset OOV MI F1

WNUT 2017

- - 51.83
✓ - 52.57
- ✓ 53.91
✓ ✓ 54.52

BioNER

- - 73.78
✓ - 75.23
- ✓ 74.22
✓ ✓ 77.03

Twitter-NER

- - 71.57
✓ - 73.78
- ✓ 73.32
✓ ✓ 75.26

Table 4: Ablation study results on three datasets.

demonstrates the results of different settings for
the proposed training strategy equipped with BERT.
After only adding the Lgi loss to enhance context
and entity surface form information, we find that
the results are better than the original PLMs. A
similar phenomenon occurs in Lsi, too. It reflects
that both Lgi and Lsi are beneficial to improve the
generalizing ability on OOV entities recognition.
Moreover, the results on the three datasets are
significantly improved by adding both Lgi and
Lsi learning objectives. It means Lgi and Lsi can
boost each over, which proves that our method
enhances representation via deep understanding of
context and entity surface forms and discourages
representation from rote memorizing entity names
or exploiting biased cues in data.

5.6 Sensitivity Analysis of β and γ

To show the different influence of our proposed
training objectives Lgi and Lsi, we conduct sensi-
tivity analysis of the coefficient β and γ. Figure
2 shows the performance change under different
settings of the two coefficients. The yellow line
denotes ablation results without the corresponding
loss functions (with β=0 or γ=0). From Figure 2
we can observe that the performance is significantly
enhanced with a small rate of β or γ, where the
best performance is achieved when β=1e-3 and
γ=1e-4, respectively. It probes the effectiveness of
our proposed training objectives that enhances rep-
resentation via deep understanding of context and
entity surface forms and discourages representation
from rote memorizing entity names or exploiting
biased cues in data. As the coefficient rate increases
continuously, the performance shows a declining
trend, which means the over-constraint of Lgi or
Lsi will hurt the generalizing ability of predicting
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Figure 4: Visualization of attention weights over entities and context.

the OOV entities.

5.7 Interpretable Analysis

The above experiments show the promising per-
formance of MINER on predicting the unseen
entities. To further investigate which part of the
sentence MINER focuses on, we visualize the
attention weights over entities and contexts. We
demonstrate an example in Figure 4 , where is
selected from TwitterNER. The attention score is
calculated by averaging the attention weight of
the 0th layer of BERT. Take the attention weights
of the entity "State Street" as an example, it is
obvious that baseline model, i.e., SpanNER, focus
on entity words themselves. While the scores of our
model are more average, it means that our method
concerns more context information.

6 Related Work

6.1 External Knowledge

This group of methods makes it easier to predict
OOV entities using external knowledge. Zhang and
Yang (2018) utilize a dictionary to list numerous
entity mentions. It is possible to get stronger "look-
up" models by integrating dictionary information,
but there is no guarantee that entities outside the
training set and vocabulary will be correctly iden-
tified. To diminish the model’s dependency on
OOV embedding, Li et al. (2018) introduce part-
of-speech tags. External resources are not always
available, which is a limitation of this strategy.

6.2 OOV word Embedding

The OOV problem can be alleviated by improving
the OOV word embedding. The character ngram
of each word is used by Bojanowski et al. (2017)
to represent the OOV word embedding. Pinter
et al. (2017) captures morphological features using
character-level RNN. Another technique is to first
match the OOV words with the words that have
been seen in training, then replace the OOV words’
embedding with the seen words’ embedding. Peng
et al. (2019) trains a student network to predict

the closest word representation to the OOV term.
Fukuda et al. (2020) referring to pre-trained word
embeddings for known words with similar surfaces
to target OOV words. This kind of method is
learning a static OOV embedding representation,
and does not directly utilize the context.

6.3 Contextualized Embedding

Contextual information is used to enhance the
representation of OOV words in this strategy. (Hu
et al., 2019) formulate the OOV problem as a K-
shot regression problem and learns to predict the
OOV embedding by aggregating only K contexts
and morphological features. Pre-trained models
contextualized word embeddings via pretraining
on large background corpora. Furthermore, contex-
tualized word embeddings can be provided by the
pre-trained models, which are pre-trained on large
background corpora (Peters et al., 2018; Devlin
et al., 2018; Liu et al., 2019). Yan et al. (2021)
shows that BERT is not always better at capturing
context as compared to Gloe-based BiLSTM-CRFs.
Their higher performance could be the result of
learning the subword structure better.

7 Conclusion

Based on the recent studies of NER, we analyze
how to improve the OOV entity recognition. In
this work, we propose a novel and flexible learn-
ing framework - MINER, to tackle OOV entities
recognition issue from an information-theoretic
perspective. On the one hand, this method can
enhance the context information of the output of
the encoder. On the other hand, it can safely
eliminate task-irrelevant nuisances and prevents the
model from rote memorizing the entities. Specifi-
cally, the proposed approach contains two mutual
information based training objectives: generaliz-
ing information maximization, and superfluous
information minimization. Experiments on various
datasets demonstrate that MINER achieves much
better performance in predicting out-of-vocabulary
entities.
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A Appendix

This section provides the proof of generalizing
information maximization, i.e., Eq. (8). Consider
x1 and x2 are two contrastive samples of similar
context, and contains different entity mentions of
the same entity category, i.e., s1 and s2, respec-
tively.

I(z1;x2) =I(z1;x2z2)− I(z1; z2|x2)
=I(z1;x2z2)

=I(z1; z2) + I(z1;x2|z2)
≥I(z1; z2)

(13)

B Appendix

This section provides the proof of superfluous
information minimization, i.e. Eq. (9).

I(x1; z1|x2)

= Ex1,x2∼p(x1,x2)Ez∼p(z1|v1) log
p(x1,z1|x2)

p(x1|x2)p(z1|x2)

= Ex1,x2∼p(x1,x2)Ez∼p(z1|v1) log
p(z1|x1)p(x1|x2)
p(x1|x2)p(z1|x2)

= Ex1,x2∼p(x1,x2)Ez∼p(z1|v1) log
p(z1|x1)
p(z1|x2)

= Ex1,x2∼p(x1,x2)Ez∼p(z1|v1) log
p(z1|x1)p(z2|x2)
p(z2|x2)p(z1|x2)

= DKL(p(z1|x1)||p(z2|x2))

−DKL(p(z1|x2)||p(z2|x2))

≤ DKL(p(z1|x1)||p(z2|x2))(14)
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