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Abstract

Publicly traded companies are required to sub-
mit periodic reports with eXtensive Business
Reporting Language (xbrl) word-level tags.
Manually tagging the reports is tedious and
costly. We, therefore, introduce xbrl tagging
as a new entity extraction task for the finan-
cial domain and release finer-139, a dataset
of 1.1M sentences with gold xbrl tags. Un-
like typical entity extraction datasets, finer-
139 uses a much larger label set of 139 en-
tity types. Most annotated tokens are nu-
meric, with the correct tag per token depend-
ing mostly on context, rather than the token
itself. We show that subword fragmentation
of numeric expressions harms bert’s perfor-
mance, allowing word-level bilstms to per-
form better. To improve bert’s performance,
we propose two simple and effective solutions
that replace numeric expressions with pseudo-
tokens reflecting original token shapes and nu-
meric magnitudes. We also experiment with
fin-bert, an existing bert model for the fi-
nancial domain, and release our own bert
(sec-bert), pre-trained on financial filings,
which performs best. Through data and er-
ror analysis, we finally identify possible limita-
tions to inspire future work on xbrl tagging.

1 Introduction

Natural language processing (nlp) for finance
is an emerging research area (Hahn et al., 2019;
Chen et al., 2020; El-Haj et al., 2020). Financial
data are mostly reported in tables,but substantial
information can also be found in textual form, e.g.,
in company filings, analyst reports, and economic
news. Such information is useful in numerous fi-
nancial intelligence tasks, like stock market predic-
tion (Chen et al., 2019; Yang et al., 2019), financial
sentiment analysis (Malo et al., 2014; Wang et al.,

Source code: https://github.com/nlpaueb/finer
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Figure 1: Sentences from finer-139, with xbrl tags
on numeric and non-numeric tokens. xbrl tags are ac-
tually xml-based and most tagged tokens are numeric.

2013; Akhtar et al., 2017), economic event detec-
tion (Ein-Dor et al., 2019; Jacobs et al., 2018; Zhai
and Zhang, 2019), and causality analysis (Tabari
et al., 2018; Izumi and Sakaji, 2019). In this work,
we study how financial reports can be automatically
enriched with word-level tags from the eXtensive
Business Reporting Language (xbrl), a tedious
and costly task not considered so far.1

To promote transparency among shareholders
and potential investors, publicly traded companies
are required to file periodic financial reports. These
comprise multiple sections, including financial ta-
bles and text paragraphs, called text notes. In ad-
dition, legislation in the us, the uk, the eu and
elsewhere requires the reports to be annotated with
tags of xbrl, an xml-based language, to facili-
tate the processing of financial information. The
annotation of tables can be easily achieved by us-
ing company-specific pre-tagged table templates,
since the structure and contents of the tables in the
reports of a particular company rarely change. On
the other hand, the unstructured and dynamic na-
ture of text notes (Figure 1) makes adding xbrl
tags to them much more difficult. Hence, we focus
on automatically tagging text notes. Tackling this
task could facilitate the annotation of new and old
reports (which may not include xbrl tags), e.g.,

1See https://www.xbrl.org/the-standard/what/
an-introduction-to-xbrl/ for an introduction to xbrl.
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Dataset Domain Entity Types
conll-2003 Generic 4
ontonotes-v5 Generic 18
ace-2005 Generic 7
genia Biomedical 36
Chalkidis et al. (2019) Legal 14
Francis et al. (2019) Financial 9
finer-139 (ours) Financial 139

Table 1: Examples of previous entity extraction
datasets. Information about the first four from Tjong
Kim Sang and De Meulder (2003); Pradhan et al.
(2012); Doddington et al. (2004); Kim et al. (2003).

by inspecting automatically suggested tags.
Towards this direction, we release finer-139,

a new dataset of 1.1M sentences with gold xbrl
tags, from annual and quarterly reports of publicly
traded companies obtained from the us Securities
and Exchange Commission (sec). Unlike other
entity extraction tasks, like named entity recogni-
tion (ner) or contract element extraction (Table 1),
which typically require identifying entities of a
small set of common types (e.g., persons, organiza-
tions), xbrl defines approx. 6k entity types. As a
first step, we consider the 139 most frequent xbrl
entity types, still a much larger label set than usual.

Another important difference from typical entity
extraction is that most tagged tokens (∼91%) in
the text notes we consider are numeric, with the
correct tag per token depending mostly on con-
text, not the token itself (Figure 1). The abundance
of numeric tokens also leads to a very high ratio
of out-of-vocabulary (oov) tokens, approx. 10.4%
when using a customword2vec (Mikolov et al.,
2013a) model trained on our corpus. When using
subwords, e.g., in models like bert (Devlin et al.,
2019), there are no oov tokens, but numeric ex-
pressions get excessively fragmented, making it
difficult for the model to gather information from
the fragments and correctly tag them all. In our ex-
periments, this is evident by the slightly better per-
formance of stacked bilstms (Graves et al., 2013;
Lample et al., 2016) operating on word embeddings
compared to bert. The latter improves when us-
ing a crf (Lafferty et al., 2001) layer, which helps
avoid assigning nonsensical sequences of labels to
the fragments (subwords) of numeric expressions.

To further improve bert’s performance, we pro-
pose two simple and effective solutions that replace
numeric expressions with pseudo-tokens reflect-
ing the original token shapes and magnitudes. We
also experiment with fin-bert (Yang et al., 2020),

an existing bert model for the financial domain,
and release our own family of bert models, pre-
trained on 200k financial filings, achieving the best
overall performance.

Our key contributions are:

1. We introduce xbrl tagging, a new financial
nlp task for a real-world need, and we release
finer-139, the first xbrl tagging dataset.2

2. We provide extensive experiment bilstms
and bert with generic or in-domain pre-
training, which establish strong baseline re-
sults for future work on finer-139.

3. We show that replacing numeric tokens with
pseudo-tokens reflecting token shapes and
magnitudes significantly boosts the perfor-
mance of bert-based models in this task.

4. We release a new family of bert mod-
els (sec-bert, sec-bert-num, sec-bert-
shape) pre-trained on 200k financial filings
that obtains the best results on finer-139.3,4,5

2 Related Work

Entity extraction: xbrl tagging differs from ner
and other previous entity extraction tasks (Table 1),
like contract element extraction (Chalkidis et al.,
2019). Crucially, in xbrl tagging there is a much
larger set of entity types (6k in full xbrl, 139
in finer-139), most tagged tokens are numeric
(∼91%), and the correct tag highly depends on con-
text. In most ner datasets, numeric expressions are
classified in generic entity types like ‘amount’ or
‘date’ (Bikel et al., 1999); this can often be achieved
with regular expressions that look for common for-
mats of numeric expressions, and the latter are of-
ten among the easiest entity types in ner datasets.
By contrast, although it is easy to figure out that the
first three highlighted expressions of Figure 1 are
amounts, assigning them the correct xbrl tags re-
quires carefully considering their context. Contract
element extraction (Chalkidis et al., 2019) also re-
quires considering the context of dates, amounts
etc. to distinguish, for example, start dates from end
dates, total amounts from other mentioned amounts,
but the number of entity types in finer-139 is an
order of magnitude larger (Table 1) and the full tag
set of xbrl is even larger (6k).

2https://huggingface.co/datasets/nlpaueb/finer-139
3https://huggingface.co/nlpaueb/sec-bert-base
4https://huggingface.co/nlpaueb/sec-bert-num
5https://huggingface.co/nlpaueb/sec-bert-shape
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Financial ner: Previous financial ner applica-
tions use at most 9 (generic) class labels. Sali-
nas Alvarado et al. (2015) investigated ner in fi-
nance to recognize organizations, persons, loca-
tions, and miscellaneous entities on 8 manually
annotated sec financial agreements using crfs.
Francis et al. (2019) experimented with transfer
learning by unfreezing different layers of a bilstm
with a crf layer, pre-trained on invoices, to extract
9 entity types with distinct morphological patterns
(e.g., iban, company name, date, total amount).
Also, Hampton et al. (2015, 2016) applied a Max-
imum Entropy classifier, crfs, and handcrafted
rules to London Stock Exchange filings to detect
9 generic entity types (e.g., person, organization,
location, money, date, percentages). Finally, Ku-
mar et al. (2016) extended the work of Finkel et al.
(2005) and built a financial entity recognizer of
dates, numeric values, economic terms in sec and
non-sec documents, using numerous handcrafted
text features. By contrast, finer-139 uses a spe-
cialized set of 139 highly technical economic tags
derived from the real-world need of xbrl tagging,
and we employ no handcrafted features.

Numerical reasoning: Neural numerical reason-
ing studies how to represent numbers to solve
numeracy tasks, e.g., compare numbers, under-
stand mathematical operations mentioned in a text
etc. Zhang et al. (2020) released numbert, a
Transformer-based model that handles numerical
reasoning tasks by representing numbers by their
scientific notation and applying subword tokeniza-
tion. On the other hand, genbert (Geva et al., 2020)
uses the decimal notation and digit-by-digit tok-
enization of numbers. Both models attempt to deal
with the problem that word-level tokenization of-
ten turns numeric tokens to oovs (Thawani et al.,
2021). This is important, because numerical rea-
soning requires modeling the exact value of each
numeric token. In finer-139, the correct xbrl
tags of numeric tokens depend much more on their
contexts and token shapes than on their exact nu-
meric values (Fig. 1). Hence, these methods are not
directly relevant. genbert’s digit-by-digit tokeniza-
tion would also lead to excessive fragmentation,
which we experimentally find to harm performance.

3 Task and Dataset

Traditionally, business filings were simply ren-
dered in plain text. Thus, analysts and researchers
needed to manually identify, copy, and paste each

Figure 2: Frequency distribution of the 139 xbrl tags
used in this work over the entire finer-139 dataset. La-
bel indices shown instead of tag names to save space.

amount of interest (e.g., from filings to spread-
sheets). With xbrl-tagged filings, identifying and
extracting amounts of interest (e.g., to spreadsheets
or databases) can be automated. More generally,
xbrl facilitates the machine processing of finan-
cial documents. Hence, xbrl-tagged financial re-
ports are required in several countries, as already
noted (Section 1). However, manually tagging
reports with xbrl tags is tedious and resource-
intensive. Therefore, we release finer-139 to fos-
ter research towards automating xbrl tagging.
finer-139 was compiled from approx. 10k an-

nual and quarterly English reports (filings) of pub-
licly traded companies downloaded from sec’s
edgar system.6 The downloaded reports span
a 5-year period, from 2016 to 2020. They are anno-
tated with xbrl tags by professional auditors and
describe the performance and projections of the
companies. We used regular expressions to extract
the text notes from the Financial Statements Item
of each filing, which is the primary source of xbrl
tags in annual and quarterly reports.
xbrl taxonomies have many different attributes,

making xbrl tagging challenging even for humans
(Baldwin et al., 2006; Hoitash and Hoitash, 2018).
Furthermore, each jurisdiction has its own xbrl
taxonomy. Since we work with us documents, our
labels come from us-gaap.7 Since this is the first
effort towards automatic xbrl tagging, we chose
to work with the most essential and informative
attribute, the tag names, which populate our label
set. Also, since xbrl tags change periodically, we
selected the 139 (out of 6,008) most frequent xbrl
tags with at least 1,000 appearances in finer-139.

6https://www.sec.gov/edgar/
7www.xbrl.us/xbrl-taxonomy/2020-us-gaap/
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Subset Sentences (S) Avg. Tokens/S Avg. Tags/S
Train 900,384 44.7 ± 33.9 1.8 ± 1.2
Dev 112,494 45.4 ± 35.9 1.7 ± 1.2
Test 108,378 46.5 ± 38.9 1.7 ± 1.1

Table 2: finer-139 statistics, using spaCy’s tokenizer
and the 139 tags of this work (± standard deviation).

The distribution of these tags seems to follow a
power law (Figure 2), hence most of the 6k xbrl
tags that we did not consider are very rare. We used
the iob2 annotation scheme to distinguish tokens
at the beginning, inside, or outside of tagged ex-
pressions, which leads to 279 possible token labels.

We split the text notes into 1.8M sentences, the
majority of which (∼90%) contained no tags.8 The
sentences are also html-stripped, normalized, and
lower-cased. To avoid conflating trivial and more
difficult cases, we apply heuristic rules to discard
sentences that can be easily flagged as almost cer-
tainly requiring no tagging; in a real-life setting,
the heuristics, possibly further improved, would
discard sentences that do not need to be processed
by the tagger. The heuristic rules were created by
inspecting the training subset and include regular
expressions that look for amounts and other expres-
sions that are typically annotated. Approx. 40%
of the 1.8M sentences were removed, discarding
only 1% of tagged ones. We split chronologically
the remaining sentences into training, development,
and test sets with an 80/10/10 ratio (Table 2).

4 Baseline Models

spaCy (Honnibal et al., 2020) is an open-source
nlp library.9 It includes an industrial ner that uses
word-level Bloom embeddings (Serrà and Karat-
zoglou, 2017) and residual Convolutional Neural
Networks (cnns) (He et al., 2016). We trained
spaCy’s ner from scratch on finer-139.

bilstm: This baseline uses a stacked bidirec-
tional Long-Short Term Memory (lstm) network
(Graves et al., 2013; Lample et al., 2016) with resid-
ual connections. Each token ti of a sentence S is
mapped to an embedding and passed through the
bilstm stack to extract the corresponding contex-
tualized embedding. A shared multinomial logis-
tic regression (lr) layer operates on top of each
contextualized embedding to predict the correct la-
bel. We use theword2vec embeddings (Mikolov
et al., 2013a,b) of Loukas et al. (2021).

8We use nltk (Bird et al., 2009) for sentence splitting.
9We used spaCy v.2.3; see https://spacy.io/.

bert: This is similar to bilstm, but now we fine-
tune bert-base (Devlin et al., 2019) to extract
contextualized embeddings of subwords. Again, a
multinomial lr layer operates on top of the contex-
tualized embeddings to predict the correct label of
the corresponding subword.

crfs: In this case, we replace the lr layer of the
previous two models with a Conditional Random
Field (crf) layer (Lafferty et al., 2001), which
has been shown to be beneficial in several token
labeling tasks (Huang et al., 2015; Lample et al.,
2016; Chalkidis et al., 2020b).10

5 Baseline Results

We report micro-F1 (µ-F1) and macro-F1 (m-F1)
at the entity level, i.e., if a gold tag annotates a
multi-word span, a model gets credit only if it tags
the exact same span. This allows comparing more
easily methods that label words vs. subwords.

Table 3 shows that spaCy performs poorly, pos-
sibly due to the differences from typical token la-
beling tasks, i.e., the large amount of entity types,
the abundance of numeric tokens, and the fact that
in finer-139 the tagging decisions depend mostly
on context. Interestingly enough, bilstm (with
word embeddings) performs slightly better than
bert. However, when a crf layer is added, bert
achieves the best results, while the performance
of bilstm (with word embeddings) deteriorates
significantly, contradicting previous studies.

Baseline methods µ-F1 m-F1

spaCy (words) 48.6 ± 0.4 37.6 ± 0.2
bilstm (words) 77.3 ± 0.6 73.8 ± 1.8
bilstm (subwords) 71.3 ± 0.2 68.6 ± 0.2
bert (subwords) 75.1 ± 1.1 72.6 ± 1.4
bilstm (words) + crf 69.4 ± 1.2 67.3 ± 1.6
bilstm (subwords) + crf 76.2 ± 0.2 73.4 ± 0.3
bert (subwords) + crf 78.0 ± 0.5 75.2 ± 0.6

Table 3: Entity-level µ-F1 and m-F1 (%, avg. of 3 runs
with different random seeds, ± std. dev.) on test data.

We hypothesize that the inconsistent effect of
crfs is due to tokenization differences. When us-
ing bert’s subword tokenizer, there are more deci-
sions that need to be all correct for a tagged span to
be correct (one decision per subword) than when
using word tokenization (one decision per word).
Thus, it becomes more difficult for subword mod-
els to avoid nonsensical sequences of token labels,

10We use a linear-chain crf layer with log-likelihood op-
timization and Viterbi decoding.
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e.g., labeling two consecutive subwords as begin-
ning and inside of different entity types, especially
given the large set of 279 labels (Table 1). The crf
layer on top of subword models helps reduce the
nonsensical sequences of labels.

On the other side, when using words as tokens,
there are fewer opportunities for nonsensical label
sequences, because there are fewer tokens. For in-
stance, the average number of subwords and words
per gold span is 2.53 and 1.04, respectively. Hence,
it is easier for the bilstm to avoid predicting non-
sensical sequences of labels and the crf layer on
top of the bilstm (with word embeddings) has
less room to contribute and mainly introduces noise
(e.g., it often assigns low probabilities to accept-
able, but less frequent label sequences). With the
crf layer, the model tries to maximize both the
confidence of the bilstm for the predicted label
of each word and the probability that the predicted
sequence of labels is frequent. When the bilstm
on its own rarely predicts nonsensical sequences
of labels, adding the crf layer rewards commonly
seen sequences of labels, even if they are not the
correct labels, without reducing the already rare
nonsensical sequences of labels.

To further support our hypothesis, we repeated
the bilstm experiments, but with subword (instead
of word) embeddings, trained on the same vocab-
ulary with bert. Without the crf, the subword
bilstm performs much worse than the word bil-
stm (6 p.p drop in µ-F1), because of the many
more decisions and opportunities to predict nonsen-
sical label sequences. The crf layer substantially
improves the performance of the subword bilstm
(4.9 p.p. increase in µ-F1), as expected, though the
word bilstm (without crf) is still better, because
of the fewer opportunities for nonsensical predic-
tions. A drawback of crfs is that they signifi-
cantly slow down the models both during training
and inference, especially when using large label
sets (Goldman and Goldberger, 2020), as in our
case. Hence, although bert with crf was the best
model in Table 3, we wished to improve bert’s
performance further without employing crfs.

6 Fragmentation in bert

In finer-139, the majority (91.2%) of the gold
tagged spans are numeric expressions, which can-
not all be included in bert’s finite vocabulary;
e.g., the token ‘9,323.0’ is split into five subword
units, [‘9’, ‘##,’, ‘##323’, ‘##.’, ‘##0’], while the token

Figure 3: xbrl tag predictions of bert (top), bert
+ [num] (middle), bert + [shape] (bottom) for the
same sentence. bert tags incorrectly the amounts in
red. bert + [num] and bert + [shape] tag them more
successfully (green indicates correct tags).

‘12.78’ is split into [‘12’, ‘##.’, ‘##78’]. The excessive
fragmentation of numeric expressions, when using
subword tokenization, harms the performance of
the subword-based models (Table 3), because it
increases the probability of producing nonsensi-
cal sequences of labels, as already discussed. We,
therefore, propose two simple and effective solu-
tions to avoid the over-fragmentation of numbers.

bert + [num]: We detect numbers using regu-
lar expressions and replace each one with a sin-
gle [num] pseudo-token, which cannot be split.
The pseudo-token is added to the bert vocabulary,
and its representation is learned during fine-tuning.
This allows handling all numeric expressions in a
uniform manner, disallowing their fragmentation.

bert + [shape]: We replace numbers with
pseudo-tokens that cannot be split and represent
the number’s shape. For instance, ‘53.2’ becomes
‘[XX.X]’, and ‘40,200.5’ becomes ‘[XX,XXX.X]’. We
use 214 special tokens that cover all the number
shapes of the training set. Again, the representa-
tions of the pseudo-tokens are fine-tuned, and nu-
meric expressions (of known shapes) are no longer
fragmented. The shape pseudo-tokens also capture
information about each number’s magnitude; the in-
tuition is that numeric tokens of similar magnitudes
may require similar xbrl tags. Figure 3 illustrates
the use of [num] and [shape] pseudo-tokens.

7 In-domain Pre-training

Driven by the recent findings that pre-training lan-
guage models on specialized domains is beneficial
for downstream tasks (Alsentzer et al., 2019; Belt-
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development test

µ-P µ-R µ-F1 µ-P µ-R µ-F1

bert 74.9 ± 1.5 82.0 ± 1.3 78.2 ± 1.4 71.5 ± 1.1 79.6 ± 1.4 75.1 ± 1.1
bert + crf 78.3 ± 0.8 83.6 ± 0.4 80.9 ± 0.3 75.0 ± 0.9 81.2 ± 0.2 78.0 ± 0.5
bert + [num] 79.4 ± 0.8 83.0 ± 0.9 81.2 ± 0.9 76.0 ± 0.6 80.7 ± 0.8 78.3 ± 0.7
bert + [shape] 82.1 ± 0.6 82.6 ± 0.4 82.3 ± 0.2 78.7 ± 0.5 80.1 ± 0.2 79.4 ± 0.2
fin-bert 73.9 ± 1.3 81.4 ± 0.7 77.5 ± 1.0 70.2 ± 1.2 78.7 ± 0.7 74.0 ± 1.1
fin-bert + [num] 81.1 ± 0.1 82.5 ± 1.2 81.8 ± 0.1 77.9 ± 0.1 79.9 ± 0.7 78.8 ± 0.3
fin-bert + [shape] 82.3 ± 1.7 84.0 ± 1.2 83.2 ± 1.4 79.0 ± 1.6 81.2 ± 1.1 80.1 ± 1.4
sec-bert (ours) 75.2 ± 0.4 82.7 ± 0.5 78.8 ± 0.1 71.6 ± 0.4 80.3 ± 0.5 75.7 ± 0.1
sec-bert-num (ours) 82.5 ± 2.1 84.4 ± 1.2 83.7 ± 1.7 79.0 ± 1.9 82.0 ± 0.9 80.4 ± 1.4
sec-bert-shape (ours) 84.8 ± 0.2 85.8 ± 0.2 85.3 ± 0.0 81.0 ± 0.2 83.2 ± 0.1 82.1 ± 0.1

Table 4: Entity-level micro-averaged P, R, F1 ± std. dev. (3 runs) on the dev. and test data for bert-based models.

agy et al., 2019; Yang et al., 2020; Chalkidis et al.,
2020b), we explore this direction in our task which
is derived from the financial domain.

fin-bert: We fine-tune fin-bert (Yang et al.,
2020), which is pre-trained on a financial corpus
from sec documents, earnings call transcripts, and
analyst reports.11 The 30k subwords vocabulary of
fin-bert is built from scratch from its pre-training
corpus. Again, we utilize fin-bert with and with-
out our numeric pseudo-tokens, whose representa-
tions are learned during fine-tuning.

sec-bert: We also release our own family of
bert models. Following the original setup of
Devlin et al. (2019), we pre-trained bert from
scratch on edgar-corpus, a collection of finan-
cial documents released by Loukas et al. (2021).
The resulting model, called sec-bert, has a newly
created vocabulary of 30k subwords. To further
examine the impact of the proposed [num] and
[shape] special tokens, we also pre-trained two ad-
ditional bert variants, sec-bert-num and sec-
bert-shape, on the same corpus, having replaced
all numbers by [num] or [shape] pseudo-tokens,
respectively. In this case, the representations of the
pseudo-tokens are learned during pre-training and
they are updated during fine-tuning.

8 Improved bert Results

Table 4 reports micro-averaged precision, recall,
and F1 on development and test data. As with Table
3, a lr layer is used on top of each embedding to
predict the correct label, unless specified otherwise.

11We use the finbert-finvocab-uncased version
from https://github.com/yya518/FinBERT.

Focusing on the second zone, we observe that
the [num] pseudo-token improves bert’s results,
as expected, since it does not allow numeric ex-
pressions to be fragmented. The results of bert +

[num] are now comparable to those of bert + crf.
Performance improves further when utilizing the
shape pseudo-tokens (bert + [shape]), yielding
79.4 µ-F1 and showing that information about each
number’s magnitude is valuable in xbrl tagging.

Interestingly, fin-bert (3rd zone) performs
worse than bert despite its pre-training on finan-
cial data. Similarly to bert, this can be attributed
to the fragmentation of numbers (2.5 subwords per
gold tag span). Again, the proposed pseudo-tokens
([num], [shape]) alleviate this problem and allow
fin-bert to leverage its in-domain pre-training
in order to finally surpass the corresponding bert
variants, achieving an 80.1 µ-F1 test score.

Our new model, sec-bert (last zone), which
is pre-trained on sec reports, performs better than
the existing bert and fin-bert models, when no
numeric pseudo-tokens are used. However, sec-
bert is still worse than bertwith numeric pseudo-
tokens (75.7 vs. 78.3 and 79.4 test µ-F1), suffering
from number fragmentation (2.4 subwords per gold
tag span). sec-bert (without pseudo-tokens) also
performs worse than the bilstm with word embed-
dings (75.7 vs. 77.3 µ-F1, cf. Table 3). However,
when the proposed pseudo-tokens are used, sec-
bert-num and sec-bert-shape achieve the best
overall performance, boosting the test µ-F1 to 80.4
and 82.1, respectively. This indicates that learning
to handle numeric expressions during model pre-
training is a better strategy than trying to acquire
this knowledge only during fine-tuning.
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9 Additional Experiments

9.1 Subword pooling

An alternative way to bypass word fragmentation
is to use subword pooling for each word. Ács et al.
(2021) found that for ner tasks, it is better to use
the first subword only, i.e., predict the label of an
entire word from the contextualized embedding of
its first subword only; they compared to several
other methods, such as using only the last subword
of each word, or combining the contextualized
embeddings of all subwords with a self-attention
mechanism. Given this finding, we conducted an
ablation study and compare (i) our best model (sec-
bert) with first subword pooling (denoted sec-
bert-first) to (ii) sec-bert with our special to-
kens (sec-bert-num, sec-bert-shape), which
avoid segmenting numeric tokens.

Table 5 shows that, in xbrl tagging, using the
proposed special tokens is comparable (sec-bert-
num) or better (sec-bert-shape) than perform-
ing first pooling (sec-bert-first). It might be
worth trying other pooling strategies as well, like
last-pooling or subword self-attention pooling. It’s
worth noting, however, that the latter will increase
the training and inference times.

µ-F1 m-F1

sec-bert 78.8 ± 0.1 72.6 ± 0.4
sec-bert-first 79.9 ± 1.2 77.1 ± 1.7
sec-bert-num 80.4 ± 1.4 78.9 ± 1.3
sec-bert-shape 82.1 ± 0.1 80.1 ± 0.2

Table 5: Entity-level µ-F1 and m-F1 (%, avg. of 3 runs
with different random seeds, ± std. dev.) on test data
using different ways to alleviate fragmentation.

9.2 Subword bilstm with [num] and [shape]

To further investigate the effectiveness of our
pseudo-tokens, we incorporated them in the bil-
stm operating on subword embeddings (3rd model
of Table 3). Again, we replace each number by a
single [num] pseudo-token or one of 214 [shape]
pseudo-tokens, for the two approaches, respec-
tively. These replacements also happen when pre-
trainingword2vec subword embeddings; hence,
an embedding is obtained for each pseudo-token.

Table 6 shows that bilstm-num outperforms
the bilstm subword model. bilstm-shape fur-
ther improves performance and is the best bilstm
subword model overall, surpassing the subword
bilstm with crf, which was the best subword

bilstm model in Table 3. These results further
support our hypothesis that the [num] and [shape]
pseudo-tokens help subword models successfully
generalize over numeric expressions, with [shape]
being the best of the two approaches, while also
avoiding the over-fragmentation of numbers.

µ-F1 m-F1

bilstm (subwords) 71.3 ± 0.2 68.6 ± 0.2
bilstm (subwords) + crf 76.2 ± 0.2 73.4 ± 0.3
bilstm-num (subwords) 75.6 ± 0.3 72.7 ± 0.4
bilstm-shape (subwords) 76.8 ± 0.2 74.1 ± 0.3

Table 6: Entity-level µ-F1 and m-F1 (%, avg. of 3 runs
with different random seeds, ± std. dev.) on test data
for bilstm models with [num] and [shape] tokens.

9.3 A Business Use Case

Since xbrl tagging is derived from a real-world
need, it is crucial to analyze the model’s perfor-
mance in a business use case. After consulting
with experts of the financial domain, we concluded
that one practical use case would be to use an xbrl
tagger as a recommendation engine that would pro-
pose the k most probable xbrl tags for a specific
token selected by the user. The idea is that an ex-
pert (e.g., accountant, auditor) knows beforehand
the token(s) that should be annotated and the tag-
ger would assist by helping identify the appropriate
tags more quickly. Instead of having to select from
several hundreds of xbrl tags, the expert would
only have to inspect a short list of k proposed tags.

Figure 4: Hits@k results (%, avg. of 3 runs with dif-
ferent random seeds) on test data, for different k values.
Standard deviations were very small and are omitted.

We evaluate our best model, sec-bert-shape,
in this use case using Hits@k. We use the model to
return the k most probable xbrl tags for each to-
ken that needs to be annotated, now assuming that
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the tokens to be annotated are known. If the correct
tag is among the top k, we increase the number of
hits by one. Finally, we divide by the number of to-
kens to be annotated. Figure 4 shows the results for
different values of k. The curve is steep for k = 1 to
5 and saturates as k approaches 10, where Hits@k
is nearly perfect (99.4%). In practice, this means
that a user would have to inspect 10 recommended
xbrl tags instead of hundreds for each token to be
annotated; and in most cases, the correct tag would
be among the top 5 recommended ones.

9.4 Error Analysis

We also performed an exploratory data and error
analysis to unveil the peculiarities of finer-139,
extract new insights about it, and discover the lim-
itations of our best model. Specifically, we man-
ually inspected the errors of sec-bert-shape in
under-performing classes (where F1 < 50%) and
identified three main sources of errors.

Specialized terminology: In this type of errors,
the model is able to understand the general financial
semantics, but does not fully comprehend highly
technical details. For example, Operating Lease
Expense amounts are sometimes missclassified as
Lease And Rental Expense, i.e., the model manages
to predict that these amounts are about expenses in
general, but fails to identify the specific details that
distinguish operating lease expenses from lease
and rental expenses. Similarly, Payments to Ac-
quire Businesses (Net of Cash Acquired) amounts
are mostly misclassified as Payments to Acquire
Businesses (Gross). In this case, the model under-
stands the notion of business acquisition, but fails
to differentiate between net and gross payments.

Financial dates: Another interesting error type is
the misclassification of financial dates. For exam-
ple, tokens of the class Debt Instrument Maturity
Date are mostly missclassified as not belonging
to any entity at all (‘O’ tag). Given the previous
type of errors, one would expect the model to miss-
classify these tokens as a different type of financial
date, but this is not the case here. We suspect that
errors of this type may be due to annotation incon-
sistencies by the financial experts.

Annotation inconsistencies: Even though the
gold xbrl tags of finer-139 come from profes-
sional auditors, as required by the Securities &
Exchange Commission (sec) legislation, there are
still some discrepancies. We provide an illustrative

Figure 5: A manually inspected sentence from finer-
139 showing some inconsistencies in the gold xbrl
tags of the auditors. The green ‘1’ is correctly anno-
tated with the xbrl tag Lessee Operating Lease Term
Of Contract. The red ‘16’ should have also been an-
notated with the same tag, but is not, possibly because
the annotator thought the (same) tag was obvious. The
orange numbers ‘0.1’ and ‘6’ lack xbrl annotations;
they should have both been annotated as Lessee Oper-
ating Lease Renewal Term. We can only speculate that
the auditor might not have been aware that there is an
xbrl tag for lease renewal terms, in which case the rec-
ommendation engine of Section 9.3 might have helped.

example in Figure 5. We believe that such inconsis-
tencies are inevitable to occur and they are a part
of the real-world nature of the problem.

We hope that this analysis inspires future work
on xbrl tagging. For example, the specialized
terminology and financial date errors may be allevi-
ated by adopting hierarchical classifiers (Chalkidis
et al., 2020a; Manginas et al., 2020), which would
first detect entities in coarse classes (e.g., expenses,
dates) and would then try to classify the identified
entities into finer classes (e.g., lease vs. rent ex-
penses, instrument maturity dates vs. other types
of dates). It would also be interesting to train clas-
sifiers towards detecting wrong (or missing) gold
annotations, in order to help in quality assurance
checks of xbrl-tagged documents.

10 Conclusions and Future Work

We introduced a new real-word nlp task from the fi-
nancial domain, xbrl tagging, required by regula-
tory commissions worldwide. We released finer-
139, a dataset of 1.1M sentences with xbrl tags.
Unlike typical entity extraction tasks, finer-139
uses a much larger label set (139 tags), most to-
kens to be tagged are numeric, and the correct tag
depends mostly on context rather than the tagged
token. We experimented with several neural clas-
sifiers, showing that a bilstm outperforms bert
due to the excessive numeric token fragmentation
of the latter. We proposed two simple and effective
solutions that use special tokens to generalize over
the shapes and magnitudes of numeric expressions.
We also experimented with fin-bert, an existing
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bert model for the financial domain, which also
benefits from our special tokens. Finally, we pre-
trained and released our own domain-specific bert
model, sec-bert, both with and without the spe-
cial tokens, which achieves the best overall results
with the special tokens, without costly crf layers.

In future work, one could hire experts to re-
annotate a subset of the dataset to measure human
performance against the gold tags. Future work
could also consider less frequent xbrl tags (few-
and zero-shot learning) and exploit the hierarchical
dependencies of xbrl tags, possibly with hierar-
chical classifiers, building upon our error analysis.
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A Experimental Setup

For spaCy, we followed the recommended prac-
tices.12 All other methods were implemented in
tensorflow.13 Concerning bert models, we
used the implementation of huggingface (Wolf
et al., 2020). We also use Adam (Kingma and
Ba, 2015), Glorot initialization (Glorot and Bengio,
2010), and the categorical cross-entropy loss.

Hyper-parameters were tuned on development
data with Bayesian Optimization (Snoek et al.,
2012) monitoring the development loss for 15
trials.14 For the bilstm encoders, we searched
for {1, 2, 3} hidden layers, {128, 200, 256} hidden
units, {1e-3, 2e-3, 3e-3, 4e-3, 5e-3} learning rate,
and {0.1, 0.2, 0.3} dropout. We trained for 30
epochs using early stopping with patience 4. For
bert, we used grid-search to select the opti-
mal learning rate from {1e-5, 2e-5, 3e-5, 4e-5, 5e-
5}, fine-tuning for 10 epochs, using early stopping
with patience 2. All final hyper-parameters are
shown in Table 7. Training was performed mainly
on a dgx station with 4 nvidia v100 gpus and an
Intel Xeon cpu e5-2698 v4 @ 2.20ghz.

Params L U Pdrop LR
bilstm (words) 21M 2 128 0.1 1e-3
bilstm (subwords) 8M 1 256 0.2 1e-3
bilstm (words) + crf 21M 2 128 0.1 1e-3
bilstm (subwords) + crf 8M 1 256 0.2 1e-3
bilstm-num (subwords) 1M 1 256 0.2 1e-3
bilstm-shape (subwords) 0.8M 2 128 0.1 1e-3
bert 110M - - - 1e-5
bert + [num] 110M - - - 1e-5
bert + [shape] 110M - - - 1e-5
bert + crf 110M - - - 1e-5
fin-bert 110M - - - 2e-5
fin-bert + [num] 110M - - - 2e-5
fin-bert + [shape] 110M - - - 2e-5
sec-bert 110M - - - 1e-5
sec-bert-num 110M - - - 1e-5
sec-bert-shape 110M - - - 1e-5

Table 7: Number of total parameters (Params) and the
best hyper-parameter values for each method; i.e., num-
ber of recurrent layers (L), number of recurrent units
(U), dropout probability Pdrop, learning rate (LR).

B Additional Results
Table 8 shows micro-averaged Precision, Recall,
and F1 for the development and test data, using all

12https://spacy.io/usage/v2-3.
13https://www.tensorflow.org/
14We used keras tuner (https://keras-team.github.io/

keras-tuner/documentation/tuners/)

baseline methods. The macro-averaged scores are
similar and we omit them for brevity. Using a lo-
gistic regression (lr) classification layer, bilstm
(words) surpasses bert both in Precision and F1
score. However, when using a crf layer on top,
bert outperforms bilstm (words) in all measures.

Table 9 shows the micro-averaged Precision, Re-
call, and F1 for the development and test data using
the bilstmmodels operating on subwords with the
proposed tokenizations. [num] and [shape] tokens
help the model to bypass the word fragmentation
problem, increasing its scores in all metrics.
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development test

µ-P µ-R µ-F1 µ-P µ-R µ-F1

spaCy 38.2 ± 0.4 58.2 ± 0.8 46.1 ± 0.1 40.8 ± 0.8 60.0 ± 0.4 48.6 ± 0.4
bilstm (words) 78.6 ± 2.4 80.3 ± 1.2 79.4 ± 1.0 75.4 ± 1.9 78.0 ± 0.8 77.3 ± 0.6
bilstm (subwords) 73.4 ± 0.1 77.2 ± 0.0 75.2 ± 0.1 68.8 ± 0.2 74.1 ± 0.2 71.3 ± 0.2
bert (subwords) 74.9 ± 1.5 82.0 ± 1.3 78.2± 1.4 71.5 ± 1.1 79.6 ± 1.4 75.1 ± 1.1
bilstm (words) + crf 73.4 ± 2.0 69.3 ± 0.9 71.3 ± 1.2 70.9 ± 1.8 68.0 ± 0.9 69.4 ± 1.2
bilstm (subwords) + crf 80.0 ± 0.3 78.7 ± 0.5 79.3 ± 0.4 76.5 ± 0.2 76.0 ± 0.2 76.2 ± 0.2
bert (subwords) + crf 78.3 ± 0.8 83.6 ± 0.4 80.9 ± 0.3 75.0 ± 0.9 81.2 ± 0.2 78.0 ± 0.5

Table 8: Entity-level micro-averaged P, R, F1 ± std. dev. (3 runs) on the dev. and test data for our baselines.

development test

µ-P µ-R µ-F1 µ-P µ-R µ-F1

bilstm (subwords) 73.4 ± 0.1 77.2 ± 0.0 75.2 ± 0.1 68.8 ± 0.2 74.1 ± 0.2 71.3 ± 0.2
bilstm (subwords) + crf 80.0 ± 0.3 78.7 ± 0.5 79.3 ± 0.4 76.5 ± 0.2 76.0 ± 0.2 76.2 ± 0.2
bilstm-num (subwords) 77.9 ± 0.4 78.6 ± 0.7 78.2 ± 0.6 74.8 ± 0.2 76.5 ± 0.5 75.6 ± 0.3
bilstm-shape (subwords) 81.1 ± 0.1 81.5 ± 0.3 81.3 ± 0.2 77.5 ± 0.3 78.7 ± 0.5 78.1 ± 0.4

Table 9: Entity-level micro-averaged P, R, F1 ± std. dev. (3 runs) on the dev. and test data for the bilstm models
using the [num] and [shape] tokens.
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