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Abstract

Multi-hop reading comprehension requires an
ability to reason across multiple documents. On
the one hand, deep learning approaches only
implicitly encode query-related information
into distributed embeddings which fail to un-
cover the discrete relational reasoning process
to infer the correct answer. On the other hand,
logic-based approaches provide interpretable
rules to infer the target answer, but mostly work
on structured data where entities and relations
are well-defined. In this paper, we propose
a deep-learning based inductive logic reason-
ing method that firstly extracts query-related
(candidate-related) information, and then con-
ducts logic reasoning among the filtered infor-
mation by inducing feasible rules that entail
the target relation. The reasoning process is ac-
complished via attentive memories with novel
differentiable logic operators. To demonstrate
the effectiveness of our model, we evaluate it on
two reading comprehension datasets, namely
WikiHop and MedHop.

1 Introduction

Reasoning has been extensively studied in the struc-
tured domain, e.g., knowledge base completion
which infers missing facts given background enti-
ties and relations. However, when the background
knowledge is expressed in natural languages, as
shown in the multi-hop reading comprehension
problem with triplet-form questions (Welbl et al.,
2018), it becomes difficult to conduct complex rea-
soning because the entities and relations are not
explicitly labeled in the documents. For exam-
ple, consider the question “country(Moonhole, ?)”,
given the following documents:

“Moonhole is a private community on the island
of Bequia. Moonhole was founded by Thomas
and Gladys Johnston in the 1960s.”

“Gladys Johnston was born in United States.”

“Bequia is an island and is part of the country of
Saint Vincent and the Grenadines”

In this example, the underlined entities are used to
infer the correct answer, i.e., “country(Moonhole,
Saint Vincent and the Grenadines)”, but are not
explicitly annotated for relational reasoning.

Deep neural networks (DNNs) for multi-hop
reading comprehension (RC) can be summarized
into following three categories. 1) Memory-based
models (Zhong et al., 2019; Wang et al., 2018;
Zhuang and Wang, 2019) that produce query-
aware context representations. 2) Graph-based ap-
proaches (Song et al., 2018; De Cao et al., 2019)
that use graph neural networks to propagate infor-
mation based on pre-constructed entity (context)
graphs. 3) Neural Module networks (Andreas et al.,
2016) that decompose the question into a series
of action modules (Jiang and Bansal, 2019; Gupta
et al., 2020). However, DNNs only implicitly en-
code relevant contexts and fail to explicitly uncover
the underlying relational compositions for com-
plex inference. For instance, in the above example,
DNNs may encode Bequia and Gladys Johnson
into 1-hop features, given the fact that both entities
co-occur with the query Moonhole. As a result, the
model may predict United States by linking it with
Gladys Johnson instead of the correct answer Saint
Vincent and the Grenadines. In contrast, human be-
ings would easily produce the correct answer given
the knowledge “if A is in B and B is part of country
C, then A is in country C” and by examining the
relations between each entity pair co-occurred in
the context.

Inductive logic programming (ILP) (Muggleton,
1991) aligns with human reasoning by inducing
interpretable rules to entail positive but not neg-
ative examples. To answer the previous query,
ILP could generate a rule as located_in(X, Z) A
country(Z,Y") = country(X, Y’). Combining deep
learning with ILP is a promising direction to bene-
fit from both worlds (Evans and Grefenstette, 2018;
Dong et al., 2019). Deep logic models have been
proposed for structured knowledge base comple-
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tion (Minervini et al., 2017, 2020; Yang and Song,
2020; Rocktischel and Riedel, 2017; Yang et al.,
2017). However, it becomes much more challeng-
ing when dealing with natural language inputs,
as in the case of multi-hop reading comprehen-
sion. Weber et al. (2019) proposed to combine a
symbolic reasoner: prolog, with weak unifications
based on distributed embeddings as a backward-
chaining theorem prover to induce feasible rules
for multi-hop reasoning. However, their work relies
on the degree of precision for pre-extracted NERs
and is limited by the number of rule templates.

To address the aforementioned limitations,
we propose a novel end-to-end integration of
deep learning and logic reasoning termed Deep
Inductive Logic Reasoning (DILR). It consists of
two components: 1) a hierarchical attentive reader
that filters query-related and candidate-related in-
formation from given documents, and 2) a multi-
hop reasoner that conducts inductive logic reason-
ing by attentively selecting proper predicates to
form candidate rules and refines them upon given
examples. We introduce novel differentiable logic
operators combined with attention mechanisms for
smooth back-propagation. Compared to existing
deep logic models, we build connections between
raw text inputs and the symbolic domain by map-
ping high-level semantic representations to logic
predicates and instantiating logic variables with
neural representations to conduct relational reason-
ing. We also parameterize the entire process for
end-to-end differentiable learning.

The contributions of this work include: 1) We
introduce a novel smooth connection between deep
representation learning with logic reasoning by as-
sociating distributed representations with discrete
logic predicates and their probabilistic evaluations.
2) We propose deep-learning-based inductive logic
programming via attentive memories and differ-
entiable logic operators for the task of multi-hop
reading comprehension considering the number of
reasoning steps. 3) We provide comprehensive eval-
uations of our model on two benchmark datasets.

2 Related Work

Multi-Hop Reading Comprehension Recent
works for multi-hop RC include memory-based
methods which apply attentions to iteratively up-
date query and context representations consider-
ing their interactions (Dhingra et al., 2018; Clark
and Gardner, 2018; Wang et al., 2018; Zhong

et al., 2019; Zhuang and Wang, 2019; Jiang et al.,
2019). To explicitly incorporate entity connections,
De Cao et al. (2019), Ding et al. (2019), Qiu et al.
(2019), Tang et al. (2020), Song et al. (2018) and
Tu et al. (2019) proposed to build entity graphs and
apply Graph Neural Networks for information prop-
agation. Kundu et al. (2019) formalized reasoning
as a path-finding problem with neural encoding
to rank candidate paths. Path modeling was also
adopted in (Chen et al., 2019) using pointer net-
works. However, these approaches only focus on
local information without the ability to generalize,
and some of them rely on off-the-shelf NER tools.
Dhingra et al. (2020) proposed to convert texts
into a virtual knowledge base for retrieval using a
pre-constructed entity database. Another research
direction is to decompose target questions into sub-
questions (Min et al., 2019) or sub-modules param-
eterized with neural module networks (Jiang and
Bansal, 2019; Gupta et al., 2020; Chen et al., 2020)
which also fail to explicitly uncover the underlying
logic for reasoning.

Deep Learning with Logic Reasoning Neuro-
symbolic learning aims to integrate deep learning’s
ability on dealing with uncertainty and logic pro-
gramming’s ability on reasoning. Deep neural net-
works have been used to parameterize discrete logic
operators and logic atoms (Franga et al., 2014; Hu
et al., 2016; Manhaeve et al., 2018; Xu et al., 2018;
Li and Srikumar, 2019; Wang and Pan, 2020; Wu
et al., 2020) given the logic rules. A more challeng-
ing direction is inductive logic programming that
automatically learns rules through representation
learning and differentiable backpropagation (Evans
and Grefenstette, 2018; Dong et al., 2019; Wang
et al., 2019; Yang and Song, 2020).

Neuro-symbolic learning has been applied to
knowledge-base completion through logic embed-
dings (Guo et al., 2016), tensor operations (Co-
hen, 2016; Rocktischel and Riedel, 2017), adver-
sarial learning (Minervini et al., 2017), variational
learning (Qu and Tang, 2019) or attentions (Yang
and Song, 2020). Differentiable theorem proving
has also been proposed with weak unifications and
backward chaining (Rocktischel and Riedel, 2017;
Campero et al., 2018; Minervini et al., 2020). How-
ever, unlike multi-hop RC, knowledge-base com-
pletion only takes structured inputs without the
need to address language ambiguity. The most re-
lated work to ours is NLProlog (Weber et al., 2019),
a neural theorem prover for multi-hop RC by con-
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verting language utterances to distributed embed-
dings. However, NLProlog relies on a NER tool to
extract entities and its expressiveness is limited by
the number of rule templates.

3 Background

We focus on multi-hop reading comprehension
tasks containing explicit query types which align
with the standard ILP setting. Formally, for each
RC problem, we are given a set of documents
C = {ci1,...,ck }, a structured query in the form
of a relational triplet (s, ¢, ?), where s denotes the
subject of the relation ¢, and a list of candidate
answers A = {ay, ..., a, }. The task is to select an
answer a € A such that ¢(s, a) is satisfied, i.e., a
is the object of relation ¢ given the subject s. For
example, country(M oonhole, ?) is a query asking
for the country where Moonhole is located. This
task could be converted into an ILP problem with
the formal definition as follows.

Definition 3.1 (Inductive Logic Programming).
Given a logic theory B representing the back-
ground knowledge (facts), a set of positive exam-
ples E* and a set of negative examples £, an ILP
system aims to derive a hypothesis 7 which entails
all the positive and none of the negative examples:
BAHE~yforye ET. BANH E~forye E™.

The hypothesis 7 is a logic program consist-
ing of definite clauses b; A ... A by = h where
b1, ...,bn and h are logic atoms. The LHS of “=-"
is the clause body and h is the head. An atom is
composed of a predicate and its arguments, e.g.,
h = located_in(X,Y") with predicate “located_in”
and arguments X, Y. A ground atom is obtained
by instantiating variables in the arguments with
constants, e.g., X = “US”. We use () to denote
the value of an atom or a clause. For smooth opti-
mization, we assign /(-) € [0, 1] which indicates
the probability of the atom or clause being true.

For multi-hop reading comprehension, we treat
the query relation ¢(X,Y’) as the head atom of
the clauses to be induced. The correct answer
a;r from each problem forms the set of positive

examples Et={q(s;, a;r)}i]\fl, and the incorrect

answer a; forms the set of negative examples
E~={q(si,a;)}.,. Here we use lower cases:
si, a;, a; torepresent constants and upper cases:
X, Y to represent variables. The predicates in the
logic domain correspond to pairwise relations be-

tween two entities'. To differentiate the number of
inference steps, we define a [-hop reasoning clause
as Fo(Xo, Xl) VAAN Fl(Xl, Xl+1):>r(X0, Xl+1)
with [ denoting the number of extra arguments
as bridging entities in the rule body except those
in the head atom. Here r denotes a predicate,
i.e., a relation between Xy and X;,;. Each sub-
clause F}(X;, X¢41) can be one or a conjunction
(A) of 2-ary atoms taking only X; and Xy, as
arguments, e.g., Fy(X¢, Xiy1) = m1(Xy, Xeg1) A
ro(Xt, Xtt1)-

4 Methodology

Overall, DILR simulates a multi-hop reasoning
process considering different number of inference
steps. It is an end-to-end framework consisting of
two components: a Hierarchical Attentive Reader
and a Multi-hop Reasoner. The attentive reader
learns to select relevant information from the given
documents to produce query-aware, candidate-
aware and bridging entity representations. These
representations are passed to the multi-hop rea-
soner to instantiate logic atoms in order to generate
and evaluate clauses that are relevant to the query
relation. The multi-hop reasoner conducts rule in-
duction via attentive memories that softly select
atoms to form new clauses and novel differentiable
logic operators that produce probabilistic values
for generated clauses. The final loss can be back-
propagated smoothly to update the attentive reader
for more accurate selections. Next, we illustrate
each component with more details.

4.1 Hierarchical Attentive Reader

To avoid inevitable errors brought by off-the-shelf
NER tools for named entity extraction, we propose
to extract relevant information using an attentive
reader. Since multiple documents (contexts) are
involved for each question, we design a 2-level hi-
erarchical attention network to progressively filter
token-level and context-level information. Specif-
ically, the token-level attentions aim to select [-
hop (I =0, ..., L) relevant entities in each context.
Then the context-level attentions produce the final
representations by softly attending to each context
considering different number of reasoning hops.

4.1.1 Token-Level Attention

Given a query subject s with ng tokens, a candi-
date a with n, tokens, and a context c of length

"We restrict each atom as a 2-ary atom that takes exactly 2
arguments, analogical to relations in the knowledge base.
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ne, we denote by S € R**P A € R"*D and
C ¢ R"*P their word features after a biGRU
layer, respectively. For multi-hop reasoning, we
use different attentions for finding or relocating
target tokens in each context, inspired by (Gupta
et al., 2020). Firstly, a subject-to-context attention
is adopted to find similar tokens as the subject in
each context: B}, = W;—[Si; Cj;S; o C;| where
W is a learnable transformation vector and [; | de-
notes concatenations. We obtain the normalized
similarity score «;; between the i-th token in the
subject and the j-th token in the context via a soft-
max operation on each row of B®. A subject-aware
(0-hop) context representation is produced as

Ne Ns
h, =) aiCj, witha$ => af;8, (1)
j=1 i=1

where 37 weighs the contribution of each subject
token via a self-attention: 3° = softmax(w/S +
bs). Similarly, we produce an attention score o
for the j-th context token w.r.t. the i-th candidate
token and a candidate-aware context representation
h,. We denote by s = 3°S, and a = B3%A the
feature representation of the query subject and the
candidate entity, respectively.

For (I + 1)-hop reasoning (I > 0), it is de-
sired to relocate to intermediate (bridging) enti-
ties that are related to the [-hop entities. Hence,
we adopt context-to-context attentions BZ.H =
w/ [C; + h!; C;; (C; + h')oCy] given the I-hop
representation h! where h® = h,. We use ozé;rl to
denote a normalized attention score between the
t-th and the j-th context tokens after applying a
softmax operator over each row of B!, With
0 — a;, the (I + 1)-hop bridging context repre-

@
sentation becomes

Ne Ne

h'*t =3 "altlc;, withalt' =) "olt'al. (@
j=1 i=1

4.1.2 Context-Level Attention

With multiple contexts (documents) available, we

use a context-level attention to produce the final

l-hop feature representations. When [ = 0, the

model softly attends to each context to produce
context-attended subject representation as

K
hs = Z ’S/lf;hs,k7
k=1

where 7} is the attention weight of context cy,
obtained by normalizing over a score vector ~*

3

Figure 1: An example of multi-hop ILP. The existen-
tial predicates rq, ..., ) are used to define invented
predicates 4, ..., rﬁul through attentions. The invented
predicates will produce the final clauses to define g.

with entries v, = v, [s; hg ;s o hyi]. Here
h, ;. is the subject-aware context representation
computed in (1) corresponding to the k-th con-
text cp. Vg is a trainable transformation vector.
The final subject representation is produced as
h, = Ws; IAls; so ﬁs] incorporating both original
features and attended information. Similar proce-
dure applies to each candidate entity to produce h,,.
We treat h, and h, as 0-hop subject and candidate
representations, respectively.

When [ > 0, the context-level attention aims
to produce the probability of each context being
chosen as a bridging entity using

pk = o(v] [hs;hl;h, o hl)), “4)
where o(-) is the sigmoid function, and h! is the
[-hop intermediate entity representation for context
¢, € C computed using (2).

4.2 Multi-Hop Reasoner

The multi-hop reasoner aims to conduct complex
reasoning by first generating probable logic clauses
and then evaluating each clause by instantiating
the variables with relevant contexts obtained from
the attentive reader. The clause generation pro-
cess is parameterized by attentive memories which
compute the probability of selecting each atom to
form a relevant clause to entail the query relation.
An illustration of the procedure is shown in Fig-
ure 1 and is elaborated in the following sub-section.
The clause evaluation process is then to instanti-
ate variables in each atom with constants such as
query subjects, candidate entities or bridging en-
tities. The outputs from the attentive reader, i.e.,
hs, h, and {h!}’s (I > 0), can be used as feature
representations for these constants to compute the
atom scores for clause evaluation and updates.

5002



4.2.1 Clause Generation

A definite clause is composed of atoms defined over
relational predicates. Since there are no explicit
relations given in this task, we pre-define a fixed set
of relations for each corpus, named as existential
predicates: Pp={ry,...,ra}, e.g., “located_in”,
“next_to”. For expressiveness, we further create
a set of invented predicates Py=U_, P! defined
from the existential predicates, inspired by (Evans
and Grefenstette, 2018).  Specifically, PIZ =
..., réwl} consists of invented predicates ! de-
fined using /-hop reasoning clauses Fy(Xo, X1) A
oo N Fy(Xp, Xi41) =1l (X0, X141). For exam-
ple, located_in(Xo, X1) A next_to(X;, Xo) =
outside( X, X2) defines a 1-hop invented predicate
“outside”. Here L is the maximum hop number. The
final clauses defining the query relation will be pro-
duced by learning to select relevant invented predi-
cates, e.g., rﬁl(X, Y)A .. /\ré" (X,Y)=q(X,Y)
with 0 < [; < ... <[, < L. The number of actual
inference steps [,, to answer ¢ is flexibly decided
by the model itself, which will be discussed later.

The clause generation process is divided into
two stages: 1) to generate clauses defining invented
predicates using only the existential predicates, and
2) to generate final clauses defining query rela-
tion g using only the invented predicates. To al-
low for smooth optimization, we parameterize both
stages by computing an attention weight for each
predicate indicating its probability to appear in the
clause body. Specifically, we assign each predicate
a learnable embedding to indicate its semantics.
Let U € RP*M denote the embedding matrix
for M existential predicates and U! € RP*M
(I € {0,1, ..., L}) denote the embedding matrix for
{[-hop invented predicates. In the first stage, we use
attentive memories to generate

S! = sparsemax((WiU})T(WiU)), (5)
U, = U,+8|- (WU, (6)

where U} = U!, and W! and W/ are transfor-
mation matrices for invented predicates (queries)
and existential predicates (keys), respectively. We
use sparsemax, a sparse version of softmax (Mar-
tins and Astudillo, 2016), to select only a small
number of predicates. Intuitively, to learn to de-
fine a [-hop invented predicate rfn, (5) and (6)
sequentially produce Fy(Xy, X;4+1) at each step
t €{0,...,1} to form the clause body by attend-
ing over all the existential predicates with atten-
tion weight S!. For example, when [ = 1, (5)

first attends to the existential predicate r; to gen-
erate F()(X(),Xl) = TZ'(X(),X1> at stept = 0,
and then attends to another predicate 7; to gen-
erate F'1(X1,X2) = rj(X1,Xp) atstept = 1.
The resulting clause r;(Xo, X1) A r;j(Xi, Xo2) =
rl (Xo, X2) defines the invented predicate 7., .

In the second stage, we produce H final clauses
taking invented predicates to define the target atom
q(X,Y). Given an embedding u, € R” for the
target relation ¢, we use a multi-head attention
mechanism to compute a probability distribution
sy, over all the invented predicates for each head
h € {1, ..., H} to produce the h-th final clause:

sh:sparsemax{(Wguq)T(WZ [U%...; U},

(N
where s;, is a sparse selective distribution over
P = {r{, ...,TJLML}. For example, if s;, selects
) and 71, the final clause becomes r{(X,Y) A
r3(X,Y) = ¢(X,Y), which involves at most 1
inference step because 3 is a 1-hop invented pred-
icate. This completes the recursive rule generation
step with multi-hop inference. To this end, we gen-
erate H clauses that can be used to define ¢(X,Y").

4.2.2 Clause Evaluation

Instantiation The clauses generated using the at-
tentive memories need to be tested and refined
against the given positive and negative examples,
known as learning from entailment that tries to max-
imize the truth probabilities of positive examples
and minimize those of negative examples. The pos-
itive examples correspond to ¢(s, a) and the neg-
ative examples correspond to {q(s,a™)}’s, where
s, a and a~ refers to the query subject, correct an-
swer and incorrect candidate, respectively. To ob-
tain the truth probabilities of these atoms, we first
instantiate the variables for each generated clause
with constant contexts, e.g., X = sandY = a
(orY = a7)in ¢(X,Y). The bridging variables
X1, ..., X are instantiated using the bridging con-
texts selected via the attentive reader as introduced
in 4.1. Specifically, to instantiate each X;, we
pick top-KC contexts (documents) {c}, ..., cfc} CcC,
namely X; = cgg, 1 < k < K with highest proba-
bilities according to pf,C computed via (4).

Neural Logic Operator Given a definite clause
b1 A ... ANby = h consisting of grounded atoms
(e.g., b1 = ri(s,a)), we could obtain the value
for its head atom as p(h) = p(by A ... Aby). To
compute the RHS involving logic operators (A, V),
T-norm (Klement et al., 2013) is usually adopted:
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T :[0,1] x [0,1] — [0,1]. For example, mini-
mum t-norm defines Ty (p1, 2) = min(u, p2),
Ty(p1, pp2) = max(pi, uz). Product t-norm de-
fines T (1, p2) = p1 - pros Ty (1, pr2) = 1— (1 —
p1)-(1—p2). Here p, po € [0, 1] refer to the value
for the body atoms. However, minimum t-norm is
prone to learning plateau because the gradient only
flows through one of the inputs. Product t-norm is
less stable and is prone to exponential decay when
the number of atoms in the clause grows.

To address these limitations, we propose a novel
neural logic operator G defined as follows:

N ~
Gv(p1, ..y iy )=1—exp (Zlog(l — o + e)) ,

n=1
1

N N
g/\(,ufla”'vNN):eXp (Zlog(ﬂn+f)> ’

n=1

where p1, ..., uny € [0, 1] refer to the probabilistic
values of all the atoms in the conjunctive (A) or dis-
junctive (V) clause. € is a small value to guarantee
the validity for logarithm. The operator G has the
following property that is ideal for logic semantics.
Proposition 1. When Vi, — 1withl <n < N,
Ga(py ooy by) — 1, aligning with logic “AND”.
When 3, — 1, Gy(p1,...,un) — 1, aligning
with logic “OR”.

Proposition 2. 0 < Ga(p1, ..y UN) — Mmin <
(NHONY— NNTO=N) [,y i)V

where min refers to the index of the minimum

value among {1, ..., iN }.
Proof.
g/\(,ufly ceey ,U’N) — Mmin
N 1/N
= exp <Z log (in + e)) — [min
n=1
N
~ H M;/N - len (
n=1

Without loss of generality, assume the minimum
value is pimin = p1. By fixing po, ...
stants, we obtain the gradient for (9) w.r.t. p; as

N)/N H 'ul/N

(9) obtains its maximum value when (10) equals 0,
resulting in

(10)

N
py = NN TT /N0, (11)
n=2

, LN as con-

By replacing fiyin in (9) with (11), we have

Ga(p1, s BN) — fmin
N
< NY/A-N) H PL/N(N=1)+1/N
n=2
N
_NMN/a- H Ml/(N 1)
_ (Nl/(l—N) NN/(- H Ml/ (N—1)
This completes the proof. O

In other words, the difference between G, and
Wmin 18 bounded. When N = 2, the RHS of the
inequality equals to 1/4 - fi5£min, Which makes
G closer to fimin When fiy, iy is smaller. This
formulation results in a more stable and smooth
gradient flow compared to minimum t-norm. More-
over, It avoids exponential decay in the output when
N > 1. It also facilitates neural learning when the
exact clause is parameterized with attention scores.

Evaluation With the neural logic operator defined
above, the value for the head atom can be inferred
once the value for each body atom is given. For
grounded atoms over existential predicates, e.g.,
rm(s,a), we directly generate its value using a
relational network F : R¢ x R — RM that takes
the features of two constant arguments as input
to produce a probability distribution over all the
existential predicates 71, ..., 7as:

F(hs, hy)

= softmax(W,. tanh[hg; h,; hy—hg; hyoh,)),
where p(rp,(s,a)) equals the m-th entry of
F(hg, hy), and hy and h, are the outputs from
the attentive reader. Similarly, hgg can be regarded
as the feature of ka generated from the attentive
reader which is used to compute atom values with
bridging entities, e.g., p(rm (s, ct)).

For [-hop grounded atoms over invented pred-
icates {r}(s,a), ..., 7’5\@(37 a)}, we compute their
values according to the value of the clause body
that defines them, e.g., ju(Fo(s, ct) A... AFy(ck, a))
using neural logic operators:

(+1)

l l
w = gggl( exp ( E S IOg Pz, ZtJ,»l) )
(12)
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Here p! = [u(rh(5,@)), s (g, (5,0))] T de-
notes the vector of the atom values formed by
those [-hop invented predicates. We denote by
2 ={(s,c},...,ck,a)}1<k<k the set for all possi-
ble instantiations for /-hop reasoning and denote
by z; the {-th constant of z € Z1. p,, ., ) =
[16(71 (2, 2e41) )5 ooy po(r2r (22, 2041))] T is @ vector
of values for grounded atoms over existential pred-
icates. Thus, exp(-) gives a neural approxima-
tion of logic conjunctions as shown in (8) over
{Fi(2t, z141) fo<t<i, each of which is a sparse se-
lection of existential predicates using S{. We use a
max operator to generate the maximum score over
all possible instantiations in Z; to represent the
final truth probability of each invented predicate.
Intuitively, a relation between two entities should
be satisfied as long as there is at least one instantia-
tion that follows the rule. Also note that (12) has
the effect that when SL[i, j] ~ 0, the corresponding
predicate r; will have little effect on the value of its
head rﬁ, which is in contrast to existing T-norms.
The final value for ¢(s, a) is computed via

ula(s, a))=max. {exp (silog([u% ..; "] +€))},

which selects the maximum score over H final
clauses that define ¢(s,a). We use the cross-
entropy loss over y(q(s, a)) as the final objective
to train the entire model (except the word embed-
dings which are kept fixed) in an end-to-end man-
ner. Here we organize the dataset according to
subject-candidate pairs: (s,a). We associate the
ground-truth label y = 1 with (s,a) if a is the
correct answer, otherwise, y = 0.

5 Experiment

We conduct experiments on two multi-hop read-
ing comprehension datasets, namely WikiHop and
MedHop (Welbl et al., 2018). The WikiHop dataset
contains 43,738 training and 5,129 development in-
stances ranging over 277 query relations. MedHop
is a medical dataset containing 1,620 training and
342 development instances with a unique query
relation, i.e., “interact with”. For WikiHop, we ex-
periment with both non-contextual (follow (Weber
et al., 2019)) named as DILR and contextual word
embeddings (BERT (Devlin et al., 2019)) named
as DILR-BERT to demonstrate our model’s gen-
eralization ability. For MedHop, we use the same
setting following (Weber et al., 2019). We define
M = 10 relations as existential predicates and
M; = 5 invented predicates for each hop with

WikiHop
Model Publisher | Developer | Country | Record_label MedHop
EPAr 81.48 65.52 70.10 80.57 64.90
HDEG 85.19 79.31 73.20 83.39 -
DynSAN 85.19 75.86 76.80 83.39 -
NLProlog 83.33 68.97 77.84 79.51 65.78
DrMD 85.19 75.86 74.23 81.27 67.25
DILR 88.89 79.31 79.38 84.10 71.35
BERT 88.89 79.31 81.96 83.04
DILR-BERT 88.89 82.76 84.02 84.45

Table 1: Comparison results with baseline models on
MedHop and four selected relations in WikiHop.

Data DI D2 DI+D2 [ D3 | DI+D2+D3
#training data | <1000 | 1000 ~ 4000 | <4000 | >4000 | 0~ 5000
# query relations 38 7 45 2 47
EPAr 64.79 61.47 63.12 | 68.70 64.43
HDEG 69.49 63.75 66.61 | 70.71 67.57
DynSAN 68.61 60.95 6476 | 68.70 65.69
NLProlog 63.20 56.51 59.84 | 59.64 59.79
DrMD 69.25 6223 65.73 | 68.89 66.47
DILR 71.37 64.39 67.87 | 73.66 69.23
BERT [ 7396 | 66.14 | 7004 [ 7424 | 71.02
DILR-BERT | 7442 | 6783 | 7127 | 7729 | 72.68

Table 2: Comparisons on WikiHop in terms of the num-
ber of training instances for each query relation.

[ = 0,1, 2. The number of final clauses to define
the query relation is = 5 and the number of
candidate bridging contexts for each hop is set to
K = 5. The dimension of predicate embeddings
and biGRU layer is 100 and 200, respectively. For
training, we adopt Adam optimization with learn-
ing rate initialized at 0.001. The batch size is set
to 10. For all the experiments, we use the devel-
opment dataset to evaluate the results because the
test data is not publicly available to be grouped by
query relations under our setting.

5.1 Experimental Result

Weber et al. (2019) only selects four different query
relations from WikiHop, namely Publisher, Devel-
oper, Country and Record_label. For fair compar-
isons, we first follow their setting to evaluate on
these four domains, then we further evaluate on
all the other 47 valid query relations in WikiHop
for a more complete analysis. For pure deep learn-
ing baselines, we use two memory-based models:
EPAr (Jiang et al., 2019) and DynSAN (Zhuang and
Wang, 2019), and a graph-based model HDEG (Tu
et al., 2019)3. For reasoning baselines, we use NL-
Prolog (Weber et al., 2019) and DrMD which is a
differentiable reasoning model adapted from (Dhin-

“We consider those query relations containing at least 20
development and 100 training instances as valid.

3These baselines demonstrate good performances accord-
ing to the leaderboard with available code for implementation.
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Setting Located | Publisher | Producer | Country | Occupation | Record
< 0Hop | 7024 85.19 61.76 76.29 71.78 78.80
<1Hop | 71.72 87.04 67.65 77.84 71.78 81.98
<2Hop | 73.38 88.89 67.65 79.38 73.62 84.10
<3Hop | 70.79 83.33 58.82 76.29 69.63 82.69
DILR 73.38 88.89 67.65 79.38 73.62 84.10
—PI 69.03 88.89 58.82 77.32 69.63 81.63
—ILP 65.80 85.19 52.94 75.77 68.71 80.92

— AR 66.73 85.19 55.88 74.23 65.95 83.39
— Rel 63.22 87.04 64.71 78.35 69.63 79.15
prod-T 70.98 88.89 58.82 77.84 69.33 81.63
min-T 69.32 87.04 64.71 78.87 70.25 80.92
NLO 73.38 88.89 67.65 79.38 73.62 84.10

Table 3: Abalation study over model architecture. —
indicates the removal of an element from the model.

gra et al., 2020) by removing pre-defined entities
and only consider mention interactions following
our settings. BERT is a baseline model that first
generates a context-aware query subject (or candi-
date) representation given the input “[CLS] query
subject (or candidate) [SEP] context [SEP]”. Then
the representations of the query subject and each
candidate are concatenated to be fed into a binary
classifier. On the other hand, DILR-BERT adopts
the attentive reader and the multi-hop reasoner on
top of BERT representations. For all the baselines,
we train the models on each query relation sepa-
rately to test the reasoning capability, same as our
setting.

Table 1 lists the results for MedHop and four
query relations from WikiHop according to (Weber
et al., 2019). Clearly, DILR gives the best per-
formances across all the baselines, demonstrating
the advantage of combining deep attentive learning
with logic reasoning. Though NLProlog also con-
ducts logic reasoning, it is limited by the model’s
capacity and relies on the extraction accuracy of the
NER tool. Even with well-trained contextualized
word embeddings (DILR-BERT), our model still
brings consistent performance gains.

For a more thorough analysis, we take the en-
tire WikiHop dataset and group the query relations
in terms of the number of training instances. As
shown in Table 2, there are 38 relations (D1) con-
taining less than 1,000 training examples, 7 rela-
tions (D2) with training examples ranging from
1,000 to 4,000 and 2 relations (D3) having more
than 4,000 training examples. The entire data
(D1+D2+D3) contains 36,653 training instances
and 4,462 development instances. We report the
micro-average accuracy scores over all the domains
within each data group and their combinations in
Table 2. Clearly, our model achieves the best perfor-
mances over all data groups. The margin is larger

for D1 and D3, demonstrating the consistency of
our proposed model with varying data sizes. In
fact, ILP could be beneficial when training data is
not sufficient via learning of generalized rules.

5.2 Analysis

To provide detailed analysis, we conduct ablation
experiments on 6 datasets as shown in Table 3. For
fair demonstration, we pick one relation in D3 (Lo-
cated), 2 relations in D2 (Occupation and Record)
and 3 relations in D1 (Publisher, Producer, Coun-
try). The first four rows reflect the accuracies by
varying the maximum allowed number of reasoning
hops (L). Clearly, < 0 Hop and < 3 Hop produce
lower accuracies because < 0 Hop fails to model
the bridging entities and < 3 Hop could overfit the
model given most of the questions only involve at
most 2 reasoning hops.

The middle part of Table 3 reflects the effect of
each element of DILR. Specifically, —PI removes
the invented predicates: remove (5), (6), (12) and
replace U! with U in (7). —ILP removes the rea-
soner and uses a classifier on top of the attentive
reader to produce the final predictions. —AR re-
moves the attentive reader and uses NER tools to
extract entities for reasoning. —Rel only computes
binary relations that decide whether two constants
are related or not. This demonstrates the effect
of relational reasoning considering different rela-
tions. By comparison, it is evident that removing
any component will suffer from non-trivial pre-
diction loss, especially for ILP. To verify the ef-
fect of the neural logic operator (NLO), we com-
pare it with two T-norm operators, namely “prod-
T” for product T-norm and “min-T” for minimum
T-norm. Clearly, NLO produces the best perfor-
mances across all the experiments.

To provide a concrete view of how the attentive
reader filters relevant information and how the gen-
erated clauses look like, we list three examples as
shown in Table 4. The underlined texts have the
maximum attention weights learned from the atten-
tive reader. The bold texts indicate the query sub-
ject and the correct answer for each query. Clearly,
the attentive reader is able to select bridging entities
relevant to the answer. The third column lists some
learned clauses from the reasoner. The first row of
each example shows the clauses that define an in-
vented predicate and the second row shows the final
clause that entails the query relation*. We use ab-

*We convert the attention scores to the exact clauses by
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Query Attentive Reader

Generated Clause

country(CC, ?)

. Christ Church is a historic church building at ..., Massachusetts.| 77(CC, M) Ar2(M,US) = r}(CC,US)
. Massachusetts is the most populous state in ... United States.

ri(CC,US) = country(CC,US)

record_label(MM, ?)

. Method Man is the B-side ... titled Enter the Wu-Tang.
. Enter the Wu-Tang is the debut ... on Loud Records

rs(MM, WT) Ara(WT, LR) = ri(MM, LR)
ri(MM, LR) = record_label(M M, LR)

. Face Off ! is an hockey game ...
. Hockey is a family of sports ...

SR N R Gl

genre(FO, ?7)

r7(FO,H) Ar6(H, S) = ri(FO, S)
ri(FO, S) = genre(FO, S)

Table 4: Examples of learned attentions and clauses.
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Figure 2: Sensitivity test over H, M and K.

breviated entities as the constants in each grounded
atom (e.g., “CC” is short for “Chris Church”). The
two clauses for the first example could be read as:
if Chris Church and Massachusetts has relation
r7, and Massachusetts and United States has rela-
tion 79, then the country of Chris Church is United
States.

We further demonstrate the robustness of DILR
by varying model parameters, as shown in Figure 2.
The top subplots reveal the accuracies on MedHop
and Country datasets when changing the number of
final clauses H (left) and the number of existential
predicates M (right). The subplot in the bottom
depicts the accuracies when varying the number of
instantiations K of the bridging contexts for Genre
dataset under both DILR and BERT-DILR models.
We shall observe that the performances are rela-
tively stable given that the total number of testing
examples are less than 400 for each dataset.

6 Conclusion

We propose an end-to-end model DILR to solve
the problem of multi-hop reading comprehension.
DILR smoothly connects a hierarchical attentive
reader with a multi-hop reasoner to conduct auto-
matic information extraction and complex reason-

keeping those predicates with scores higher than 0.4.

ing. We also introduce differentiable logic opera-
tors to induce valid clauses with smooth and stable
gradient-based learning. Extensive experiments
reveal consistent improvements brought by DILR.
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