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Abstract

This work connects language model adapta-
tion with concepts of machine learning theory.
We consider a training setup with a large out-
of-domain set and a small in-domain set. We
derive how the benefit of training a model on
either set depends on the size of the sets and
the distance between their underlying distri-
butions. We analyze how out-of-domain pre-
training before in-domain fine-tuning achieves
better generalization than either solution inde-
pendently. Finally, we present how adapta-
tion techniques based on data selection, such
as importance sampling, intelligent data selec-
tion and influence functions, can be presented
in a common framework which highlights their
similarity and also their subtle differences.

1 Introduction

Neural Language Models (LMs) trained on large
generic training sets — over a billion sen-
tences (Kaplan et al., 2020; Roziewski and
Koztowski, 2021) — have been shown to be ef-
fective at adapting to smaller, specific target do-
mains for language modeling and other down-
stream tasks (Bommasani et al., 2021). Neural LM
adaptation is commonly performed via fine tun-
ing (Devlin et al., 2018; Liu et al., 2019; Raffel
et al., 2019; Radford et al., 2019), data selection
(van der Wees et al., 2017) or their combination
(Wang et al., 2018; Aharoni and Goldberg, 2020;
Gururangan et al., 2020). However, the trade-
offs between fine-tuning and reweighting of pre-
training data is not well understood and a theoreti-
cal framework for reasoning about the generaliza-
tion performance of these methods is needed.

In this paper, we connect language model adap-
tation with concepts of machine learning theory.
Our derivations support past empirical observa-
tions: it has been observed that the size of the
out-of-domain pre-training set is important for in
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domain generalization (Raffel et al., 2019; Devlin
et al., 2018) or that domain adaptation is more ef-
fective on domains which are well represented in
the the pre-training data (Radford et al., 2019).
Our study consider a training setup with a large
out-of-domain set and a small in-domain set. As
a first contribution, we derive how the benefit of
training a model on either set depends on the size
of the sets and the distance between their underly-
ing distribution. We also expose how fine-tuning
can be viewed as a regularization method that can
achieve a better trade-off than training only on ei-
ther set.

The research on data selection for LM adap-
tion originates mainly from intelligent selec-
tion (Moore and Lewis, 2010; Axelrod et al.,
2011). This method examines the out-of-domain
training data to emphasize a subset deemed more
likely by an in-domain model than by an out-of-
domain model. Although intuitive, the connection
of this method with statistical estimation is un-
clear, which makes studying its impact on general-
ization error difficult. Another family of selection
methods stems from influence functions (Koh and
Liang, 2017; Wang et al., 2021) which estimate
whether the model updates from out-of-domain
training examples are aligned with the in-domain
updates. This approach is more principled and
its impact on the generalization error is easier to
study. In this work, as a second contribution, we
show how intelligent selection and influence func-
tion methods are linked in the case of neural LMs.
In particular, we show that they both can be de-
rived from importance sampling (Owen, 2013), a
classical, well-studied statistical estimation tech-
nique.

The rest of our paper is organized as follows.
We first presents the theoretical trade-offs between
in-domain and out-of-domain training. We high-
light the importance of the relative sizes of in-
domain and out-of-domain training sets along with
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the distance between their underlying distribu-
tions. We also present how fine-tuning with a
limited number of updates can be seen as a train-
ing method regularized with respect to the out-of-
domain prior. Finally, we present data selection
methods under a unifying framework.

2 Neural Language Modeling

Language modeling refers to the generative mod-
eling of natural language (Manning and Schutze,
1999). Commonly, natural language is represented
as a sequence of symbols, tokens, from a finite
vocabulary. For instance, language can be rep-
resented as a sequence of characters, a sequence
of words or alternative units. A neural language
model (LM) decomposes the estimates the log
probability of a text y = (y1,..-Yn), as

log P(y;0) = Y _log P(ylyi";0)
=1

where Py maps a parameter vector 6 along with
a sequence of past tokens y’i_l onto a probability
distribution over the vocabulary. Different types of
neural architectures have been used for neural lan-
guage modeling. Most architectures used for LMs
re-use intermediate computations from the previ-
ous steps for the next steps when estimating proba-
bilities for successive tokens in the same sequence.
Popular architectures include recurrent neural net-
works (Mikolov et al., 2010; Sundermeyer et al.,
2012), convolutional networks (Dauphin et al.,
2017) and transformer networks (Vaswani et al.,
2017; Radford et al., 2019).

The parameter vector § € O of a neural LM is
identified by maximizing the log likelihood over a
training set D sampled from the true distribution
D using variants of stochastic gradient descent.
The log likelihood of a held-out set, sampled from
the same distribution, can evaluate model qual-
ity. One often reports perplexity, the exponenti-
ated negative average log likelihood per token.

Conditional LMs model the distribution of a
text y given a conditioning input x.

n
log P(ylz; 0) = > log P(yily; ", x; 0)
=1

This type of model is used for translation where
(x,y) pairs are sentences in the source and target
language (Koehn, 2009; Bahdanau et al., 2015) or

summarization where (z,y) pairs are correspond-
ing articles and summaries (See et al., 2017).

For both conditional and regular LMs, the size
of the training data is important to achieve a low
held-out perplexity. This is an obstacle for do-
mains with limited available training data. This
issue has led to various model adaptation ap-
proaches. These methods leverage large amounts
of generic training data D along with a small
amount of target domain training data 7" from the
domain of interest. Fine tuning is a popular do-
main adaptation method which trains a neural lan-
guage model in two phases, first maximizing the
likelihood of the generic set D (pre-training) be-
fore optimizing the likelihood of the target do-
main set 7' (fine-tuning). As an alternative to
fine-tuning, some methods consider leveraging the
small target-domain training set to identify and
emphasize similar data in the larger generic train-
ing set. These emphasis methods can be used
individually or in conjunction with fine-tuning.
Emphasis methods include importance sampling,
contrastive data selection and influence functions.
This paper shows that these methods — although
proposed in different context — can be presented in
a unified way which allows light to be cast on their
subtle differences.

3 Training Strategies

This section first examines in-domain training,
i.e. when the training and test data are sampled
from the same distribution. It then studies out-of-
domain training, i.e. when the training and test
data distribution differs. Finally, it examines out-
of-domain pre-training followed by in-domain fine
tuning. For the three cases, we decompose the loss
relying on classical concepts from learning theory
and study the trade-offs involved in each setup.

3.1 In-Domain Training

Given a training set D sampled from a distribution
D, learning an LM typically aims at minimizing
the negative log-likelihood of D, also referred to
as the cross-entropy loss i.e.

£00:D) =~ S0 Pul0) = E [~log P10

This empirical risk is the average over the finite
set D, which acts as a proxy for the expectation
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over the true, unavailable distribution P(y|D),

L(6;D) = = log P(y|6) P(y|D)
yeN

= y@p[— log P(y]0)],

where the distribution’s support €2 is the set of
all finite sequences. The true expected loss is
bounded by the entropy of the distribution P(-|D),
i.e.

L(0;D) > Ly(D) = H(P(-|D))

since H(P(:|D)) = ming Ey~p|—logq(y)]. The
gap between the best likelihood from a neural net-
work with the chosen parameterization and the en-
tropy is called the approximation error

Lapp(D, 0) = I;élél L(0;D) — H(P(:|D)).
This gap accounts for the fact that P(-|D) gen-
erally cannot be represented by a parameterized
function from the chosen family spanned by ©.
In addition to the approximation error, one should
consider the estimation error to account that one
relies on the empirical risk from the finite set D,

Lest(D,0,D) = L(0p; D) — mgin L(0;D)

with p = argmingee £(0; D). Therefore, the
loss of 0p over D decomposes as (Bottou and
Bousquet, 2007)

L(0p;D) =
Li(D)+ Lapp(D,0) + Let(D,0,D) | (1)

where the three terms accounts for the intrinsic un-
certainty of D, the chosen neural architecture and
the finite training set D respectively.

The approximation error L,p, (D, ©) depends
on the selected model family ©. It can be reduced
by selecting a more expressive family, i.e. a neu-
ral architecture with more capacity, a larger ©, e.g.
architectures with more, wider layers. The esti-
mation error Legst (D, ©, D) depends both on the
selected model family © and the size of the train-
ing data D. Increasing model capacity will result
in a higher estimation error for the same training
set size, but training over a larger training set will
decrease estimation error. Therefore, for a given
training set size, capacity needs to be chosen to
identify a good trade-off between the two error

types.

Two important properties of neural networks
need to be kept in mind when examining this
trade-off. The universal approximation prop-
erty (Lecun, 1987; Funahashi, 1989) means that
for any approximation error € and any distribution
D, there exists a capacity setting C'(e, D) at which
a neural network # € C(e, D) whose error is be-
low ¢, i.e.

Ve > 0,3 Cs.t. Lopp(D,C) <e.

In layman terms, the universal approximation
property means that for sufficiently large capac-
ity settings, the approximation error can become
arbitrary low. The statistical consistency property
means that for any €,¢’ > 0, there exist a train-
ing set size N (¢, D) such that sampling a training
set of size N (e, ¢, D) from D will result in an es-
timation error less than ¢ with probability 1 — e,
Ve, e > 0,3 N s.t,

P(D~DV: Ls(D,0,D) < e)=1—¢

In layman terms, the statistical consistency prop-
erty means that for sufficiently large training sets,
the probability to get an estimation error below
any positive value can be arbitrary close to 1.

Universal approximation and consistency im-
plies that, in the asymptotic case (i.e. as the size
of D tends to infinity), the last two terms in Eq. 1
can be arbitrary close to zero with the appropri-
ate model capacity (with high probability). In that
case, the likelihood £(0p; D) amounts to the in-
trinsic entropy of D with the appropriate model
capacity.

3.2 Out-of-Domain Training

This section considers a setup where one needs
a specialized language model in a domain 7 and
two training sets are available: a small training set
T sampled from 7 and a large training set D sam-
pled from D, a generic domain different from the
specialized domain.

In that context, the simplest options are either to
train a model over 7" or D alone. Training only on
the small set 7" results in the generalization loss

L(O0r;T)
=Lu(T) + Lapp(T,0) + Lest(T,0,T)
with 7 = argmingee £(0;T') as in the previous
section. Training on the larger set D results in
L(0p:T)
=Lu(T)+ Lapp(T,0) + Lest (T, 0, D).
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Two factors are important to compare these two
options: the size of the specialized set T relative
to the size of the generic set D and the similarity
between 7 and D distributions.

When the 7 and D distributions are identical,
D and T are sampled from the same distribution
and training a model on the larger training set D is
advantageous. For a constant capacity, this option
will get a lower estimation error. When varying
capacity, one might identify a setting with an even
better trade-off in the compound loss of Eq. (1)
with the larger training set D.

When the distributions 7 and D differ and the
size of D is fixed, the size of T determines which
option to prefer. Statistical consistency means that
Lest (T, 0,T) will converge to zero in probability
as the size of T grows. This means that when the
size of T is greater than N (¢, Lest (7,0, D), D),
the probability that training on 7 results in a bet-
ter generalization loss than training on D is above
1—e

When the distributions 7 and D differ, the Kull-
back-Leibler (KL) divergence between the two
distributions plays a key role.

Theorem 1 The generalization of the loss of p
over T is upper bounded as

Ve >0, 3N s.t. YD ~ D",
LOp:T) < H(T)+ KL(T,D) +¢| (2)

with probability 1 — e. This bound justifies the
intuition that, if given the choice between two
generic domains D and D, training over the one
with the lowest KL divergence to 7 will result in
a better asymptotic behaviour. The proof of this
bound is presented in Appendix A.

3.3 Fine-Tuning & Multitask Learning

Fine-tuning for domain adaptation trains a model
on a small in-domain set initializing optimiza-
tion from the parameters of a model trained
on a large out-of-domain set. Formally, fine-
tuning minimizes L£(6;7") the loss over T for
a few steps, starting the optimization from
0p = argmingcg L£(0; D). This strategy implic-
itly targets a trade-off between the empirical losses
over T and D. This trade-off is controlled by
the number of fine tuning steps ng. Few steps
means that the identified parameters 6 achieve
a low loss over D, while many steps expresses
that the parameters achieve a low loss over 7.
This strategy leverages the regularization effect of

early stopping (Caruana et al., 2001), i.e. the so-
lution found by gradient descent is guaranteed to
be in an Euclidean ball centered around the ini-
tialization whose radius grows with the number of
steps (Grangier and Bengio, 2008), i.e.

”aft - 9D||2 <A £t Jmax

where )\ refers to the (maximum) learning rate
and gpyax to an upper bound on the update norm.
The small distance between 6 and fp guaran-
tees that the loss £(0; D) is close to the optimum
L(0p; D) when § — L(6; D) is a smooth func-
tion, e.g. a Lipschitz function.

For the basic fine-tuning setup, several vari-
ants have been introduced. Some approaches (De-
vlin et al., 2018; Liu et al., 2019; Raffel et al.,
2019) consider leaving some parameters un-tuned
or frozen which is the extreme case of regulariza-
tion for these weights, penalizing any deviation
from initialization. Other approaches consider in-
troducing novel (unregularized) weights for fine
tuning, often referred as adapter layers (Houlsby
et al., 2019; Stickland et al., 2019; Pfeiffer et al.,
2020). Other forms of regularization, such as
dropout, have also been considered in conjunction
with fine tuning (Miceli Barone et al., 2017).

The selection of the regularization strength
in fine-tuning is computationally efficient since
it successively visits an optimization path from
the most regularized model (fp trained only on
D, Sec. 3.2) to the unregularized 7 (Sec. 3.1).
This is more efficient compared to explicit reg-
ularization methods, including multitask learn-
ing (Caruana, 1998; Collobert and Weston,
2008; Pilault et al., 2021), i.e. optimizing
Loai(0;T, D, ) = L(0;T) + aL(6; D).

4 Data Selection

Data selection aims to improve out-of-domain
training by selecting or giving stronger weights
to some data points. The identification of these
points aims to emphasize out-of-domain exam-
ples which have an impact on the model similar
to the impact of the in-domain training examples.
We study three independently proposed selection
methods, importance sampling, contrastive data
selection and influence functions. We show that
these methods all train models through weighted
log-likelihood training,

1
£(95D7T7w) = _W Z w(y; T7 D) logp(yw)
yeD
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but introduce their weights w(y; T, D) with dif-
ferent justifications. Despite these differences, we
show that these methods result in surprisingly sim-
ilar selection weights in the specific case of neural
language models.

Data selection is particularly suited when the
out-of-domain training distribution and the test
distribution have a large KL divergence but the
out-of-domain training set is large. In that case,
the generalization of a model trained on out-of-
domain data is poor due to the large KL divergence
between T and D, see Eq. (2). When this KL di-
vergence is large but out-of-domain data is abun-
dant, data selection methods propose to select a
subset of the out-of-domain data D7 C D. Ide-
ally, the training loss over such a subset £(6, D7)
would be a better proxy for the generalization loss
over 7, L(6,T), than the training loss over the full
set D, L£(6, D).

Selection involves a delicate trade-off though.
One one hand, data selection is attractive since it
replaces the training set with another set closer to
the test domain. On the other hand, this training
set is smaller, which increases the impact of esti-
mation errors. Additionally, data selection is im-
perfect since the target domain distribution 7 is
only known through a small target training set 7.

This section successively presents importance
sampling, contrastive data selection and influence
functions and connect them into a single frame-
work.

4.1 Importance Sampling

Although intelligent selection also called con-
trastive data selection is more common (Moore
and Lewis, 2010; Wang et al., 2018), we first ex-
amine importance sampling since this method will
guide our understanding of other selection meth-
ods.

Importance sampling is a generic statistical
technique (Owen, 2013). In our case, it can
be used to estimate the expectation of the cross-
entropy loss over 7 while having access to sam-

ples from D. It relies on the identity
LO:;T)= E [~log P(y|0)]
y~T

= Y log P(y10)P(

yeN

y|T)

N SO W7 p
= Zlgpy\e D)

P(y|D)

yeN
= E l-w(y T, D)log P(y|0)]
where w(y; T,D) = ig}g;, assuming full sup-

porton D, ie. Vy € Q, P(y|D) > 0. In practice,
one has not access to 7 and D but to finite samples
T and D. With importance sampling, we can con-
sider two alternative estimators of £(0; T ), either
the empirical risk over 7',

7 ZlogP yl0)

yeT

L(O;T) =

or the mean of the importance weighted cross en-
tropy over D, i.e.

yeD

where w estimates of the weights w from the train-
ing sets D and T'. The trade-off between these two
estimators depends on the relative size of 7" and D,
the imbalance of the weights w and the quality of
their estimate 0.

Importance sampling is interesting when the
generalization error L(6;yp(p,r); T) of the model

Oimp(p,7) = arg min Limp(0; D, T, )
6

is less than the generalization error of 6 selected
by minimizing £(0;T), i.e. classical empirical
risk minimization. This error decomposes as,

E(eimp(D,T); T)
= Li(T) 4 Lapp(T,0) + LZP(T,0, D, T).

We further decompose the estimation error in two
terms,

L (T,0,D,T)

est

= [’est/w(T’ D, o, D) + 'Cest/vAv(Ta 0, D, T)

where Leg; /v (T, D, ©, D) refers to the estimation
error resulting from the finite size of D, assum-
ing access to the true importance weights, and
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Lest /VAV(T, O, D,T) isolate the residual error re-
sulting from the estimation of w. We have

‘Cest/w(Ta D, 0, D)
= L(Omp(p,p); D)

Eest/W(Ta @7 D: T)
= E(eimp(D,T); D) -

— meinﬁ(e; 7).

ﬁ(eimp(D,Tﬁ D)

with O, 5(p,p) = arg ming Limp (0; D, T', )

The first term depends on the size of D and
the imbalance of the weights. For instance, if the
weights are mostly concentrated over a small sub-
set of D, this estimation error will be high. If
this subset is smaller than 7', estimation errors
from Limp(0; D, T,w) will be higher than from
L(0;T). The notion of effective sample size has
been defined to quantify this effect (Kish, 1965).
It is defined by examining the variance of the

weighted sum of n independent random variables
2 wiZi

. . 2 o
Z; with mean p1z and variance 0%, Sy, = SR

This variance is

2 szz
v (w2’

which can be compared to 0% = EU% in the un-
weighted case. This means that the weighted sum
variance matches the variance of an unweighted

case with

(32 w)?
2wy
Assuming that losses over D and 7 have compa-
rable means and variances, the expected loss esti-
mate with importance weighting over D has lower
variance than the mean over 71" only when,

(w)?

ne = ~=|D| > [T
w

Ne =

where w = ﬁzyeDw(y) and w? =
ﬁ > yeD w?(y) are the sample mean and vari-
ance of the weights over D.  This means
that the first term in the estimation error is
Lest/w(T,0,D,T) advantageous compared to
the estimation error from classical empirical risk
minimization over 7" when T is small.
Unfortunately, the second estimation error
term Lo /o (7,0, D,T) gets larger as T gets
smaller since estimating the importance weights
w(y; T,D) = ]}zgzlg from data is challenging
when 7' is small. One can remark that language

modeling is actually the very problem of identify-
ing a model to estimate the probabilities in this ra-
tio, P(y|7) and P(y|D), from finite samples from
the distributions 7" and D. Discriminative classi-
fiers are also relevant to estimate this ratio since

P(Tly)
P(Dly)’

In fact the multiplying constant (prior ratio) does
not matter since multiplying the weighted loss by
a positive constant has no impact on optimization.
When importance weights are estimated with an
LM, one can estimate P(:|7) by fine tuning on 7"
a model pre-trained on D. The number of tun-
ing steps ng, gives controls on ||0g — 0p||. When
ng = 0, w = 1 and the importance sampling
loss corresponds to £(0, D). As ng grows, the
estimate P(y|0™) could overfit and assigns most
of the probability mass to a small neighborhood
around samples in 7T'. The weights @ will in turn
be concentrated in this small neighborhood, mak-
ing the minimizer of the importance sampling loss
close to the minimizer of the empirical loss over
T. Therefore, fine-tuning a language model for
estimating the importance weights allow to pro-
gressively transition between the in-domain and
the out-of-domain empirical loss minimizers seen
in Section 3.2. In the next sections, we refer to the
estimated importance sampling weights as

w(y; T, D)

wph(y) = @(y; T, D).

Importance sampling has been used for model
training for various application: either to im-
prove training speed (Johnson and Guestrin, 2018;
Katharopoulos and Fleuret, 2018) or to adapt to
a changing training distribution (Mahmood et al.,
2014; Metelli et al., 2018). Importance sampling
has rarely been used to modify the training dis-
tribution of language models (Foster et al., 2010;
Fernandez and Downey, 2018) as intelligent selec-
tion methods are more common.

4.2 Intelligent Selection

Intelligent selection (Moore and Lewis, 2010; Ax-
elrod et al., 2011) and contrastive data selection,
its extension to neural networks (van der Wees
et al., 2017; Wang et al., 2018), have been intro-
duced in the language modeling literature. We
show that these methods are closely related to im-
portance sampling, even if their original papers
does not mention this link.
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Intelligent selection selects training samples
from an out-of-domain dataset according to the
log-odd between an in-domain LM and an out-of-
domain LM. Typically, a binary decision is taken
per sentence by comparing the average log-odd to
a threshold 7,

£mSelg p Ty = — Z B2 (y) log P(yl6)

yeD
where B (y) is defined as
I{log P(y ]0T —log P(y|0p) > 7}. Com-

pared to importance sampling, the weights are
binarized, i.e.

b () = 1{log Wit (y) > 7}

The binarization decision was certainly driven by
convenience as most n-gram LM training pack-
ages did not support weighted likelihood opti-
mization when intelligent selection was intro-
duced. Binarization also has the advantage of
down-weighting extremely positive weight values
from large log P(y|0r) due to over-fitting on the
small set 7.

More recently, intelligent selection has been
extended to neural models (van der Wees et al.,
2017; Wang et al., 2018). Contrastive data selec-
tion (Wang et al., 2018) suggests to fine tune the
in-domain model log P(y|0r) from log P(y|0p)
and also observes that selection scores can effi-
ciently be estimated from a model with a much
smaller capacity than the final trained model. Dy-
namic selection (van der Wees et al., 2017) pro-
poses to increase the selection threshold 7; as
training progresses, gradually transitioning from
generic to in-domain training. This gradual adap-
tation of neural network is related to curriculum
learning (Bengio et al., 2009) which studies the or-
dering of examples and tasks during model train-
ing.

Intelligent selection methods have been applied
both for unconditional models (language model-
ing) and conditional models (machine translation).
In the conditional case, intelligent selection com-
putes

bIntSel(x y) — I{log wlntSel(% y) > 7-}

: n P(y‘x79T)
with wb?d(yg, ):7P(y\x )

This ratio of conditional probabilities is different
from the ratio of joint probabilities stemming from
importance sampling, i.e.

Limp(0; D, T,w) =
1 P(z,y|T)
log P(y|x,0).
~ 101 2, Pl yip) 2 00)
The two ratios match when P(z|T) = P(z|D)
since
P(x,yT)
WP (. ) =
pr(®9) = B D)
— P($|T) IntSel( )
P(I’|D) DT )

The formulation of intelligent selection therefore
neglects the domain mismatch from the input dis-
tribution in the conditional case. This formula-
tion aligns with the denoising goal (Wang et al.,
2018) which assumes that D contains label noise,
i.e. mistranslation in that case.

4.3 Influence Functions

As mentioned above, importance sampling and
intelligent selection weights can be estimated by
contrasting the log probabilities from a base model
with those from a fine-tuned model. This use of
fine-tuning connects intelligent selection to influ-
ence function and gradient alignment techniques.
Influence functions (Koh and Liang, 2017; Pruthi
et al., 2020) have been used as a diagnostic tool
to identify the training instances which support or
contradict with a given test label. This task is re-
lated to the selection of training data when the ob-
jective is to find instances in a generic training set
D whose training updates increase the likelihood
of a set T" from a different domain.

The influence of a training point ¢ on a test point
y' is defined as

ot Lot

_*(?J 9) Y

I(y,y') = 50

—7(y:0)

where £(y, 0) refers to the loss at y for a model
with parameters 6 and Hy refers to the Hessian of
the model loss at #. This quantity can be derived
by considering the impact of reducing the weight
of point y during training on the test loss at 3. If
we increase the weight of a training example by ¢,

OD,e mm

D |Z£z 0) + el(y; 0)

zeD
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From (Cook and Weisberg, 1982), we derive

90p . Lot
) — _H _
De |y o 90

(y;0)

0=0p
Composing with the test loss on (2, y"), we get

dU(y';0p,c)
Oe

A(y';0)"
0

1 04(y; 0)
a0

Hy
0=6p

e=0

which matches the expression of influence intro-
duced above.

We now connect influence with the precedent
sections on importance sampling and contrastive
data selection. We consider an LM with weights
0p, trained on the generic training set D. Its first
order Taylor expansion at fp is

log P(y|0p + Af) =
log P(y|0p) + A8 g(y;0p) + O (| AG]]°)  (3)

where g(y;0p) = %log P(y\ﬂ)}ezeD. If the
model pre-trained on D is fine-tuned on 7' by
performing a single step of gradient descent with
learning rate A\, we get

0

0p — X —L(T;0)
90 0=0p

= Op+ X E [g(y;6p)].
y~T

Or =

In that case, the log-odd of the two models there-
fore has the following Taylor expansion,

log P(y|0r) —log P(y|6p)
_ 10T (o
= E, [g(y :0p) " 9(y; 90)}
+0 (|16p — 7] -

If we assume that the model’s Hessian is the iden-
tity, Hy = 1, we therefore have

log P(y|07) — log P(y|0p) =
a )\y/IET [I(ya y/)] + 0 (HHD - 6TH2) :

The Hessian assumption might be dropped when
the model is fine-tuned with a Newton-style up-
date (Boyd and Vandenberghe, 2014). The above
relation means that the negative mean influence of
a point y € D over the set T' also corresponds to
the log of the estimated importance weights intro-
duced in Section 4.1, i.e.

log w3 (y) =
=3 B [1.1)] + 0 (160 —0r).

0=0p

Of course, this relation holds only in the case
where a single gradient step is performed for fine-
tuning. This relation allows estimating the re-
duction in test loss (here over 7") when removing
training samples from D with positive influence
which is also the goal of intelligent data selection.
This strategy has been applied to label noise filter-
ing (Koh and Liang, 2017), class rebalancing (Ren
et al., 2018) and domain adaptation (Wang et al.,
2021).

4.4 Comparing Data Selection Methods

Our analysis connects importance sampling, con-
trastive data selection and influence functions. In
practice, contrastive data selection is the most pop-
ular approach. Unlike influence functions, con-
trastive data selection weights rely on fine tun-
ing the generic model for more than one step on
the in-domain data 7". This has two effects. On
one hand the contrastive data selection weights
can be more reliable, closer to the ideal weights
w(y; T,D) = ggj"g On the other hand, multi-
ple steps increase the risk of over-fitting to 7'. In
the case where one first trains with data selection
before fine tuning on 7', it might actually be help-
ful to limit the influence of 7" on selected data,
to increase the complementary effect of fine tun-
ing (Iter and Grangier, 2021).

When comparing contrastive data selection with
importance sampling, the weight binarization is
the main difference. This binarization might also
have two opposite effects. On the positive side, it
acts has a regularizer since binary weights are less
likely to reflect statistics specific to T compared to
unquantized ones. On the negative side, it cancels
low weights which might collectively represent
most of the weighted cross entropy. This interpre-
tation of contrastive data selection as a regularized
version of importance sampling opens the door to
exploring more sophisticated regularization alter-
native to regularization, e.g. using a lower capac-
ity model or different input features to estimate se-
lection weights.

5 Conclusions

This work focuses on domain adaptation for neural
language modeling. It compares the generaliza-
tion properties of a model trained over a large out-
of-domain corpus as opposed to a model trained
over a small in-domain corpus. It shows how fine-
tuning, the most common approach for neural LM
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adaptation can achieve better trade-offs than ei-
ther solution. We then focus on adaptation via
data selection techniques, i.e. techniques to em-
phasize in-domain data in an out-of-domain train-
ing set. We show that common techniques, con-
trastive data selection and influence function se-
lection, can both be derived from importance sam-
pling.

Our analysis currently assumes a pure language
modeling setup, i.e. an auto-regressive model
trained aiming high log-likelihood, both for out-
of-domain and in-domain data. In the future, we
want to extend our analysis of domain adapta-
tion techniques to the popular setting (Bommasani
et al., 2021) where model training combines lan-
guage modeling over out-of-domain data and a
different final task on in-domain data.

Our theoretical work also raises empirical ques-
tions. The binarization of importance sampling
weights in intelligent selection is a simple vari-
ance reduction technique and more sophisticated
alternative might be beneficial empirically. The
link between influence functions and importance
sampling suggests that examples with importance
sampling weights lower than one have only a neg-
ative effect on the in-domain likelihood, which is
not a typical observation in practice. This con-
tradiction suggests expanding influence scores to
take into account effects beyond a single update.
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A Proof of Theorem 1

When the distributions 7 and D differ, the Kull-
back-Leibler (KL) divergence between the two
distributions is considered. We show that the
generalization of the loss of #p over T is upper
bounded

Ve >0, AN s.t. VD ~ D",
LOp;T) <H(T)+KL(T,D)+¢ (4

with probability 1 — € This bound justifies intu-
ition that if given the choice between two generic
domain D and D', training over the one with the
lowest KL divergence to 7 will result a in better
asymptotic behaviour.

Proof. We consider the asymptotic case for the
size of D. For any € > 0, the universal approxi-
mation property allows us to consider a model ca-
pacity large enough such that

Lapp(D, 0) < g

Using consistency, we can also consider a training

set D large enough such that
Let(D©,D) < &

with probability 1 — e. With the same probability,

L(Op;D) < Lg(D)+e

which can be rewritten as a bound on the
Kullback-Leibler divergence,

KL(P(D), P(|6p)) = £(6p: D)~ L (D) < .

This bound can help connecting the generalization
loss of @ over T with the Kullback-Leibler diver-
gence of T and D,

L(Op;T)
= Y _ P(y|T)log P(y|op)

yeQ

= > P(y|T)log(P(y|D) + P(ylfp) — P(y|D))

yeEQ

> P(yIT)log(P(y|D) +|P(y|D) — P(yl6p))

yeQ

> POIT)log(P(y|D) +2¢%) ®)

yeQ
< ) P(y[T)log(P(y|D)) + log(1 + 2me”)
yEeN

< H(T)+ KL(T,D) + log(1 + 2me”)

IN

IN

where m = 1/min, P(y|D) assumes that
P(-|D) has full support, and (5) relies on
Pinsker’s inequality, i.e. max, |P(y) — Q(y)| <
2K L(Q,Y)2. O
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