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Abstract

Functional Distributional Semantics is a re-
cently proposed framework for learning dis-
tributional semantics that provides linguistic
interpretability. It models the meaning of a
word as a binary classifier rather than a numeri-
cal vector. In this work, we propose a method
to train a Functional Distributional Semantics
model with grounded visual data. We train it
on the Visual Genome dataset, which is closer
to the kind of data encountered in human lan-
guage acquisition than a large text corpus. On
four external evaluation datasets, our model out-
performs previous work on learning semantics
from Visual Genome. !

1 Introduction

The target of distributional semantics models is to
understand and represent the meanings of words
from their distributions in large corpus. Many
approaches learn a numerical vector for each
word, which encodes its distributional informa-
tion. They can be roughly divided into two cat-
egories: frequency-based methods such as co-
occurrence matrix (Sahlgren, 2006), and prediction-
based methods such as Word2vec (Mikolov et al.,
2013). More recently, progress has been made in
learning word representations in a specific context,
which are also called contextualized embeddings.
Examples include ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2019).

Functional Distributional Semantics is a frame-
work that not only provides contextualized seman-
tic representations, but also provides more inter-
pretability. It was first proposed by Emerson and
Copestake (2016), and it explicitly separates the
modeling of words and the modeling of objects and
events. This is a fundamental distinction in predi-
cate logic. While logic is not necessary for all NLP
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tasks, it is an essential tool for modeling many se-
mantic phenomena (for example, see: Cann, 1993;
Allan, 2001; Kamp and Reyle, 2013). For semantic
research questions, having a logical interpretation
is a clear advantage over vector-based models. We
will explain the framework in Section 2.2.

Another issue with distributional semantic mod-
els, as discussed by Emerson (2020c), is the sym-
bol grounding problem — if meanings of words are
defined in terms of other words, the definitions
are circular. During human language acquisition,
words are learned while interacting with the phys-
ical world, rather than from text or speech alone.
An important goal for a semantic theory is to ex-
plain how language relates to the world, and how
this relationship is learned. We focus on the Visual
Genome dataset, not only because it provides rela-
tively fine-grained annotations, but also it is similar
to realistic circumstance encountered during lan-
guage acquisition, as we will explain in Section 2.3.

Our main theoretical contribution is to adapt the
Functional Distributional Semantics framework to
better suit visual data. This is a step approaching
the completion of long-term goal: leveraging pre-
vious work (Emerson, 2020a), we could joint train
the Functional Distributional Semantics model with
both textual and visual data. In order to make it
compatible with modern techniques for machine vi-
sion, while retaining its logical interpretability, we
replace the RBM of previous work with a Gaussian
MREF, as explained in Section 3.

Our main empirical contribution is to demon-
strate the effectiveness of the resulting model. In
Section 4.1, we intrinsically evaluate the major
components of our model, to see how well they fit
the training data. In Section 4.2, we evaluate our
model on four external evaluation datasets, compar-
ing against previous approaches to learning from
Visual Genome, as well as strong text-based base-
lines. Not only do we confirm Herbelot (2020)’s
finding that learning from grounded data is more
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data-efficient than learning from text alone, but
our model outperforms the previous approaches,
demonstrating the value of our functional approach.

2 Background and Related Work

2.1 Visually Grounded Semantic Learning

There is extensive research on learning language
semantics from grounded visual data. Visual-
Semantic Embedding and Visual Concept Learning
in Visual Question Answering are two representa-
tive frameworks. Some works under these frame-
works share the idea with our Functional Distri-
butional Semantics model that textual labels are
modeled as classifiers over the semantic space.

Visual-Semantic Embedding (Frome et al., 2013)
learns joint representations of vision and language
in a common visual-semantic space. Kiros et al.
(2014) proposed to unify the textual and visual em-
beddings via multimodal neural-based language
models. Ren et al. (2016) models images as points
in the Visual-Semantic space, while text are Gaus-
sian distributions over them.

Visual Concept Learning contributes to various
visual linguistic applications, such as image cap-
tioning (Karpathy and Fei-Fei, 2015) and Visual
Question Answering (Antol et al., 2015). Some
works in applying neural symbolic approach to
VQA share similar ideas of learning visual con-
cepts with our model. For example, Mao et al.
(2018) learn neural operators to capture attributes
(concepts) of objects and map them into attribute-
specific space. Then questions are parsed into exe-
cutable programs. Han et al. (2019) further learn
the relations between objects as metaconcepts.

Our work differs from them in two main aspects.
Firstly, our framework supports truth-conditional
semantics, as explained in Section 2.2, and there-
fore provides more logical interpretability. Unlike
the above works which always assume images are
given, we use a generative model which allows us
to perform inference on textual labels alone, as il-
lustrated in Fig. 3 and explained in Section 3.4. Sec-
ondly, we learn semantics from the Visual Genome
dataset, which is considered more similar to the
data encountered during language acquisition, as
explained in Section 2.3.

2.2 Functional Distributional Semantics

Functional Distributional Semantics was first pro-
posed by Emerson and Copestake (2016). The
framework takes model-theoretic semantics as a

starting point, defining meaning in terms of truth.
Given an individual (also called an entity), and
given a predicate (the meaning of a content word),
we can ask whether the predicate is true of that in-
dividual. Note that an individual could be a person,
an object, or an event, following neo-Davidsonian
event semantics (Davidson, 1967; Parsons, 1990).
Functional Distributional Semantics therefore
separates the modeling of words and individuals.
An individual is represented in a high-dimensional
feature space. The term pixie refers to the repre-
sentation of an individual (Emerson and Copestake,
2017). A predicate is formalized as a binary clas-
sifier over pixies. It assigns the value true if an
individual with those features could be described
by the predicate, and it assigns false otherwise.
Such a classifier is called a semantic function.
The model is separated into a world model and
a lexicon model. The lexicon model consists of
semantic functions. Following situation semantics
(Barwise and Perry, 1983), the world model defines
a distribution over situations. Each situation con-
sists of a set of individuals, connected by semantic
roles. In our work, we only consider two types of
semantic roles: ARG1 and ARG2. For example,
the sentence ‘a computer is on a desk’ describes a
situation with three individuals: the computer, the
desk, and the event of the computer being on the
desk. The computer is the ARGI1 of the event, and
the desk is the ARG2, as shown in Figs. 1 and 2.
Unlike other distributional models, Functional
Distributional Semantics is interpretable in for-
mal semantic terms, and supports first-order logic
(Emerson, 2020b). Emerson (2020a) proposed an
autoencoder-like structure which can be trained
efficiently from semantic dependency graphs.
Because individuals are explicitly modeled,
grounding the pixies is more theoretically sound
than grounding word vectors. The framework has
clear potential for learning grounded semantics,
which we explore in this paper.

2.3 Visual Genome

The Visual Genome dataset contains over 108,000
images and five different formats of annotations,
including regions, attributes, relations, object in-
stances and question answering. In this work, we
only consider the relations, which are formulated as
predicate triples. Each triple contains two objects
in the image and one relation between them. The
objects are identified with bounding boxes, as illus-
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Figure 1: An example image in Visual Genome, anno-
tated with the relation [‘Computer’, ‘ON’, ‘Desk’]

trated in Fig. 1. The object predicates are nouns or
noun phrases, and the relation predicates are verbs,
prepositions or prepositional phrases.

Many works use Visual Genome as a grounded
data source. For example, Fukui et al. (2016) use
it to ground its visual question answering system.
Furthermore, the fine-grained annotations make
Visual Genome a compelling dataset for studying
lexical semantics. As discussed by Herbelot (2020),
Visual Genome is similar in size to what a young
child is exposed to, and the annotations are similar
to simple utterances encountered during early lan-
guage acquisition. Kuzmenko and Herbelot (2019)
and Herbelot (2020) learn semantics from the an-
notations, while discarding the images themselves.
They trained word embeddings with a count-based
method and a Skip-gram-based method, respec-
tively. This methodology, of extracting word re-
lations from an annotated image dataset, was also
analyzed and justified by Schlangen (2019). In fact,
Ver6 and Copestake (2021) analyze the different
modalities in Visual Genome in terms of informa-
tion gain, and conclude that, for enriching a textual
model, the relational information provides more
potential than the visual information.

To our knowledge, there has been no previous
attempt to use grounded visual data to train a Func-
tional Distributional Semantics model, nor to uti-
lize the visual information of Visual Genome to
learn natural language semantics.

3 Model and Methods

We will explain the probabilistic structure of our
model in Section 3.1, and how we train the compo-
nents in Sections 3.2 and 3.3. In Section 3.4, we
present an inference model to infer latent pixies
from words and the context.
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Figure 2: Our probabilistic graphical model. The top
blue box contains the world model, which learns the
joint distribution of the observed pixies X, Y and Z
from their corresponding images. The bottom red box
shows the lexicon model, where each semantic function
in the vocabulary V is applied to each pixie. For each
pixie, one predicate is generated, with probability pro-
portional to the probability of truth.

3.1 Probabilistic Graphical Model

We define a graphical model which jointly gener-
ates pixies and predicates, as shown in Fig. 2. It
has two parts. The world model is shown in the
top blue box, which models the distribution of situ-
ations, or in other words, the joint distribution of
pixies. It is an undirected graphical model, with
probabilistic dependence according to the ARG1
and ARG2 roles, as further explained in Section 3.2.
The lexicon model is shown in the bottom red box,
which models each predicate as a semantic func-
tion. It is a directed graphical model. For each
pixie, it produces a probability of truth for each
predicate (which are not observed), as well as gen-
erating a single predicate (which is observed), as
further explained in Section 3.3. Our framework
can perform contextualized inference of predicate
triples, where the world model provides contextual
dependency while the lexicon model focuses on
individual predicate, as further expalined in Sec-
tion 3.4.

Given a labeled image triple, the model can be
trained by maximizing the likelihood of generating
the data, including both observed predicates and
observed pixies. The likelihood can be split into
two parts, as shown in Eq. 1, where s is a situation
(a pixie for each individual), and g is a semantic
dependency graph (a predicate for each individual).
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The first term is the likelihood of generating the
observed situation, modeled by the world model.
The second term is the likelihood of generating
the dependency graph given an observed situation,
modeled by the lexicon model. Therefore, we can
optimize parameters of the two parts separately.

log P(s,g) = log P(s) +log P(g[s) (1)

3.2 World Model

The world model learns the joint distribution of
pixies, as shown in the top half of Fig. 2. The
individuals are grounded by images, so we can ob-
tain the pixie vectors by extracting visual features
for individuals from their corresponding images.
For object pixies, they are grounded by their corre-
sponding bounding boxes. For event pixies, Visual
Genome does not have labeled bounding boxes for
them and their meaning tends to be more abstract,
so we use the whole image to ground them. As a
feature extractor, we use ResNet101, a Convolu-
tional Neural Network (CNN) pre-trained on Ima-
geNet. To further reduce redundant dimensions, we
perform PCA on the last layer of the CNN. We take
the output of PCA as the pixie space X'. A situation
s is a collection of pixies within a semantic graph.
In this work, we only consider graphs with three
nodes, connected by the roles ARG1 and ARG2, to
match the structure of Visual Genome relations.

In previous work, the world model was im-
plemented as a Restricted Boltzmann Machine
(RBM). However, an RBM uses binary-valued
vectors, which is not compatible with the real-
valued vectors produced by a CNN. Furthermore,
an RBM does not give normalized probabilities,
which means that computationally expensive tech-
niques are required, such as MCMC, used by
(Emerson and Copestake, 2016), or Belief Prop-
agation, used by (Emerson, 2020a).

We model situations with a Gaussian Markov
Random Field (MRF). For an n-dimensional pixie
space, this gives a 3n-dimensional Gaussian distri-
bution, with parameters 1 and X for the mean and
covariance. As shown in the first term of Eq. 1, we
would like to maximize P(s).

P(s) = N(s;p, %) (2)

For a Gaussian distribution, the maximum likeli-
hood estimate (MLE) has a closed-form solution,
which is simply the sample mean and sample co-
variance. However, because we assume the left and
right pixies in Fig. 2 are conditionally independent

given the event pixie, we force the top right and
bottom left pixie blocks of the precision matrix
7! to be zero. We raise this assumption for the
consideration of applying the Functional Distribu-
tional Semantics model to larger graphs with more
individuals in the future. The assumption does not
affect performance on word similarity datasets, but
it slightly damages performance on contextual in-
ference datasets. Detailed results and discussion
are given in Appendix A.4.

3.3 Lexicon Model

The lexicon model learns a list of semantic func-
tions, each corresponds to a word in predicate vo-
cabulary V. The semantic function ¢,(z) for a
given predicate 7 is a logistic regression classifier
over the pixie space, with a weight vector v,.. From
the perspective of deep learning, this is a single
neural net layer with a sigmoid activation function.
As shown in Eq. 3, the output is a probabilistic
truth value ranging between (0, 1).

tr(x) =o(v, - ) 3)

As shown in the second row of Fig. 2, all se-
mantic functions are applied to each pixie. Based
on the probabilities of truth, a single predicate is
generated. The probability of generating a spe-
cific predicate r for a given pixie x is computed as
shown in Eq. 4. The more likely a predicate is to
be true, the more likely it is to be generated.

P(rfr) = @) @

pRACH
The lexicon model is optimized to maximize
log P(g|s), the log-likelihood of generating the
predicates given the pixies. This can be done by
gradient descent.

3.4 Variational Inference

When learning from Visual Genome, pixies are
grounded by images. However, when applying the
model to text, the pixies are latent. We provide an
inference model to infer latent pixie distributions
given observed predicates. This inference model is
used in Section 4.2 on textual evaluation datasets.
Exact inference of the posterior P(s|g) is in-
tractable, because this requires integrating over
the high-dimensional latent space of s. This is a
common problem when working with probabilistic
models. Therefore we use a variational inference
algorithm to approximate the posterior distribution
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P(s|g) with a Gaussian distribution )(s). For sim-
plicity,we assume that each dimension of Q(s) is
independent, so its covariance matrix is diagonal.

In Fig. 3, the graphical model illustrates this as-
sumption, as there is no connection among the pixie
nodes in the middle row. Following the procedure
of variational inference, the approximate distribu-
tion )(s) is optimized to maximize the Evidence
Lower Bound (ELBO), given in Eq. 5. This can be
done by gradient descent.

£ = Eq|log P(gls)] - BDk1.(Q(s)IIP(5)) )

The first term measures how well (Q(s) matches
the observed predicates, according to the lexicon
model P(g|s). The second term measures how well
Q(s) matches the world model P(s). We would
like to emphasize the likelihood of generating the
observed predicates, so we down-weight the second
term with a hyper-parameter 3, similarly to a 3-
VAE (Higgins et al., 2017). Detailed analysis on
the effects of 3 is discussed in Appendix A.7.

Exactly computing the first term is intractable.
Emerson (2020a) used a probit approximation, but
we instead follow Daunizeau (2017), who derived
the more accurate approximations given in Egs. 6
and 7, where x has mean p and variance Y. The
second approximation is particularly important, as
we aim to maximize the log-likelihood.

N u
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The second term of Eq. 5 is the Kullback-Leibler
(KL) divergence between two Gaussians, which has
the closed-form formula given in Eq. 8, where k is
the total dimensionality.

Ellogo(z)] = logo (

1 by _
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As illustrated in Fig. 3, variational inference al-
lows us to calculate quantities such as the probabil-
ity that an animal which has a tail is a horse. To ob-
tain the inferred distribution for a single pixie, we
need to marginalize the situation distribution Q(s).
From the independence assumption, this simply
means taking the parameters for the desired pixie.
Then we can apply the semantic function for r on

["animal™: 0.58, ["animal™: 0.56,

“horse": 0.43, “bear": 0.42,
"bear": 0.35, "horse": 0.36,
"dog": 0.29, "cat": 0.35,
"cat": 0.22, ...] "dog": 0.31, ...]

©

v
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"animal” "has" "tail"
"animal” "has" "paw"

Figure 3: Graphical inference model: The pixies X,
Y and Z in the middle row are jointly inferred from
the observed predicates P, () and R in the bottom row,
using variational inference. Semantic functions are ap-
plied to X, to give probabilities of truth. As well as
the observed predicate ‘animal’, the model predicts that
other predicates may also be true. Two examples are
given, in green and yellow, showing how the predicted
truth values for ‘tail’ and ‘paw’ depend on all observed
predicates. All probability values are inferred from our
trained model.

the inferred pixie x, as shown in Eq. 9, which can
be approximated using Eq. 6.

tr(z) = Eglo(v, - x)] )

Although Q(s) assumes independence, its pa-
rameters are jointly inferred based on all predicates.
This is because the KL-divergence in Eq. 8 depends
on X p, which is nonzero between each pair of pix-
ies linked by a semantic role.

For example, in Fig. 3, the truth of ‘horse’ for X
depends on the observed predicate ‘tail’ or ‘paw’.
This is not a direct dependence between words, but
rather relies on three intermediate representations
(the three pixies), all of which are expressed in
terms of visual features. The first term of the ELBO
connects the semantic function for ‘tail’ or ‘paw’ to
the variational parameters for Z. The second term
of the ELBO connects the variational parameters
for Z and Y (based on the world model covariance
for ARG2) as well as Y and X (based on the world
model covariance for ARG1). Finally the semantic
function for ‘horse’ is applied to the variational
distribution for X.

In this example, the model correctly infers that
an animal with a tail is more likely to be a horse
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and an animal with paws is more likely to be a bear.
We notice that the truth values are generally low
for all semantic functions. Even the highest truth is
only around 0.58. This illustrates that the model is
not very certain, which might be expected since the
model is performing inference on visual features,
but the training image data is noisy.

For some evaluation datasets, we need to per-
form inference given a single predicate. This can be
done by marginalizing the joint distribution. Which
pixie variable to choose, out of the three, should
depend on the Part-Of-Speech (POS) of the word.
For nouns, the pixie node X or Z should be used,
as a noun should play the role of ARG1 or ARG2.
For verbs and prepositions, the node Y should be
used, as they usually describe the relation.

4 Evaluation

To train our model, we follow the same pre-
processing and filtering of Visual Genome as Her-
belot (2020). Details of pre-processing and hyper-
parameters are given in the appendix.

4.1 Intrinsic Evaluation

In this section, we examine whether a Gaussian
MREF is a suitable choice for the world model, and
whether the pixies in the pixie space are linearly
separable such that the logistic semantic functions
can successfully classify them.

4.1.1 World Model Evaluation

The world model learns a Gaussian distribution for
the observed situations. In this section, we justify
this choice by evaluating the fitting errors.

Fig. 4 shows density histograms for two example
pixie dimensions and their corresponding best-fit
(MLE) Gaussian curves. The left histogram is an
example for a majority of the pixie dimensions,
which is tightly matched by the best-fit Gaussian.
In other cases, as shown on the right, there are im-
balanced tails and asymmetry. Despite their skew-
ness and kurtosis, which make them look more
like a Gamma distribution, they are still generally
bell-shaped and the departure is not so heavy.

To quantify the errors, we measure the Wasser-
stein distance, the area of the histogram missing
from the best-fit Gaussian. Across all 100 pixie di-
mensions, the mean percentage missing is 7% with
a variance of 1%. A more flexible model might
give better modeling performance, which could be
a future improvement direction. Nonetheless, we
consider this level of error to be acceptably low.

feature 93 feature 1

Density

-5 0 5 i -4 -2 0 2 4
Value

Figure 4: Density histograms for two selected pixie
dimensions, across the 2.8M training instances. Best-fit
Gaussian curves of the histograms are shown in red.
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Figure 5: ROC curves of the semantic functions for
selected predicates. Higher left is better performance.

4.1.2 Lexicon Model Evaluation

In this experiment, we investigate if our approach
to model the semantic functions as logistic regres-
sion classifiers is suitable. In particular, a logistic
regression classifier is a linear classifier, which
means if the data is not linearly separable, it would
have inferior performance.

We computed the Area Under Curve for the Re-
ceiver Operating Characteristic (AUC-ROC), for
all predicates in the vocabulary. For each predicate
we randomly select equal amount of negative exam-
ple pixies with its positive examples. The average
score is 0.79 for object predicates, and 0.58 for
event predicates. We also present the ROC for a
few example predicates in Fig. 5.

We can see that object classifiers have gener-
ally better performance. The classifier for ‘racket’
shows slightly worse performance than the oth-
ers, whose reason might be its lower frequency.
Compared to object predicates, the semantic func-
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tions for event predicates generally perform worse.
There are two potential reasons which could be
improved in future work. Firstly, we used visual
features generated from the whole image to rep-
resent the event pixie, which is often not specific
enough to identify the event. Secondly, a logis-
tic regression classifier might not be sophisticated
enough for this classification problem.

4.2 Extrinsic Evaluation

In this section, we use external semantic evalua-
tion datasets, to give a direct comparison against
previous work, and to test whether our model can
generalize beyond the training data. We evaluate
on two lexical similarity datasets in Section 4.2.2,
and two contextual datasets in Section 4.2.3. We
compare against two types of baseline: models
trained on a large corpus and models trained on
Visual Genome.

For these datasets, our model must assign simi-
larity scores for predicate or triple pairs, which we
compute as follows. The pixie values are inferred
from the first predicate or triple in the pair. Then
all semantic functions from the predicate vocabu-
lary are applied to that pixie. Then the ranking of
the second predicate in the pair over all potential
predicates in the evaluation dataset is taken as the
similarity score. Therefore, smaller ranking means
higher similarity between predicates.

Finally, because there are discrepancies between
vocabularies used in Visual Genome and the evalu-
ation datasets, we follow Herbelot (2020) in filter-
ing the evaluation datasets according to the Visual
Genome vocabulary, and use the filtered datasets
to evaluate all models. For the two lexical datasets,
we exactly follow Herbelot’s filtering conditions to
give a direct comparison.

For the contextual datasets, this filtering is too
strict, resulting in zero vocabulary coverage. For
these datasets, we apply looser filtering, with de-
tails given in the appendix. This also requires re-
training our model and the Visual Genome base-
lines on a more loosely filtered training set.

4.2.1 Baselines

Visual Genome Baselines: We re-implement two
previously proposed models learning distributional
semantics from Visual Genome, described in Sec-
tion 2.3. A simple count-based model was pro-
posed by Kuzmenko and Herbelot (2019), which
we refer to as VG-count. Herbelot (2020) improved
on this and proposed EVA, a Skip-gram model

trained on the same kind of co-occurrence data.
We also implement an image-retrieval baseline
which we refer to as VG-retrieval. This baseline
simply retrieves all image boxes whose annotations
match the indexing predicate. Visual features are
extracted in the same method as our model, as
described in 3.2, and then averaged across all re-
trieved images to obtain the representation for a
given predicate. This baseline illustrates the perfor-
mance can be achieved when only using the visual
information of Visual Genome.
Large Corpus Baselines: We trained two Skip-
gram Word2vec models (Mikolov et al., 2013) us-
ing 1 billion and 6 billion tokens from Wikipedia,
using Gensim (Rehiifek and Sojka, 2010). We will
refer to them as Word2vec-1B and Word2vec-6B.
The window sizes are set to be 10 in two directions,
so they contextualize with far more words than our
model. We also use Glove (Pennington et al., 2014)
trained on 6 billion Wikipedia tokens as another
strong baseline, which we refer to as Glove-6B. For
all three baselines, the dimensionality is set to 300.
Compared to the large corpus baselines, our
model has fewer parameters per word (100 vs. 300),
and is trained on far fewer data points (2.8M rela-
tion triples vs. 1B or 6B tokens).

4.2.2 Lexical similarity and relatedness

We use two lexical similarity/relatedness datasets,
MEN (Bruni et al., 2014) and Simlex-999 (Hill
et al., 2015), both of which give scores for pairs
of words. MEN contains 3000 word pairs, and
SimLex-999 contains 999 pairs. After filtering for
the Visual Genome vocabulary, we have 584 pairs
for MEN and 169 pairs for SimLex-999.

MEN evaluates relatedness, while SimLex-999
evaluates similarity. For example, ‘coffee’ and
‘cup’ are related, but not similar. Capturing simi-
larity rather than relatedness is hard for most text-
based distributional semantics models because they
build concept representations based on their co-
occurrence in corpora, which generally reflects re-
latedness but not similarity. However, similarity
might be more directly reflected in terms of visual
features which can be captured by our model.

The results are shown in Tab. 1. Our model
outperforms the two baselines trained on Vi-
sual Genome, and matched the performance of
Word2vec-1B (the difference is statistically in-
significant, p>0.5).

If we force our model to evaluate on the full
1000 word pairs in the MEN test set (assigning the
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Models Lexical datasets Contextual datasets
MEN SimLex-999 GS2011 | RELPRON
Large corpus Word2vec-1B 0.641 0.384 0.265 0.381
baselines Word2vec-6B | 0.652 0.397 0.278 0.401
Glove-6B 0.717 0.409 0.293 0.432
VG-count 0.336 0.224 0.063 0.038
VG baselines VG-retrieval 0.420 0.190 0.072 0.045
EVA 0.543 0.390 0.068 0.032
Proposed approach | Our model 0.639 0.431 0.171 0.117

Table 1: Evaluation results. For MEN, SimLex-999 and GS2011, the metric is Spearman correlation; for RELPRON,
mean average precision. All models are evaluated on subsets of the data covered by the VG vocabulary.

median similarity score to the out-of-vocabulary
pairs), it still achieves 0.304. Using the loosely
filtered training set, our model can achieve the even
higher score of 0.670 (on the same strictly filtered
subset of MEN). This illustrates that one limit of
our model’s performance is the size of the Visual
Genome dataset. In contrast, the performance of
Word2vec does not improve much as the training
data increases from 1B to 6B, which suggests there
is a limit on how much can be learnt from local
textual co-occurrence information alone.

On SimLex-999, our model achieves 0.431,
which outperforms all baselines. Compared to
Glove-6B, the strongest baseline, it is weakly sig-
nificant (p<<0.15). This might justify our point that
there is advantage of learning similarity from visual
features. Additionally, our model can use parame-
ters and data more effectively and efficiently than
Word2vec and Glove, achieving better performance
with less training data and fewer parameters.

Compared with VG-count and EVA, our model
can understand more semantics because it learns
from the visual information. While compared with
VG-retrieval, our model can leverage textual co-
occurrence. As far as we know, we have achieved
a new state of the art on learning lexical semantics
from Visual Genome. Combining results across
all four datasets (including the contextual datasets
below), the difference between our model and EVA
is highly significant (p<0.001).

4.2.3 Contextual semantics

We consider two contextual evaluation datasets.
GS2011 (Grefenstette and Sadrzadeh, 2011) gives
similarities of verbs in a given context. Each data
point is a pair of subject-verb-object triples, where
only the verbs are different. For example, [‘ta-
ble’,‘show’, ‘result’] and [‘table’, ‘express’, ‘re-

sult’] are judged highly similar. The dataset has
199 distinct triple pairs and 2500 judgment records
from different annotators. The evaluation metric
is Spearman correlation across all judgments. As
Van de Cruys et al. (2013) point out, the second
verb in each pair is often nonsensical when com-
bined with the corresponding subject and object.
Therefore, we only compare the triple pairs in a
single direction, inferring pixies from the first triple
and applying the second verb’s semantic function.

RELPRON (Rimell et al., 2016) evaluates com-
positional semantics. It contains a list of terms,
each associated with around 10 properties. Each
property is a noun modified by a subject or object
relative clause. For example, the term ‘theater’ has
the subject property [ ‘building’, ‘show’, ‘film’] and
object property [‘audience’, ‘exit’, ‘building’]. The
task is to find the correct properties for each term,
evaluated as Mean Average Precision (MAP). The
development set contains 65 terms and 518 proper-
ties; the test set, 73 terms and 569 properties.

Under the loosely filtered condition, our sub-
set of GS2011 contains 252 similarity judgments;
RELPRON, 57 terms and 150 properties.

Rimell et al. (2016) find that vector addition per-
forms surprisingly well at combining contextual
information. Therefore, for all baselines, we rep-
resent a triple by taking the addition of the three
word representations. As aforementioned, we re-
train our model and the VG baselines with loosely
filtered data.

The results are shown in Tab. 1. The corpus
models outperform the VG models. However, this
is perhaps expected given that the vocabulary in
GS2011 and RELPRON is more formal, and even
when they are covered in Visual Genome, their
frequencies are low: for RELPRON, 54% of the
covered vocabulary has frequency below 100, com-
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Figure 6: ROC curves of the semantic functions for
selected predicates, for the truth-regularized model.

pared to only 6% for MEN. Furthermore, GS2011
evaluates similarity of verbs, but we saw in Sec-
tion 4.1.2 that our model is less accurate for verbs.

However, our model outperforms all VG base-
lines on both datasets. This suggests that our model
is less affected by data sparsity. For the baselines,
if a training triple contains multiple rare predicates,
the sparsity problem is compounded. However, our
model relies on the images, whose visual features
are shared across the whole training set.

4.3 Truth regularization

To make the probabilistic truth values more inter-
pretable, Emerson (2020a) proposes a regulariza-
tion term which penalizes the model if all truth
values stay close to 0. This would modify the loss
function in Eq. 4, to give Eq. 10, with a hyper-
parameter « that we set to 0.5.

L =log @) + alogt,(x)

PRACH
We find that adding the log-truth term improves
performance on intrinsic evaluation, but decreases
performance on extrinsic evaluation. Applying the
analysis in Section 4.1.2, the average AUC-ROC
is 0.86 for object predicates and 0.60 for event
predicates. This is illustrated in Fig. 6 for the same
example predicates as Fig. 5. In contrast, when
evaluating on MEN and SimLex-999, this model
achieves only 0.602 and 0.381 respectively. On
GS2011 and RELPRON, the model achieves lower
performance of 0.112 and 0.056.

(10)

The log-truth term makes predicates true over
larger regions of pixie space. As shown by the
intrinsic evaluation, this is helpful when consid-
ering each classifier individually. However, the
regions of different predicates also overlap more,
which seems to hurt their overall performance on
the external datasets. To quantify this, we calculate
the total truth of all predicates, for 1000 randomly
selected images. For the original version of our
model, on average 0.83 predicates are true for an
image. This is slightly below 1, illustrating the
problem Emerson aimed to avoid. However, with
the log-truth term, it becomes 25.5, which may
have over-corrected the problem.

5 Conclusion

In this paper, we proposed a method to train a Func-
tional Distributional Semantics model with visual
data. Our model outperformed the previous works
and achieved a new state of the art on learning
natural language semantics from Visual Genome.
Further to this, our model achieved better perfor-
mance than Word2vec and Glove on Simlex-999
and matched Word2vec-1B on MEN. This shows
that our model can use parameters and data more
efficiently than Word2vec and Glove. Additionally,
we also showed that our model can successfully be
used to make contextual inferences. As future work,
we could leverage previous work to jointly train the
Functional Distributional Semantics model with
both visual and textual data, such that we could
improve the vocabulary coverage and have better
understanding of abstract words.
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A Training and evaluation details

A.1 Filtering

For EVA, Herbelot (2020) filtered the Visual
Genome dataset with a minimum occurrence fre-
quency threshold of 100 in both ARG1 and ARG2
directions. After filtering, the resulting subset con-
tains 2.8M relation triples and the vocabulary size
is 1595. When evaluating the external datasets, it
only includes the noun predicates. For the results
reported in the intrinsic evaluations and in Tab. 1
where we specify ‘strict filtering’, we follow the
same filtering conditions with EVA.

We also train our model with a less strict filtering
setting, where the minimum frequency threshold
is set at 10 in at least one direction. Under this
filtering setting, the resulting subset contains 3.4M
relation triples and the vocabulary size is 6788.
When evaluating the external datasets, we includes
all the covered predicates regardless of their POS.
The results under the ‘loose filtering’ columns in
Tab. 1 are evaluating under this setting. Addition-
ally, every time we use the model trained under this
setting, we will emphasize it is ‘under less strict
filtering condition’.
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A2 CNN

For the visual feature extractor, the pretrained CNN,
we used ResNet101 (He et al., 2016), which has
101 layers deep and trained on ImageNet (Deng
et al., 2009).

A3 PCA

During the PCA transform, we reduce the pixie
dimension from 1000 to 100, whose eigenvalue
components cover 93.2% of the total information.
After the PCA, we re-scaled each dimension by
dividing them over the square root of their corre-
sponding eigenvalues and scale up by a factor of
1.15, such that the determinant of the covariance
matrix of the world model is close to 1.

A.4 Conditional independence assumption

The conditional independence assumption of the
world model is raised for the consideration of ap-
plying our framework to larger graphs with more
individuals in the future. It allows us to decompose
a complicated graph in terms of relations. Other-
wise, a separate precision matrix is required for
each graph topology. However, this assumption
theoretically damages the ability of contextual in-
ference of our model, as pixies X and Z are only
dependent on one another via the pixie Y.

To investigate the effects of this assumption
quantitatively, we performed experiment to com-
pare the evaluation results under two settings.
All other settings of hyperparameters remain the
same. For single-word similarity datasets MEN and
SimLex-999, the effect on performance is inconsis-
tent, and the differences are statistically insignifi-
cant (p>0.5). For contextual datasets GS2011 and
RELPRON, releasing the assumption improves re-
sults, and the differences are statistically significant
(p<0.1 for each dataset, and p<<0.01 when combin-
ing both datasets).

Possible avenues for future work would be to
improve the modeling of events, which could make
the conditional independence assumption more rea-
sonable (recall that in Section 4.1, the modeling of
events was identified as a limitation), or to modify
the graphical model to make it more flexible (which
would be a challenge for larger graphs).

A.5 Lexicon model training

When training the lexicon model, we used L2 reg-
ularisation with a weight of 5e—8 and the Adam
optimizer (Kingma and Ba, 2015). We train the

With CI | Without CI
MEN 0.639 0.658
SimLex-999 | 0.430 0.410
GS2011 0.171 0.182
RELPRON | 0.117 0.137

Table 2: Evaluation results. For MEN, SimlLex-999
and GS2011, the metric is Spearman correlation; for
RELPRON, mean average precision. All models are
evaluated on subsets of the data covered by the VG
vocabulary.

lexicon model for 40 epochs and the learning rate
is set at 0.01 with a step scheduler which reduces
the learning rate by a factor of 0.4 every 5 epochs.
The hyper-parameters are tuned on the training data
to maximize the number of predicates such that at
least one image annotated with that predicate has a
truth value of at least 0.1. For the model trained on
strictly filtered data, the number of such predicates
reaches 1343 out of the vocabulary size 1595, while
for loosely filtered model, the number is 4453 out
of 6788.

A.6 Variational inference optimization

For the variational inference, the hyper-parameter
[ is set to be 0.1. We run gradient descent for 800
epochs with initial learning rate of 0.03 and a step
scheduler which reduces the learning rate by a fac-
tor of 0.6 every 50 epochs. The hyper-parameters
for variational inference are tuned to maximize the
ELBO on the filtered subset of MEN. (The ELBO
does not depend on the similarity scores, just the
input triples.) Tuning these hyper-parameters has
no effect on the training of the world model or the
lexicon model. The scores shown in Table 1 are the
results averaged over 5 random seeds.

A.7 Effects of hyperparameter

The hyperparameter 3 in ELBO, Equation 5, con-
trols the weighting of prior knowledge during infer-
ence. Higher 3 value will drag the inferred pixies
closer to the average positions of all seen pixies
with corresponding semantic roles. Lower 8 will
push the inferred pixies to the center of semantic
functions of their corresponding predicates. In Ta-
ble 3, we show how the 3 affects the evaluation
results. For single-word similarity dataset SimLex-
999, better knowledge of the semantic functions
can give more information than prior knowledge
of average positions of their semantic roles. There-
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B | SimLex-999 | RELPRON
0.05 0.395 0.091
0.1 0.430 0.117
0.2 0.35 0.123
0.3 0.289 0.133
0.4 0.194 0.150
0.5 0.083 0.144

Table 3: Evaluation results against different 5. For
SimLex-999 the metric is Spearman correlation and for
RELPRON, mean average precision. All other settings
hyperparameters remain the same.

fore lower value is preferred. On contrast, for con-
textual dataset RELPRON, emphasizing the prior
information could benefit the estimate of the jointly
distributed pixie triples. The performance peaks at
the value of 0.4.

A.8 Statistical tests

All statistical tests are two-tailed bootstrap tests,
which follows the recommendations of Dror et al.
(2018). We use 1000 samples for each test.
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