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Abstract

Recent studies have determined that the learned
token embeddings of large-scale neural lan-
guage models are degenerated to be anisotropic
with a narrow-cone shape. This phenomenon,
called the representation degeneration problem,
facilitates an increase in the overall similarity
between token embeddings that negatively af-
fect the performance of the models. Although
the existing methods that address the degenera-
tion problem based on observations of the phe-
nomenon triggered by the problem improves
the performance of the text generation, the train-
ing dynamics of token embeddings behind the
degeneration problem are still not explored. In
this study, we analyze the training dynamics
of the token embeddings focusing on rare to-
ken embedding. We demonstrate that the spe-
cific part of the gradient for rare token embed-
dings is the key cause of the degeneration prob-
lem for all tokens during training stage. Based
on the analysis, we propose a novel method
called, adaptive gradient gating (AGG). AGG
addresses the degeneration problem by gating
the specific part of the gradient for rare to-
ken embeddings. Experimental results from lan-
guage modeling, word similarity, and machine
translation tasks quantitatively and qualitatively
verify the effectiveness of AGG.

1 Introduction

Neural language models have been developed with
various architectures during recent years (Graves,
2013; Bahdanau et al., 2015; Gehring et al., 2017;
Vaswani et al., 2017). Despite the improvement in
model architectures, models usually share the same
process for input and output. They process token
embeddings as inputs to compute contextualized
features and subsequently project the features into
a categorical distribution of tokens at the output
softmax layer whose weight is token embedding
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matrix (Merity et al., 2017; Yang et al., 2018; Press
and Wolf, 2017). Recent studies have determined
that the learned embedding distribution is biased in
a common direction, thereby resulting in a narrow
cone-shaped anisotropy (Mu and Viswanath, 2018;
Ethayarajh, 2019; Gao et al., 2019; Biś et al., 2021).
This phenomenon, named the representation degen-
eration problem by Gao et al. (2019), increases the
overall similarity between embeddings, and leads
to a problem in which the expressiveness of the to-
ken embeddings decreases. Therefore, it is difficult
for the model to learn the semantic relationship be-
tween the tokens and to generate high quality texts.
Existing studies addressing this problem suggest
methods that apply post-processing or regulariza-
tion techniques to all token embeddings based on
the observed phenomena owing to the degenera-
tion problem (Mu and Viswanath, 2018; Gao et al.,
2019; Wang et al., 2019; Wang et al., 2020; Biś
et al., 2021). Although these works improve the
quality of token embeddings and generated texts,
it is still not clear how token embeddings become
degenerate during training procedure. Also, there
exists the problem of over regularization for the to-
ken embeddings whose semantic relationships are
trained well because the above methods are applied
for all token embeddings.

In this study, we conduct empirical studies about
training dynamics of token embeddings, focusing
on rare token embeddings. By observing the initial
training dynamics of token embeddings grouped
based on appearance frequency, we hypothesize
that the degeneration of the rare token embeddings
triggers the degeneration of the embeddings of the
remaining tokens. We show that the entire degen-
eration problem is mitigated by only freezing rare
tokens during training, and we demonstrate that the
main cause of the entire degeneration problem is
the specific part of the gradient for rare token em-
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(a) Training step 100 (b) Training step 500 (c) Training step 1500 (d) Training step 3500

Figure 1: Visualization of token embeddings of language model trained on WikiText-103. Red, green, and blue
points represent rare, medium, and frequent groups respecively. (a), (b), (c), (d) present a visualization of each
training step.

beddings. This gradient part pushes away rare token
embeddings from the feature vector of the non-rare
targets in the current training sample. Based on
the analysis, we propose a new method, adaptive
gradient gating (AGG). With a dynamic grouping
of rare tokens at each training step, AGG solves
the entire degeneration problem by gating a spe-
cific part of the gradient that is solely about rare
tokens. Because AGG is optimized to target the
main cause of the degeneration problem, rare token
embeddings, it can prevent the over regularization
problem about frequent token embeddings which
occurs in other methods addressing the degenera-
tion problem. The proposed method is evaluated
in three tasks: language modeling, word similarity,
and machine translation. The AGG outperforms the
baseline and other existing methods in all tasks. In
addition, it shows compatibility with other method
that addresses the neural text degeneration problem.
Via qualitative studies, we identify a correlation be-
tween our method and the frequency bias problem
of learned embeddings (Gong et al., 2018; Ott et al.,
2018).

2 Background

2.1 Text Generation of Neural Language
Models

Neural language generative models process text
generation tasks as conditional language modeling,
in which the model is typically trained by minimiz-
ing the negative log likelihood of the training data.
With a vocabulary of tokens V = {v1, ..., vN} and
embedding vectors {w1, ...,wN}, where wi cor-
responds to token vi, at every training step, the
model obtains a mini-batch input and target text
corpus pair (x, y), where xi, yi ∈ V , and y ∈ V T .
The conditional probability for the target token yt,
Pθ(yt|ht), where ht is a context feature vector of
the t-th position of the generated text conditioned

by (x, y<t), and θ denotes model parameters, which
is defined as follows.

Pθ(yt|ht) =
exp (htwT

I(yt)
)∑N

l=1 exp (htwT
l )

, (1)

where w is the output token embedding which roles
the weight of the output softmax layer, and I(yt)
represents the index of token yt. The negative log
likelihood loss for an input and target pair (x, y),
LNLL is expressed as follows.

LNLL = −
T∑
t=1

logPθ(yt|ht). (2)

2.2 Embedding Problems in Neural Language
Models

Recent studies on the geometric properties of con-
textual embedding space have observed that the dis-
tribution of embedding vectors is far from isotropic
and occupies a relatively narrow cone space(Mu
and Viswanath, 2018; Liu et al., 2019; Zhou et al.,
2019; Ethayarajh, 2019;). Gao et al. (2019) named
this phenomenon the representation degeneration
problem. This degeneration problem results in an
increase in the overall cosine similarity between
token embeddings, making it difficult for the model
to learn semantic relationships between tokens.
Demeter et al. (2020) demonstrated that the norm
information of the token embeddings is so domi-
nant that angle information about the feature vector
is ignored when calculating the logits in the out-
put layer. Owing to this structural weakness of the
embedding space, embeddings with small norms
are always assigned with a low probability, which
reduces the diversity of the text generated by the
model. Anisotropy of the embedding space is a still
problem for the pre-trained large language mod-
els, and language models with improved isotropic
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Methods PPL ↓ I(W) ↑
Freq Med Rare Total Freq Med Rare Total

MLE 16.58 224.24 813.76 20.77 0.426 0.286 0.198 0.293
Freeze 16.48 233.92 3017.53 20.78 0.840 0.651 0.831 0.739

Table 1: Perplexity and I(W) for each token groups. Lower is better for PPL and higher is better for I(W).

(a) freeze until step 7k (b) freeze until step 18k (c) freeze until step 29k

Figure 2: Plot of I(W) for rare and frequent groups and average cosine similarity between rare and frequent
embeddings when freezing the training of rare tokens until specific training steps.

embedding space performs well in downstream
tasks(Biś et al., 2021; Rajaee and Pilehvar, 2021).

Although the problem has been theoretically ana-
lyzed in several studies, existing methods are based
on the observed phenomena as a result of the prob-
lem. To mitigate the phenomena observed from
the problem, the post-processing of the embedding
vectors(Mu and Viswanath, 2018; Biś et al., 2021)
or regularization terms about the phenomena(Gao
et al., 2019; Wang et al., 2019; Wang et al., 2020;
Zhang et al., 2020) were introduced. These meth-
ods are applied to all token embeddings, so there
is the problem of over regularization for the em-
beddings whose semantic relationship is trained
well. Also, methodologies based on the training
dynamics of the token embeddings concerning the
degeneration problem remain subject to study.

Frequency bias in embedding space is another
problem. Ott et al. (2018) conducted a comprehen-
sive study on the under-estimation of rare tokens
in neural machine translation. Gong et al. (2018)
observed that embeddings in the language model
were biased towards frequency and proposed an ad-
versarial training scheme to address this problem.

3 Empirical Study: Token Embedding
Training Dynamics led by Rare Tokens

3.1 Initial Training Dynamics of Embeddings

To analyze the training procedure of token em-
beddings, we train a Transformer language model
at the WikiText-103 dataset from scratch. Whole

vocabulary tokens are divided into three groups:
frequent, medium, and rare groups. Based on the
appearance frequency in the training corpus, the
30%, 50%, and 20% tokens are assigned to the fre-
quent, medium, and rare group. We visualize the
initial training dynamics of these groups via the
projection of the embeddings into 2D, using sin-
gular value decomposition (SVD) projection. As
illustrated in Figure 1, rare groups degenerate first,
as they emerge from the entire embedding distribu-
tion. Subsequently, other groups also start to degen-
erate, following the degeneration of the rare group.
Based on this observation, we hypothesize that the
degeneration of rare token embeddings induces the
degeneration of non-rare token embeddings.

3.2 Rare Tokens Degenerate Non-Rare Tokens

Because Transformer (Vaswani et al., 2017) is rep-
resentative of the current language models, we
adopt the 6-layer Transformer decoder model ar-
chitecture for an empirical study on the training dy-
namics of embedding vectors. The model is trained
in language modeling task using WikiText-103
dataset (Merity et al., 2018). Experimental details
regarding the model and training hyperparameter
configurations can be found in the Appendix B. To
verify the hypothesis of the previous subsection, we
train a model while freezing the rare group token
embeddings in their initial states during training,
and compare it to the baseline model, where all em-
beddings are trained with negative log-likelihood
loss. In addition, we train the models of various set-
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Methods PPL ↓ I(W) ↑
Freq Med Rare Total Freq Med Rare Total

MLE 16.58 224.24 813.76 20.77 0.426 0.286 0.198 0.293
Freeze (b) & (c) 17.41 247.89 66.41 21.79 0.323 0.693 0.551 0.536
Freeze (b) 16.99 240.72 65.76 21.26 0.495 0.561 0.678 0.748
Freeze (c) 16.61 220.07 645.24 20.76 0.443 0.276 0.15 0.317

Table 2: Perplexity and I(W) for each token group at gradient partial freezing experiment.

tings relative to freezing steps and examine whether
the degeneration of rare token embeddings depends
on when training of rare embeddings begins.

The performance of the models is evaluated in
two ways; the likelihood and isotropy of token
embeddings. Perplexity (Bengio et al., 2000) is
adopted to evaluate the performance of the likeli-
hood of the model. To measure the isotropy of the
token embedding distribution, we adopt the parti-
tion function Z(a) =

∑N
i=1 exp (wiaT ) defined in

Arora et al. (2016), where wi denotes the embed-
ding vector of token vi, and a represents a unit vec-
tor. Lemma 2.1. in Arora et al. (2016) demonstrate
that if the embedding vectors are isotropic, Z(a) is
approximately constant. Based on this property, we
measure the isotropy of an embedding matrix W
using I(W), which is defined as follows.

I(W) =
mina∈X Z(a)
maxa∈X Z(a)

, (3)

where I(W) ∈ [0, 1] and X represents the set of
eigenvectors of WTW (Mu and Viswanath, 2018;
Wang et al., 2020; Biś et al., 2021). Furthermore,
we measure the relatedness between the rare and
frequent group token embeddings to verify that the
degeneration of the frequent group follows the de-
generation of the rare group. We calculate the aver-
age cosine similarity between the rare and frequent
group embeddings to measure the relatedness.

Table 1 shows the comparison of the baseline
model and the model with frozen rare tokens. We
denote the baseline as "MLE" and the freezing
method as "Freeze". Surprisingly, the PPL of fre-
quent group tokens and overall I(W) improved by
simply not training the rare token embeddings. Fig-
ure 2 illustrates the change in I(W) for the frequent
and rare token embeddings, including the similar-
ity between frequent and rare token embeddings at
various freezing step settings. Whenever the rare
token embeddings start to be trained, their I(W)
decreases steeply, followed by decreasing I(W) of
frequent embeddings and increasing similarities

between the frequent and rare embeddings. From
the analysis in this subsection, we demonstrate that
the entire degeneration problem can be solved by
solely handling just rare embeddings during the
entire training procedure.

3.3 Finding the Primary Cause of the
Degeneration Problem: From the
Gradient

With T context feature vectors hi (i ∈ [1, T ]) from
the training sample, the negative log-likelihood loss
gradient for the rare token embedding wr is calcu-
lated as follows.

∇wrLNLL =
∑
yi=vr

(pr|i − 1)hi︸ ︷︷ ︸
(a)

+
∑
yj /∈Vr

pr|jhj︸ ︷︷ ︸
(b)

+
∑
yk∈Vr

pr|khk︸ ︷︷ ︸
(c)

,
(4)

where yi denotes the target token for hi, Vr is the
rare token vocabulary group, and pr|i represents the
conditional probability of token vr given hi, which
is calculated as [softmax(hiWT )]r. We divide the
gradient for wr to 3 parts in Eq. 4. Part (a) pulls
wr close to the feature vectors whose target tokens
are vr. Part (b) pushes away wr from the feature
vectors whose target tokens are not rare. Part (c)
pushes away wr from the feature vectors whose tar-
get tokens are rare. As an extension of the analysis
in the previous subsection, we freeze these parts of
the gradient with various settings during training
to identify the key cause of the degeneration prob-
lem. In other words, depending on the settings, the
specific gradient parts that will not be used for em-
bedding training is detached from the computation
graph during training stage. This can be easily im-
plemented by detach() function of Pytorch
(Paszke et al., 2019). All model and training con-
figurations are the same as in the previous sections,
except those to be frozen.
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Table 2 presents the results of the experiments in
this subsection. We freeze the parts of the gradient
for the rare tokens with three settings. Because part
(a) is a key component required to train the token
embedding to be aligned to the target, all settings
activate part (a). We notice that when part (b) is
activated (solely freezing part (c)), I(W) decreases
and PPL for rare tokens increases almost 10 times
compared to when part (b) is frozen. Because ac-
tivating part (c) is not seen to be negative for PPL
and I(W), we conclude that part (b) of Eq. 4 is the
bedrock cause for the degeneration problem. From
the analysis in this section, we demonstrate that the
degeneration problem could be solved to a large
extent by mainly addressing the part of the gradient
for rare embeddings that pushes away rare token
embeddings from non-rare feature vectors.

4 Method

4.1 Dynamic Rare Token Grouping
To handle the specific part of the gradient for the
rare token embeddings studied in the previous sec-
tion, we need to properly group the rare tokens. A
naive approach can be used to group rare tokens
based on the appearance frequency of the training
corpus, as described in the previous section. How-
ever, this static grouping method is suboptimal be-
cause the model is typically trained via mini-batch
training. The group of rare tokens that appeared
less frequently in recent batch samples is variable
in the mini-batch training. Therefore, it is necessary
to dynamically group rare tokens based on token
appearances in recent batch samples.

To consider the token appearances in recent
batch samples, we introduce the token counter
memory that remembers the number of the appear-
ances of each token during the previous K training
steps. For K memories, [m1, ...,mK], mt ∈ RN

represents the number of appearances of each token
of N -size vocabulary at the t-th previous training
step. Memories are set as zero vectors at the initial
stage. At each training step, the token appearance,
a ∈ RN , is calculated as the sum of all K mem-
ories: a =

∑K
t=1 mt. Based on a, we determine

whether token vi is in the rare token group Vr as
follows.

ai
K

< α ⇒ vi ∈ Vr

ai
K

≥ α ⇒ vi /∈ Vr,
(5)

where ai is the i-th component of a, and α is a
hyper-parameter in our method that controls the

proportion of rare tokens in the entire vocabulary.
In this study, we set K to the number of iteration
steps during one epoch of training stage.

4.2 Adaptive Gradient Gating for Rare
Tokens

After dynamically grouping the rare tokens at each
training step, we need to handle a specific part of
the gradient for the rare token embeddings to solve
the degeneration problem of all embeddings. To
solely control the gradient for rare token embed-
dings, we introduce a gradient gating method for a
parameter x. We define x̃ as a tensor whose value
is the same as x, but detached from the current
training graph. This implies that x̃ is considered a
constant, hence, gradient about x̃ does not exist. In
practice, x̃ can be easily obtained from x using the
detach() function of Pytorch (Paszke et al.,
2019). With x̃, we can gate the gradient for x as
follows.

xgated = g ⊙ x + (1− g)⊙ x̃
∇xf(xgated) = g ⊙∇xf(x),

(6)

where xgated is a new parameter whose value is the
same as x, and g ∈ [0, 1] is a gate tensor. When
the xgated is fed to the function f(·) as input, the
gradient for x is gated by g.

As we described in section 3, part (b) of Eq. 4
should mainly be handled to solve the degenera-
tion problem. To address part (b) of Eq. 4, given
a context feature vector of the i-th position hi, we
introduce a gate vector g1 ∈ RN as follows.

g1k =

{
ak/K if vk ∈ Vr, vk ̸= yi

1 else ,
(7)

where g1k denotes a k-th component of g1. g1 con-
trols the degree to which rare token embeddings
move away from non-rare feature vectors whose tar-
gets differ from each rare token embedding. Also,
each component of g1 is calculated based on the
rarity of each rare token, ak, so gradient gating for
part (b) of Eq. 4 is adaptive for each rare tokens.

Although part (c) of Eq. 4, which pushes embed-
dings away from the feature vectors whose targets
are other rare tokens, is not to be seen as the cause
of the degeneration problem in section 3, this part
also induces the degeneration problem for the cer-
tain situation when rare tokens degenerate other
rare tokens. To address this, we approximate the
multiple levels of rarity in the rare token group to
two levels in this paper: ‘less rare’ and ‘very rare’.
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Methods PPL ↓ Uniq ↑
I(W)↑

Freq Med Rare Total Freq Med Rare Total
MLE 13.30 146.47 438.67 15.51 9107 3945 91 13143 0.377
AGG 13.35 146.44 75.39 15.51 9105 4287 345 13737 0.813
Human − − − − 10844 7146 300 18920 −

Table 3: Experimental results for each token group in WikiText-103 language modeling task comparing MLE
baseline and AGG.

Methods PPL ↓ Uniq ↑
I(W)↑

Freq Med Rare Total Freq Med Rare Total
UL 14.05 125.17 385.6 16.17 9527 4402 97 14026 0.396
UL + AGG 14.17 125.93 71.48 16.25 9625 4884 453 14962 0.654
Human − − − − 10844 7146 300 18920 −

Table 4: Experimental results for each token group in WikiText-103 language modeling task comparing UL and
UL+AGG.

We define the two rarity levels based on the average
number of appearances of the entire rare tokens: if
the token appearance ak is smaller than the mean
of ar where r ∈ Vr, corresponding token is a very
rare token. For the very rare token embeddings,
part (c) of the gradient about embeddings pushes
them away from the feature vectors whose targets
are less rare tokens that are relatively frequent com-
pared to them. This means that part (c) roles like
part (b) in the above situation, which becomes the
cause of the degeneration problem. Therefore, we
need to handle part (c) of Eq. 4 for very rare tokens.
To address part (c) of Eq. 4 for the very rare to-
ken embeddings, we introduce another gate vector
g2 ∈ RN as follows.

g2k =

{
min(akār , 1) if vk ∈ Vr, vk ̸= yi

1 else,
(8)

where g2k is the k-th component of g2 and ār is the
mean of ar where r ∈ Vr. g2 controls the degree
to which very rare token embeddings move away
from less rare feature vectors whose targets differ
from each very rare token embedding. Also, each
component of g2 is calculated based on the rarity of
each very rare token, ak, so gradient gating for part
(c) of Eq. 4 is adaptive for each very rare tokens.

To calculate the loss of hi, we calculate three
logits, z0i , z1i , and z2i , as follows.

z0i = hiW̃
T

zli = gl ⊙ h̃iWT + (1− gl)⊙ h̃iW̃
T
,

(9)

where W denotes an embedding matrix, and l =

1, 2. Because our method solely handles the gradi-
ent for embeddings, we calculate z0i for a gradient
about hi, which does not need to be gated. Finally,
the negative log-likelihood loss for i-th position Li

is computed as follows.

Li = − log p0I(yi)|i

− 1(yi /∈ Vr) log p
1
I(yi)|i

− 1(yi ∈ Vr) log p
2
I(yi)|i,

(10)

where pmI(yi)|i = [softmax(zmi )]I(yi) with m=0, 1, 2
and 1(·) denotes the Indicator function. Derivation
of the gradient for rare token embeddings, ∇wrLi,
is provided in Appendix A.

5 Experiments

We evaluate our method on various tasks including
language modeling, word similarity, and machine
translation. In the language modeling task, we fo-
cus on verifying the diversity of the generated texts.
We test the learning of the semantic relationships
between tokens on the word similarity task. Finally,
we evaluate the quality of generated texts on the
machine translation task. For all the experimental
results below, we adopt the state-of-the-art model
architecture as a baseline to properly demonstrate
the effectiveness of our method. Every detail on the
experiment, such as model hyper-parameters and
training configurations, regard the reproducibility
are provided in Appendix B.
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Method Texts Uniq ↑
Prefix No. 20 Squadron is a Royal Australian Air Force ( RAAF ) support squadron . Coming under

the control of No. 96 Wing , it is responsible for the management of the airfield at RAAF Base
Woomera , South Australia . The squadron

MLE is responsible for air defence , air defence , and air defence , as well as air defence , aerial
reconnaissance , and air defence . It is also responsible for air defence , air defence , and air
defence , as well as air defence , aerial reconnaissance , and air defence .

15

AGG was established in October 1943 at Townsville , Queensland , under the command of Group
Captain Paddy Heffernan . It was initially based at Townsville , Queensland , under the control
of No. 9 Operational Group , which controlled all air bases in New South Wales . It was renamed
No. 1 Mobile Fighter Sector in April 1944 .
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Table 5: Generated texts on the Wikitext-103 test set and uniq tokens for each texts. 50 BPE tokens are given as
prefix and the models are to generate the continuation of 100 next BPE tokens.

5.1 Language Modeling

Setting We conduct experiments using WikiText-
103 dataset, which is a significantly large dataset
for language modeling task with approximately
103M words and 260K vocabulary size (Merity
et al., 2018). Texts in the dataset are preprocessed
based on the byte-pair encoding(Sennrich et al.,
2016). We adopt the GPT-2 medium architec-
ture(Radford et al., 2019), which comprises 24
Transformer decoder layers as a baseline model.
Because our method is about learning token em-
beddings, we train the models from scratch for
a maximum of 50k iterations and evaluate them
based on the perplexity of the validation set.
For hyper-parameter searching, we select α ∈
{0.01, 0.02, 0.03, 0.04, 0.05} for AGG method on
the language modeling task. The hyper-parameter
sensitivity for the AGG are given in Appendix D.

We use three quantitative metrics to evaluate our
method: Perplexity, Uniq, and I(W). Related to
the likelihood of generated texts, Perplexity quan-
tifies the prediction difficulty over the next token.
Uniq (Welleck et al., 2020) quantify the number of
unique next-token predictions, measuring the token
diversity. As described in section 3, I(W) measures
the isotropy of the token embedding space.
Results We present our results for the testset in
Table 3. We denote the baseline method as ‘MLE’
and our method as ‘AGG’. We measure Perplexity
and Uniq for each token group defined in Section 3.
As presented in Table 3, AGG improves the over-
all metrics for the medium and rare groups while
maintaining performance for the frequent token
group. This shows that our method not only im-
proves the quality of rare token embeddings, but
also the quality of non-rare token embeddings. In
particular, for the rare group, the Perplexity score
decrease significantly and the number of unique

predictions surpasses the human distribution. The
I(W) for all token embeddings increased over 2
times the baseline. Experimental results of I(W)
for the embeddings of each frequency groups can
be found in Appendix C. Table 5 shows examples
of generated texts from MLE baseline and AGG.
We also show additional examples of generated
texts in Appendix F.
Compatibility Neural text degeneration problem
is another problem in neural text generative mod-
els, where the model generates texts that are less
likely to match human word distributions. Existing
methods for this problem focus on the diversity of
the generated texts by adding an auxiliary loss to
the original negative log-likelihood loss (Welleck
et al., 2020). Although Welleck et al. (2020) and
AGG attempts to address the same problem about
diversity, AGG can be compatible with the existing
method in the text degeneration problem because
AGG does not alter the form of the loss function
in MLE training. Table 4 presents the results of
the experiments about fusion of unlikelihood train-
ing(Welleck et al., 2020) and AGG. We denote the
unlikelihood training as UL. From Table 4, we no-
tice that when UL and AGG are fused, it produces
a synergistic effect that exceeds the gain of each for
the baseline. This indicates that AGG is compatible
with methods that address other problems in text
generation.

5.2 Word Similarity

Setting We evaluate the semantic relationship be-
tween tokens for AGG and the baseline with four
word similarity datasets: MEN, WS353, RG65, and
RW(Bruni et al., 2014; Agirre et al., 2009; Ruben-
stein and Goodenough, 1965; Luong et al., 2013).
Methods are tested whether the similarity between
the given two words in the embedding space is
consistent with the ground truth, in terms of Spear-
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Datasets MLE AGG
MEN 33.57 55.13
WS353 47.51 56.54
RG65 35.48 65.45
RW 32.13 36.36

Table 6: Performance(Spearman’s γ × 100) of the mod-
els on the four word similarity datasets.

Methods BLEU ↑
Base Big

Transformer (Vaswani et al., 2017) 27.30 28.40
CosReg (Gao et al., 2019) 28.38 28.94
Adv MLE (Wang et al., 2019) 28.43 29.52
SC (Wang et al., 2020) 28.45 29.32
AGG 28.70 29.81

Table 7: Comparison of different methods in terms of
BLEU scores.

man’s rank correlation. We adopt cosine distance
to compute the similarity between embeddings. We
use the same models trained on language modeling
tasks with the WikiText-103 dataset for the word
similarity task.
Results Table 6 presents the result obtained from
the evaluation of the word similarity task. From
this table, it can be observed that our method out-
performs the baseline on overall datasets. Although
AGG handles only training of rare tokens, the se-
mantic relationships between all tokens are also
well learned. Qualitative studies on semantic align-
ment between tokens are provided in Appendix E.

5.3 Machine Translation

Setting We utilize a dataset from standard WMT
2014 containing 4.5M English→German sentence
pairs. The source and target sentences are encoded
by 37K shared tokens based on byte-pair encod-
ing(Sennrich et al., 2016). We adopt the two ver-
sion of Transformer(Vaswani et al., 2017) as the
baseline model for applying our method: base and
big. The model configuration is the same as that
proposed in Vaswani et al. (2017). To evaluate the
quality of the generated texts, we measure BLEU
score (Papineni et al., 2002), which is standard
metric for machine translation task.
Results Table 7 presents a comparison of our
method and other methods in terms of the BLEU
score. Our method achieves 1.4 and 1.41 BLEU
score improvements on the machine translation task
for the base and big baseline models. In addi-

Method PPL↓ Uniq↑ I(W)↑
MLE 15.51 13143 0.377
AGG 15.51 13737 0.813
no g1 15.48 13018 0.367
no g2 15.51 13682 0.701

Table 8: Ablation study on gating vector of AGG.

Method PPL↓ Uniq↑ I(W)↑
MLE 15.51 13143 0.377
AGG 15.51 13737 0.813
static AGG 15.55 13614 0.752

Table 9: Ablation study about dynamic grouping of
AGG.

tion, our method is better than all other previous
works in handling the representation degeneration
problem that reported BLEU scores in the same
tasks. These results demonstrate the effectiveness
of AGG in the quality of the generated texts. While
other methods addressing the degeneration prob-
lem targets all token embeddings, target of AGG,
rare token embeddings, are optimized based on
the analysis about the training dynamics of token
embeddings. Due to this difference, our method
can prevent the over regularization problem for fre-
quent token embeddings, which is the main advan-
tage of AGG compared to other works. Qualitative
study about cross-lingual semantic alignment be-
tween tokens of the source and target languages is
provided in Appendix E.

6 Analysis of AGG

6.1 Ablation Study

In our method, AGG, we introduce two gate vec-
tors, g1, and g2, to handle the gradient for rare and
very rare token embeddings. We conduct experi-
ments on these gate vectors. Table 8 presents the
results of the ablation studies compared with the
MLE and AGG. When g1 is excluded from AGG
(denoted as ‘no g1’), Uniq and I(W) decreased sig-
nificantly, because g1 is the key component for the
gradient gating. When g2 is excluded from AGG
(denoted as ‘no g2’), Uniq and I(W) slightly de-
crease. Accordingly, we notice that g2 is important
for the gating of gradients fort the very rare token
embeddings.

Also, we present the analysis about rare token
grouping method of AGG. Figure 4 presents the
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(a) MLE (b) AGG (c) Singular value decay

Figure 3: (a), (b) Token embedding visualization for the baseline model and AGG on the language modeling
task with WikiText-103. Red, green, and blue points represent rare, medium, and frequent groups respecively; (c)
Normalized singular value for MLE and AGG.

Figure 4: Size of the rare token group during initial 1k
steps of training with WikiText-103 dataset.

size of the rare token group during initial 1k train-
ing steps when the model is trained with WikiText-
103 dataset. As presented in the figure, rare group
size fluctuate wildly at the initial training stage.
We expect for this grouping method to determine
an optimal rare token group for the current train-
ing step. Table 9 presents the results of ablation
study about dynamic grouping. To except dynamic
grouping from AGG, we fixed the rare token group
after 1 epoch. For this static grouping AGG method,
Next-token diversity(Uniq) and the isotropy of the
token embedding space(I(W)) perform worse than
dynamic grouping AGG.

6.2 Visualization

Figure 3 (a) and (b) present the visualizations of the
embedding space of baseline MLE and our method.
In the figure, applying the AGG method restores the
isotropy of the token embedding space. In addition,
we observe that the regions occupied by each token
group are not disjoint when applying AGG. For
baseline, the regions occupied by rare group and

the frequent group are disjoint, which is refered as
the frequency bias problem of embeddings (Gong
et al., 2018). From the analysis of the visualization
of the embedding space, we notice that the manipu-
lating the training of the rare token embeddings can
alleviate the frequency bias problem. Figure 3 (c)
presents the plot of the normalized singular value
of embedding matrix for MLE and AGG. Slowly
decaying singular values of AGG demonstrate an
isotropic distribution of the embedding space.

7 Conclusion

In this study, we analyzed the training dynamics of
the token embeddings concerning the representa-
tion degeneration problem of the learned embed-
dings, focusing on the rare tokens. Based on the
analysis, we propose an adaptive gradient gating
method that solves the problem by solely handling
the training for rare token embeddings. Experi-
ments and qualitative studies in various tasks of
text generation demonstrate the effectiveness of
our method. Beyond the two-level approximation
of rarity of rare tokens which is applied to our
study, addressing multiple levels of rarity can be an
interesting region to study for the future work.
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A Derivation of the gradient of AGG loss
w.r.t. rare token embedding

We follow the same notation as in the main paper.
Before we write the derivation of the gradient about
rare token embedding wr, we write the gradient
of f(w̃j) and (zli)j about wr, where f(w̃j) is the
function of w̃j with j = 1, ..., N and (zli)j is a j-th
component of zli with l = 0, 1, 2 as follows.

∇wrf(w̃j) = ∇w̃j
f(w̃j)⊙∇wr w̃j

= ∇w̃j
f(w̃j)⊙ 0

= 0 for all j

(∵ w̃j is treated as a constant.)

(11)

∇wr(z
l
i)j = ∇wr [glj · h̃iwT

j + (1− glj · h̃iw̃T
j )]

= glj∇wr h̃iwT
j + 0

=

{
glj h̃i if j = r

0 else

=

{
gljhi if j = r

0 else

(∵ hi = h̃i in terms of value.)
(12)

Considering the case of yi /∈ Vr, AGG negative
log-likelihood loss for the i-th position of token
generation, LAGG

i is written as follows.

LAGG
i = − log p0I(yi)|i − log p1I(yi)|i (13)

Then gradient of LAGG
i about wr is written as

follows.

∇wrL
AGG
i

= −∇wr log p
0
I(yi)|i −∇wr log p

1
I(yi)|i

= −∇wr log p
1
I(yi)|i − 0

(∵ log p0I(yi)|i is a function of w̃r.)

= − 1

p1I(yi)|i
∇wrp

1
I(yi)|i

= − 1

p1I(yi)|i

N∑
j=1

∇(z1i )j
p1I(yi)|i · ∇wr(z

1
i )j

(∵ p1I(yi)|i is a function of (z1i )j , j = 1, ..., N .)

= − 1

p1I(yi)|i
∇(z1i )r

p1I(yi)|i · ∇wr(z
1
i )r

(By Eq. 12.)
(14)

As p1I(yi)|i = [softmax(z1i )]I(yi)|i,

∇(z1i )r
p1I(yi)|i = −p1I(yi)|ip

1
r|i. (15)

Thus, ∇wrL
AGG
i is computed as follows.

∇wrL
AGG
i

= − 1

p1I(yi)|i
∇(z1i )r

p1I(yi)|i · ∇wr(z
1
i )r

(By Eq. 14.)

= p1r|i · ∇wr(z
1
i )r

= g1rp
1
r|ihi

(By Eq. 12.)

(16)

Considering the case of yi ∈ Vr but yi ̸= vr,
LAGG
i is written as follows.

LAGG
i = − log p0I(yi)|i − log p2I(yi)|i (17)

Then ∇wrL
AGG
i is written as follows.

∇wrL
AGG
i

= −∇wr log p
0
I(yi)|i −∇wr log p

2
I(yi)|i

= −∇wr log p
2
I(yi)|i − 0

(∵ log p0I(yi)|i is a function of w̃r.)

= − 1

p2I(yi)|i
∇wrp

2
I(yi)|i

= − 1

p2I(yi)|i

N∑
j=1

∇(z2i )j
p2I(yi)|i · ∇wr(z

2
i )j

(∵ p2I(yi)|i is a function of (z2i )j , j = 1, ..., N .)

= − 1

p2I(yi)|i
∇(z2i )r

p2I(yi)|i · ∇wr(z
2
i )r

(∵ Eq. 12.)
(18)

As p2I(yi)|i = [softmax(z2i )]I(yi)|i,

∇(z2i )r
p2I(yi)|i = −p2I(yi)|ip

2
r|i. (19)

Thus, ∇wrL
AGG
i is computed as follows.

∇wrL
AGG
i

= − 1

p2I(yi)|i
∇(z2i )r

p2I(yi)|i · ∇wr(z
2
i )r

(By Eq. 18.)

= p2r|i · ∇wr(z
2
i )r

= g2rp
2
r|ihi

(By Eq. 12.)

(20)
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Considering the remained case of yi = vr, since
yi ∈ Vr, LAGG

i is same as the second case, and
derivation process of ∇wrL

AGG
i shares the same

process with Eq. 18. As I(yi) = r,

∇(z2i )r
p2I(yi)|i = p2I(yi)|i(1− p2I(yi)|i) (21)

Thus, ∇wrL
AGG
i is computed as follows.

∇wrL
AGG
i

= − 1

p2I(yi)|i
∇(z2i )r

p2I(yi)|i · ∇wr(z
2
i )r

(By Eq. 21.)

= −(1− p2I(yi)|i) · ∇wr(z
2
i )r

= −g2r(1− p2I(yi)|i)hi

(By Eq. 12.)

= (p2r|i − 1)hi

(∵ I(yi) = r and g2r = 1 if I(yi) = r.)

(22)

As pr|i = pmr|i with m = 0, 1, 2 in terms of value,
we finally write ∇wrL

AGG
i as follows.

∇wrLi =


(pr|i − 1)hi if yi = vr

g1rpr|ihi if yi /∈ Vr

g2rpr|ihi else,

(23)

B Experimental Details

In this section, we present the details of the experi-
ments in main page. All the experiments were con-
ducted with a single GPU on our machine (GPU:
NVIDIA A40) and from single run. For each task
in the experiments, we use the same model architec-
ture and train it with different objectives(i.e., MLE,
AGG, UL). The hyper-parameters used for differ-
ent training methods in the same task are exactly
same. The detailed hyper-parameters are described
in Table 12.

C Experimental Results of I(W) for each
frequency groups

In this section, we present the experimental results
about I(W) for the embeddings of each frequency
groups. Table 10 shows the I(W) comparing MLE
baseline and AGG. Table 11 shows the I(W) com-
paring UL baseline and the fusion of UL and AGG.
As presented in Table 10 and 11, AGG improves
isotropy of the embedding space for all frequency
groups, indicating that our method solves the whole
degeneration problem.

Methods I(W)↑
Freq Med Rare

MLE 0.51 0.33 0.278
AGG 0.702 0.714 0.813

Table 10: Experimental results about I(W) for each
token group in WikiText-103 language modeling task
comparing MLE baseline and AGG.

Methods I(W)↑
Freq Med Rare

UL 0.533 0.351 0.293
UL + AGG 0.731 0.626 0.696

Table 11: Experimental results about I(W) for each
token group in WikiText-103 language modeling task
comparing UL baseline and UL + AGG.

D Hyperparameter Sensitivity

In this sections we show how the metrics used on
language modeling task change with the hyper-
parameter α in Figure 5. We observed an inter-
esting phenomenon about the non-rare token group
when rare token group size increases over a specific
threshold. For the rare token group, Uniq and I(W)
metrics have a positive correlation. They increase
together up to a certain alpha value and decrease
together as alpha increases over that value. How-
ever, for the non-rare token group, Uniq increases
as alpha increases over that certain value while
there are negative effects where I(W) decreases
and Ppl increases. Because non-rare tokens are a
major group, Figure 5 (b) and (c) present the above
phenomenon about the non-rare token group al-
though they present metrics for overall tokens. We
consider this phenomenon to be another degenera-
tion problem, as the increase of Uniq with negative
impacts on isotropy and likelihood does not imply
improvement of text quality, implying just genera-
tion of unproper tokens. This problem which occurs
when rare token group size increases over a certain
threshold can be handled in future work.

E Qualitative Study about Semantic
Alignments between Tokens

In this section, we present qualitative studies about
semantic alignments between tokens for language
modeling and machine translation tasks. We select
three rare token from each datasets: "homepage",
"Werewolf", and "policymakers" for WikiText-103
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dataset, and "optimum", "criminal", and "happi-
ness" for WMT14 En→De dataset. For each rare
token, we extract the top-5 nearest neighbor token
predicted by the cosine distance between token em-
beddings. Compared with baseline MLE method,
AGG shows significant improvement to train se-
mantic alignments for rare tokens. From Table 13,
we notice that the rare tokens trained with AGG
are semantically well aligned and not biased about
token frequency. Table 14 demonstrates that to-
ken embeddings trained with AGG also learn the
cross-lingual semantic alignments between target
language tokens.

F Examples

We present additional generated text samples from
the model trained on language modeling task in
Table 15. From the table, we notice that the model
trained with AGG generates more diverse and high
quality text than the baseline.
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Hyperparameter Empirical Study Language Modeling Machine Translation
Base Big

# of layers 6 24 6-6 6-6
Hidden dimension 512 1024 512 1024
Projection dimension 2048 4096 2048 4096
# of heads 8 16 8 16
Dropout 0.1 0.1 0.1 0.3
Vocabulary size 44256 44256 40624 40624
# of parameters 42M 358M 65M 218M
Learning rate 7 · 10−4 7 · 10−4 1 · 10−3 1 · 10−3

Max tokens per batch 32k 32k 64k 64k
Maximum training steps 40k 50k 190k 190k
Warmup steps 4k 4k 4k 4k
Optimizer Adam Adam Adam Adam
Weight decay 0.01 0.01 0.01 0.01
α for AGG − 0.03 0.08 0.08
α for UL − 1.0 − −

Table 12: Model configurations and training hyper-parameters for all experiments conducted in the main page. For
word similarity task, the model trained on language modeling task are evaluated for word similarity datasets.

(a) Perplexity (b) Uniq (c) I(W)

Figure 5: Hyper-parameter(α) sensitivity of AGG in the language modeling task on Wikitext-103 dataset.
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homepage Werewolf policymakers
MLE AGG MLE AGG MLE AGG
BOX website ASUS Creature Steam politicians
inbox webpage riet Nightmare death environmentalists

livestream blog 480 Bride Venezuel activists
namespace Tumblr nuclear Sneak includ planners

hashes websites ATCH Sniper reason economists

Table 13: Top-5 nearest neighbors of each rare tokens in WikiText-103 dataset. Performance of AGG method is
compared with the baseline MLE method. Red color denotes the rare tokens among neighbors.

optimum criminal happiness
MLE AGG MLE AGG MLE AGG
therto optimal Criminal criminals juries happy
ratory optimale∗ criminals Criminal enness joy

consultan@@ optimalen∗ perpetr@@ krimi@@∗ ocopying happ@@
sofar maximum secution kriminellen∗ ratory Glück∗

protection@@ Optim@@ xious crime sacri@@ pleasure

Table 14: Top-5 nearest neighbors of each rare source tokens in WMT14 En→De dataset. Performance of AGG
method is compared with the baseline MLE method. The symbol @@ stands for sub-word tokenization of the
dataset. The symbol * denotes the synonym token of the target language.
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Method Texts Uniq ↑
Prefix A Company , 2nd Engineer Combat Battalion , moved to the south side of the Yongsan - Naktong

River road ; D Company of the 2nd Engineer Battalion was on the north side of the road .
Approximately 2 miles ( 3

MLE . 2 km ) north of the river , the 2nd Engineer Combat Battalion was on the south side of the road .
The 2nd Engineer Combat Battalion was on the south side of the road .
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AGG . 2 km ) north of the river , the 2nd Engineer Combat Battalion was attacked by a small force
of North Korean People ’s Volunteer Army ( NK ) troops . The North Koreans were able to
penetrate the UN lines and capture the town .

43

Method Texts Uniq ↑
Prefix The twelve 45 - calibre 35 . 6 cm ( 14 . 0 in ) Type 41 guns of the Ise class were mounted in three

pairs of twin - gun , superfiring turrets . Numbered one through
MLE two , the turrets were placed in superfiring pairs , one ahead of the other . The turrets were placed

in superfiring pairs , with the turrets superfiring over the wing turrets . The turrets were placed in
superfiring pairs , with the turrets superfiring over the wing turrets . The turrets were placed in
superfiring pairs , with the turrets superfiring over the wing turrets . The turrets were placed in
superfiring pairs , with the turrets superfiring over the wing turrets . The turrets were placed in
superfiring
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AGG five from front to rear , the guns had a firing arc of 260 ° . They fired a 45 . 3 kg ( 99 lb ) projectile
at a muzzle velocity of 835 m / s ( 2 , 740 ft / s ) to a range of 16 , 000 m ( 52 , 000 yd ) . They
had a maximum elevation of 30 degrees and fired a 36 . 3 kg ( 77 lb ) projectile at a muzzle
velocity of 835
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Method Texts Uniq ↑
Prefix Despite the expensive reconstructions , both vessels were considered obsolete by the eve of the

Pacific War , and neither saw significant action in the early years of the war . Following the loss
of most of the IJN ’s large aircraft carriers during the Battle

MLE of Midway , the IJN was forced to rely on the United States Navy for aircraft carriers and
aircraft carriers to support operations in the Pacific . The IJN ’s aircraft carriers were the first
to be equipped with the new Mark 4 torpedo and the IJN ’s aircraft carriers were the first to be
equipped with the Mark 4 torpedo . The IJN ’s aircraft carriers were the first to be equipped with
the Mark 4 torpedo , and the IJN ’s aircraft carriers
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AGG of Midway , the IJN decided to modernize its fleet and modernize its fleet . The IJN ’s new ships
were designed to be capable of operating at speeds of up to 30 knots ( 56 km / h ; 35 mph ) , and
were fitted with a new bow section . The ships were designed to carry 1 , 000 t ( 980 long tons ; 1
, 100 short tons ) of fuel oil , and were fitted with a pair of aircraft catap
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Method Texts Uniq ↑
Prefix Amos was born in Macclesfield , Cheshire and was a member of the Crewe Alexandra academy

until he was released at the age of 10 . While at Crewe , he also played for another local team ,
Bollington United , as a centre

MLE - back . He was a member of the team that won the FA Youth Cup in 1989 , and was a member
of the team that won the FA Youth Cup in 1990 . He was a member of the team that won the FA
Youth Cup in 1990 , and was a member of the team that won the FA Youth Cup in 1992 .
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AGG - back . He was signed by Crewe Alexandra in July 2006 , and made his debut for the club in a 2
- 1 win over Rotherham United in the League Cup on 18 August 2006 . He was loaned out to
Rotherham for the rest of the 2006 - 07 season , before being released at the end of the season .
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Table 15: Generated texts on the Wikitext-103 test set and uniq tokens for each texts. 50 bpe tokens are given as
prefix and the models are to generate the continuation of 100 next bpe tokens.
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