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Abstract

We propose a new method for projective de-
pendency parsing based on headed spans. In
a projective dependency tree, the largest sub-
tree rooted at each word covers a contiguous
sequence (i.e., a span) in the surface order. We
call such a span marked by a root word headed
span. A projective dependency tree can be rep-
resented as a collection of headed spans. We
decompose the score of a dependency tree into
the scores of the headed spans and design a
novel O(n3) dynamic programming algorithm
to enable global training and exact inference.
Our model achieves state-of-the-art or compet-
itive results on PTB, CTB, and UD 1.

1 Introduction

Dependency parsing is an important task in natu-
ral language processing, which has numerous ap-
plications in downstream tasks, such as opinion
mining (Zhang et al., 2020a), relation extraction
(Jin et al., 2020), named entity recognition (Jie and
Lu, 2019), machine translation (Bugliarello and
Okazaki, 2020), among others.

There are two main paradigms in dependency
parsing: graph-based and transition-based meth-
ods. Graph-based methods decompose the score
of a tree into the scores of parts. In the simplest
first-order graph-based methods (McDonald et al.,
2005, inter alia), the parts are single dependency
arcs. In higher-order graph-based methods (Mc-
Donald and Pereira, 2006; Carreras, 2007; Koo and
Collins, 2010; Ma and Zhao, 2012), the parts are
combinations of multiple arcs. Transition-based
methods (Nivre and Scholz, 2004; Chen and Man-
ning, 2014, inter alia) read the sentence sequen-
tially and conduct a series of local decisions to
build the final parse. Recently, transition-based

∗Corresponding Author
1Our code is publicly available at

https://github.com/sustcsonglin/
span-based-dependency-parsing

methods with Pointer Networks (Vinyals et al.,
2015) have obtained competitive performance to
graph-based methods (Ma et al., 2018; Liu et al.,
2019; Fernández-González and Gómez-Rodríguez,
2019; Fernández-González and Gómez-Rodríguez,
2021).

A main limitation of first-order graph-based
methods is that they independently score each arc
based solely on the two words connected by the
arc. Ideally, the appropriateness of an arc should
depend on the whole parse tree, particularly the sub-
trees rooted at the two words connected by the arc.
Although subtree information could be implicitly
encoded (Falenska and Kuhn, 2019) in powerful
neural encoders such as LSTMs (Hochreiter and
Schmidhuber, 1997) and Transformers (Vaswani
et al., 2017), there is evidence that their encoding
of such information is inadequate. For example,
higher-order graph-based methods, which capture
more subtree information by simultaneously con-
sidering multiple arcs, have been found to outper-
form first-order methods despite using powerful
encoders (Fonseca and Martins, 2020; Zhang et al.,
2020b; Wang and Tu, 2020). In contrast to the line
of work on higher-order parsing, we propose a dif-
ferent way to incorporate more subtree information
as discussed later.

Transition-based methods, on the other hand, can
easily utilize information from partially built sub-
trees, but they have their own shortcomings. For
instance, most of them cannot perform global opti-
mization during decoding 2 and rely on greedy or
beam search to find a locally optimal parse, and
their sequential decoding may cause error propaga-
tion as past decision mistakes will negatively affect
the decisions in the future.

To overcome the aforementioned limitations of

2We are aware of few transition-based parsers performing
global optimization via dynamic programming algorithms, cf.
Kuhlmann et al. (2011); Shi et al. (2017); Gómez-Rodríguez
et al. (2018).
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Figure 1: Illustration of a projective dependency parse tree. Each rectangle represents a headed span.

first-order graph-based and transition-based meth-
ods, we propose a new method for projective de-
pendency parsing based on so-called headed spans.
A projective dependency tree has a nice structural
property that the largest subtree rooted at each
word covers a contiguous sequence (i.e., a span)
in the surface order. We call such a span marked
with its root word a headed span. A projective
dependency tree can be treated as a collection of
headed spans such that each word corresponds to
exactly one headed span, as illustrated in Figure
1. For example, (0, 5, inventory) is a headed span,
in which span (0, 5) has a head word inventory. In
this view, projective dependency parsing is similar
to constituency parsing as a constituency tree can
be treated as a collection of constituent spans. The
main difference is that in a binary constituency tree,
a constituent span (i, k) is made up by two adjacent
spans (i, j) and (j, k), while in a projective depen-
dency tree, a headed span (i, k, xh) is made up by
one or more smaller headed spans and a single word
span (h − 1, h). For instance, (0, 5, inventory) is
made up by (0, 1,An), (1, 2) and (2, 5, of). There
are a few constraints between headed spans to force
projectivity (section 3). These structural constraints
are the key to designing an efficient dynamic pro-
gramming algorithm for exact inference.

Because of the similarity between constituency
parsing and our head-span-based view of projec-
tive dependency parsing, we can draw inspirations
from the constituency parsing literature to design
our dependency parsing method. Specifically, span-
based constituency parsers (Stern et al., 2017; Ki-
taev and Klein, 2018; Zhang et al., 2020c; Xin
et al., 2021) decompose the score of a constituency
tree into the scores of its constituent spans and

use the CYK algorithm (Cocke, 1969; Younger,
1967; Kasami, 1965) for global training and infer-
ence. Built upon powerful neural encoders, they
have obtained state-of-the-art performance in con-
stituency parsing. Inspired by them, we propose
to decompose the score of a projective dependency
tree into the scores of headed spans and design
a novel O(n3) dynamic programming algorithm
for global training and exact inference, which is
on par with the Eisner algorithm (Eisner, 1996) in
time complexity for projective dependency parsing.
We make a departure from existing graph-based
methods since we do not model dependency arcs
directly. Instead, the dependency arcs are induced
from the collection of headed spans (section 3).
Compared with first-order graph-based methods,
our method can utilize more subtree information
since a headed span contains all children (if any) of
the corresponding headword (and all words within
the subtree). Compared with most of transition-
based methods, our method allows global training
and exact inference and does not suffer from error
propagation or exposure bias.

Our contributions can be summarized as follows:

• We treat a projective dependency tree as a
collection of headed spans, providing a new
perspective of projective dependency parsing.

• We design a novel O(n3) dynamic program-
ming algorithm to enable global training and
exact inference for our proposed model.

• We have obtained the state-of-the-art or com-
petitive results on PTB, CTB, and UD v2.2,
showing the effectiveness of our proposed
method.
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Figure 2: Deduction rules for our proposed parsing algorithm. All deduction items are annotated with their scores.

2 Parsing

We adopt the two-stage parsing strategy, i.e., we
first predict an unlabeled tree and then predict the
dependency labels. Given a sentence x1, ..., xn,
its unlabeled projective dependency parse tree y
can be regarded as a collection of headed spans
(li, ri, xi) where 1 ≤ i ≤ n. For each word xi, we
can find exactly one headed span (li, ri, i) (where li
and ri are the left and right span boundaries) given
parse tree y, so there are totally n headed spans in
y as we can see in Figure 1. We can use a simple
post-order traversal algorithm to obtain all headed
spans in O(n) time. We then define the score of y
as:

s(y) =
∑

i=1,...,n

s
span
li,ri,i

and we show how to compute them using neural
networks in the next section.

Our parsing algorithm is based on the following
key observations:

• For a given parent word xk, if it has any chil-
dren to the left (right), then all headed spans of
its children in this direction should be consec-
utive and form a larger span, which we refer
to as the left (right) child span. The left (right)
boundary of the headed span of xk is the left
(right) boundary of the leftmost (rightmost)
child span, or k − 1 (k) if xk has no child to
the left (right).

• If a parent word xk has children in both di-
rections, then its left span and right span are
separated by the single word span (k − 1, k).

Based on these observations, we design the
following parsing items: (1) αi,j : the accumu-
lated score of span (i, j) serving as a left or right
child span. (2) βi,j,k: the accumulated score of

the headed span (i, j, k). We use the parsing-as-
deduction framework (Pereira and Warren, 1983)
to describe our algorithm in Fig. 2. We draw αi,j as
rectangles and βi,j,k as triangles. The rule S-CONC

is used to concatenate two consecutive child spans
into a single child span; C-CONC is used to concate-
nate left and right child span (i, k − 1) and (k, j)
along with the root word-span (k − 1, k) to form a
headed span (i, j, k); HEADLESS is used to obtain
a headless child span from a headed span. Fig. 2
corresponds to the following recursive formulas:

βi,i+1,i+1 = s
span
i,i+1,i+1 (1)

αi,i = 0 (2)

βi,j,k = αi,k−1 + αk,j + s
span
i,j,k (3)

αi,j = max( max
i<k<j

(αi,k + αk,j),

max
i<h≤j

(βi,j,h)) (4)

We set αi,i = 0 for the convenience of calculating
βi,j,k when xk does not have children on either side.
In Eq. 4, we can see that the child span comes from
either multiple smaller consecutive child spans (i.e.,
max
i<k<j

(α(i, k) + α(k, j))) or a single headed span

(i.e., max
i<h≤j

(β(i, j, h)))). We also maintain back-

pointers based on these equations (i.e., maintain all
arg max) for parsing.

A key point of our parsing algorithm is that, dur-
ing backtracking, we add arcs emanated from the
headword of a large headed span to every head-
word of (zero or more) smaller headed spans within
the left/right child span, so that we can induce a
dependency tree. Finding all smaller headed spans
within left and right child spans requires finding
the best segmentation, which is similar to the in-
ference procedure of the semi-Markov CRF model
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Figure 3: Deductive rules of the parsing algorithms of Collins (1996) (the first line), Eisner and Satta (1999)
(the second line), Eisner (1997) (the third line). The last line is the resulting deduction rules after applying head-
splitting on ES-L-CONC and ES-R-CONC. All deduction items are annotated with their scores. We only consider
the pure dependency versions of these algorithms. We omit axiom items for simplicity.

(Sarawagi and Cohen, 2004). We provide the pseu-
docode of our parsing algorithm in Appd. A.

Parsing complexity. From Eq. 1 to 4, we can see
that at most three variables (i.e., i, j, k) are required
to iterate over and therefore the total parsing time
complexity is O(n3).

Spurious ambiguity. Note that different order
of concatenation of child spans can result in the
same parse, although this does not affect finding
the optimal parse.

Comparison with previous parsing algorithms.
We compare our algorithm with three classical pars-
ing algorithms (Collins, 1996; Eisner and Satta,
1999; Eisner, 1997) in order to help readers better
understand our algorithm. We only consider their
pure dependency versions3 for the convenience of
discussion. Fig. 2 shows the deductive rules of the
three algorithms.

Collins (1996) adapt the CYK algorithm by
maintaining head positions for both sides, thereby

3The parsing algorithms of Collins (1996) and Eisner and
Satta (1999) are defined with (lexicalized) context-free gra-
mars. Gómez-Rodríguez et al. (2008, 2011) provide their pure
dependency versions, which amounts to considering arc scores
only.

increasing the parsing complexity from O(n3) to
O(n5). Their parsing items are identified by two
endpoints and a head position, which is similar to
our concept of headed spans superficially. How-
ever, in their algorithm, there could be multiple
spans sharing the same head position within a sin-
gle parse. For instance, (i, j) and (k, j) share the
same head position h in C-L-CONC. In contrast,
spans cannot share a head position in a single parse
under our definition, because there is exactly one
headed span for each word. Besides, the concate-
nation order of subtrees differs.

Eisner and Satta (1999) note that the linking of
heads and the concatenation of subtrees can be sep-
arated (e.g., C-R-CONC can be decomposed into
two rules, ES-R-CONC and ES-R-LINK) so that
the parsing complexity can be reduced to O(n4).
This strategy is also known as the hook trick, which
reduces subtrees to headless spans (e.g., (i, c, j) to
(i, j) in ES-L-LINK and ES-R-LINK).

Eisner (1997) uses the head-splitting trick to de-
crease parsing complexity to O(n3). The key idea
is to split each subtree into a left and a right frag-
ment, so that the head is always placed at one of
the two boundaries of a fragment instead of an
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internal position, thereby eliminating the need of
maintaining the head positions.

Our algorithm adopts a combination of the hook
trick and the head-splitting trick. Starting from the
rules of Eisner and Satta (1999) that apply the hook
trick, we can rewrite ES-L-CONC, ES-R-CONC as
L-CONC, R-CONC and CONC. It is easy to verify
the equivalence of the rules before and after the
rewrite4. The key difference is in the concatenation
order of subtrees. We concatenate all subtrees to
the left/right of the new head first, which can be
viewed as adopting the head-splitting trick. Then,
note that the position of the head is uniquely de-
termined by the two concatenations of subtrees,
and that our model does not consider sarc. Conse-
quently, we have no need to maintain head position
h in L-CONC and R-CONC and can merge these
two rules to S-CONC of fig. 2. Accordingly, CONC

can be modified to C-CONC of fig. 2. Eliminat-
ing bookkeeping of h is how we can obtain better
parsing complexity than Eisner and Satta (1999).
Finally, we can incorporate span score sspan

i,j,h into
C-CONC.

3 Model

3.1 Neural encoding and scoring

We add <bos> (beginning of sentence) at x0 and
<eos> (end of sentence) at xn+1. In the embedding
layer, we apply mean-pooling to the last layer of
BERT (Devlin et al., 2019) (i.e., taking the mean
value of all subword embeddings) to generate dense
word-level representation ei for each token xi 5.
Then we feed e0, ..., en+1 into a 3-layer bidirec-
tional LSTM (BiLSTM) to get c0, ..., cn+1, where
ci = [fi; bi] and fi and bi are the forward and back-
ward hidden states of the last BiLSTM layer at
position i respectively. We then use the fencepost
representation, which is commonly used in con-
stituency parsing (Cross and Huang, 2016; Stern
et al., 2017), to encode span (i, j) as ei,j :

hk = [fk, bk+1]

ei,j = hj − hi

After obtaining the word and span representa-
tions, we use deep biaffine function (Dozat and

4Note that this only holds for the pure dependency version,
since otherwise we cannot track some intermediate constituent
spans after changing the concatenation order of subtrees.

5For some datasets (e.g., Chinese Treebank), we concate-
nate the POS tag embedding with the BERT embedding as
ei.

Manning, 2017) to score headed spans:

c′k = MLPword(ck)

e′i,j = MLPspan(ei,j)

s
span
i,j,k =

[
c′k; 1

]>
W span [e′i,j ; 1

]
where MLPword and MLPspan are multi-layer per-
ceptrons (MLPs) that project word and span repre-
sentations into d-dimensional spaces respectively;
W span ∈ R(d+1)×(d+1).

Similarly, we use deep biaffine functions to score
the labels of dependency arcs for a given gold or
predicted tree 6:

c′i = MLPparent(ci)

c′j = MLPchild(cj)

slabel
i,j,r =

[
c′i; 1

]>
W label

r

[
c′j ; 1

]
where MLPparent and MLPchild are MLPs that map
word representations into d′-dimensional spaces;
W label

r ∈ R(d′+1)×(d′+1) for each relation type r ∈
R in which R is the set of all relation types.

3.2 Training loss
Following previous work, we decompose the train-
ing loss into the unlabeled parse loss and arc label
loss:

L = Lparse + Llabel

For Lparse, we can either design a local span-
selection loss:

Llocal
parse =

∑
(i,j,k)∈y

− log
exp(s

span
i,j,k)∑

0≤p≤k<q≤n
exp(s

span
p,q,k)

which is akin to the head-selection loss (Dozat and
Manning, 2017), or use global structural loss. Ex-
perimentally, we find that the max-margin loss
(Taskar et al., 2004) (also known as structured
SVM) performs best. The max-margin loss aims to
maximize the margin between the score of the gold
tree y and the incorrect tree y′ of the highest score:

Lparse = max(0,max
y′ 6=y

(s(y′) + ∆(y′, y)− s(y))

(5)
6In our preliminary experiments, we find that directly cal-

culating the scores based on parent-child word representations
leads to a slightly better result (< 0.1 LAS) than those based
on span representations. A possible reason is that, since LAS
is arc-factorized, even if we predict a correct parent-child
pair, we can predict the wrong headed spans for the parent or
child or both, thereby negatively affecting the labeling scores
and resulting in worse LAS. Therefore, in our work we use
arc-based label scores to suit the LAS metric.
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where ∆ measures the difference between the in-
correct tree and gold tree. Here we let ∆ to be
the Hamming distance (i.e., the total number of
mismatches of headed spans). We can perform
cost-augmented inference (Taskar et al., 2005) to
compute Eq. 5.

Finally, we use cross entropy for Llabel:

Llabel =
∑

(xi→xj ,r)∈y

− log
exp(slabel

i,j,r)∑
r′∈R

exp(slabel
i,j,r′)

where (xi → xj , r) ∈ y denotes every dependency
arc from xi to xj with label r in y.

4 Experiments

4.1 Data and setting
Following Wang and Tu (2020), we evaluate our
proposed method on Penn Treebank (PTB) 3.0
(Marcus et al., 1993), Chinese Treebank (CTB) 5.1
(Xue et al., 2005) and 12 languages on Universal
Dependencies (UD) 2.2: BG-btb, CA-ancora, CS-
pdt, DE-gsd, EN-ewt, ES-ancora, FR-gsd, IT-isdt,
NL-alpino, NO-rrt, RO-rrt, RU-syntagrus 7. For
PTB, we use the Stanford Dependencies conver-
sion software of version 3.3 to obtain dependency
trees. For CTB, we use head-rules from Zhang
and Clark (2008) and Penn2Malt8 to obtain depen-
dency trees. Following Wang and Tu (2020), we
use gold POS tags for CTB and UD. We do not use
POS tags in PTB. For PTB/CTB, we drop all non-
projective trees during training. For UD, we use
MaltParser v1.9.2 9 to adopt the pseudo-projective
transformation (Nivre and Nilsson, 2005) to con-
vert nonprojective trees into projective trees when
training, and convert back when evaluating, for
both our model and reimplemented baseline model.
See Appd. B for implementation details.

4.2 Evaluation methods
We report the unlabeled attachment score (UAS)
and labeled attachment score (LAS) averaged from
three runs with different random seeds. In each
run, we select the model based on the performance
on the development set. Following Wang and Tu
(2020), we ignore all punctuation marks during
evaluation.

7We do not concatenate all datasets during training. We
train on each dataset separately.

8https://cl.lingfil.uu.se/~nivre/
research/Penn2Malt.html

9http://www.maltparser.org/download.
html

PTB CTB
UAS LAS UAS LAS

MFVI2O 95.98 94.34 90.81 89.57
TreeCRF2O 96.14 94.49 - -
HierPtr 96.18 94.59 90.76 89.67

+BERTbase +BERTbase
RNGTr 96.66 95.01 92.98 91.18

+BERTlarge +BERTbase

MFVI2O 96.91 95.34 92.55 91.69
HierPtr 97.01 95.48 92.65 91.47
Biaffine+MM† 97.22 95.71 93.18 92.10
Ours 97.24 95.73 93.33 92.30

For reference
+XLNetlarge +BERTbase

HPSG[ 97.20 95.72 - -
HPSG+LAL[ 97.42 96.26 94.56 89.28

Table 1: Results for different model on PTB and
CTB. [ indicate that they use additional annotated
constituency trees in training. † means our reim-
plementation. Biaffine: Dozat and Manning (2017).
MFVI2O: Wang and Tu (2020). TreeCRF2O: Zhang
et al. (2020b). RNGTr: Mohammadshahi and Hender-
son (2021). HierPtr: Fernández-González and Gómez-
Rodríguez (2021). HPSG: Zhou and Zhao (2019).
HPSG+LAL: Mrini et al. (2020).
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Figure 4: Error analysis on the CTB test set.

4.3 Main result

Table 1 shows the results on PTB and CTB. Note
that Biaffine+MM is our reimplementation of the
Biaffine Parser that uses the same setting as in
our method, including the use of the max-margin
loss instead of the local head-selection loss. Inter-
estingly, we find that Biaffine+MM has already
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bg ca cs de en es fr it nl no ro ru Avg

TreeCRF2O 90.77 91.29 91.54 80.46 87.32 90.86 87.96 91.91 88.62 91.02 86.90 93.33 89.33
MFVI2O 90.53 92.83 92.12 81.73 89.72 92.07 88.53 92.78 90.19 91.88 85.88 92.67 90.07

+BERTmultilingual

MFVI2O 91.30 93.60 92.09 82.00 90.75 92.62 89.32 93.66 91.21 91.74 86.40 92.61 90.61
Biaffine+MM† 90.30 94.49 92.65 85.98 91.13 93.78 91.77 94.72 91.04 94.21 87.24 94.53 91.82
Ours 91.10 94.46 92.57 85.87 91.32 93.84 91.69 94.78 91.65 94.28 87.48 94.45 91.96

Table 2: Labeled Attachment Score (LAS) on twelve languages in UD 2.2. We use ISO 639-1 codes to represent
languages. † means our implementation.

PTB CTB
UAS LAS UAS LAS

max-margin loss 97.24 95.73 93.33 92.30
span-selection loss 97.07 95.50 93.28 92.20

Table 3: The influence of training loss function on PTB
and CTB.

surpassed many strong baselines, and this may
be due to the proper choices of hyperparameters
and the use of the max-margin loss (we observe
that using the max-margin loss leads to a bet-
ter performance compared with the original head-
selection loss), so Biaffine+MM is a very strong
baseline. It also has the same number of param-
eters as our methods. Our method surpasses Bi-
affine+MM on both datasets, showing the competi-
tiveness of our headed-span-based method in a fair
comparison with first-order graph-based parsing.
Our method also obtains the state-of-the-art result
among methods that only use dependency train-
ing data (HPSG+LAL uses additional constituency
trees as training data, so it is not directly compara-
ble with the other systems.).

Table 2 shows the results on UD. We can see
that our reimplemented Biaffine+MM has already
surpassed MFVI2O, which utilizes higher-order in-
formation. Our method outperforms Biaffine+MM
by 0.14 LAS on average, validating the effective-
ness of our proposed method in the multilingual
scenarios.

5 Analysis

5.1 Influence of training loss function

Table 3 shows the influence of the training loss
function. We find that the max-margin loss per-
forms better on both datasets: 0.17 UAS improve-
ment on PTB and 0.05 UAS improvement on CTB
comparing to the local span-selection loss, which
shows the effectiveness of using global loss.

5.2 Error analysis

As previously argued, first-order graph-based meth-
ods are insufficient to model complex subtrees, so
they may have difficulties in parsing long sentences
and handling long-range dependencies. To verify
this, we follow (McDonald and Nivre, 2011) to plot
UAS as a function of the sentence length and plot
F1 scores as functions of the distance to root and
dependency length on the CTB test set. We addi-
tionally plot the F1 score of the predicted headed
spans against the gold headed spans with different
span lengths.

From Figure 4a, we can see that Biaffine+MM
has a better UAS score on short sentences (of length
<=20), while for long sentences (of length >=30),
our headed span-based method has a higher perfor-
mance, which validates our conjecture.

Figure 4b shows the F1 score for arcs of varying
distances to root. Our model is better at predict-
ing arcs of almost all distances to root in the de-
pendency tree, which reveals our model’s superior
ability to predict complex subtrees.

Figure 4c shows the F1 score for arcs of varying
lengths. Both Biaffine+MM and our model have
a very similar performance in predicting arcs of
distance < 7, while our model is better at predicting
arcs of distance >= 7, which validates the ability of
our model at capturing long-range dependencies.

Figure 4d shows the F1 score for headed spans
of varying lengths. We can see that when the
span length is small (<=10), Biaffine+MM and our
model have a very similar performance. However,
our model is much better in predicting longer spans
(especially for spans of length >30).

5.3 Parsing speed

Inspired by Zhang et al. (2020b) and Rush (2020)
who independently propose to batchify the Eis-
ner algorithm using Pytorch, we batchify our
proposed method so that O(n2) out of O(n3) can
be computed in parallel, which greatly accelerates
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parsing. We achieve a similar parsing speed of our
method to the fast implementation of the Eisner
algorithm by Zhang et al. (2020b): it parses 273
sentences per second, using BERT as the encoder
under a single TITAN RTX GPU.

6 Related work

Dependency parsing with more complex sub-
tree information. There has always been an in-
terest to incorporate more complex subtree infor-
mation into graph-based and transition-based meth-
ods since their invention. Before the deep learning
era, it was difficult to incorporate sufficient contex-
tual information in first-order graph-based parsers.
To mitigate this, researchers develop higher-order
dependency parsers to capture more contextual
information (McDonald and Pereira, 2006; Car-
reras, 2007; Koo and Collins, 2010; Ma and Zhao,
2012). However, incorporating more complex fac-
tors worsens inference time complexity. For ex-
ample, exact inference for third-order projective
dependency parsing has a O(n4) time complexity
and exact inference for higher-order non-projective
dependency parsing is NP-hard (McDonald and
Pereira, 2006). To decrease inference complex-
ity, researchers use approximate parsing methods.
Smith and Eisner (2008) use belief propagation
(BP) framework for approximate inference to trade
accuracy for efficiency. They show that third-order
parsing can be done inO(n3) time using BP. Gorm-
ley et al. (2015) unroll the BP process and use gra-
dient descent to train their parser in an end-to-end
manner. Wang and Tu (2020) extend their work by
using neural scoring functions to score factors. For
higher-order non-projective parsing, researchers re-
sort to dual decomposition algorithm (e.g., AD3)
for decoding (Martins et al., 2011, 2013). They
observe that the approximate decoding algorithm
often obtains exact solutions. Fonseca and Mar-
tins (2020) combine neural scoring functions and
their decoding algorithms for non-projective higher-
order parsing. Zheng (2017) proposes a incremen-
tal graph-based method to utilize higher-order in-
formation without hurting the advantage of global
inference. Ji et al. (2019) use a graph attention net-
work to incorporate higher-order information into
the Biaffine Parser. Zhang et al. (2020b) enhance
the Biaffine Parser by using a deep triaffine func-
tion to score sibling factors. Mohammadshahi and
Henderson (2021) propose an iterative refinement
network that injects the predicted soft trees from

the previous iteration to the self-attention layers
to predict the soft trees of the next iteration, so
that information of the whole tree is considered
in parsing. As for transition-based methods, Ma
et al. (2018); Liu et al. (2019); Fernández-González
and Gómez-Rodríguez (2021) incorporate sibling
and grandparent information into transition-based
parsing with Pointer Networks.

The hook trick and the head-splitting trick.
These two tricks have been used in the parsing liter-
ature to accelerate parsing. Eisner and Satta (1999,
2000) use the hook trick to decrease the parsing
complexity of lexicalized PCFGs and Tree Adjoin-
ing Grammars. Huang et al. (2005, 2009) adapt
the hook trick to accelerate machine translation de-
coding. The parsing algorithms of Corro (2020)
and Xin et al. (2021) can be viewed as adapting
the hook trick to accelerate discontinuous and con-
tinuous constituency parsing, respectively. Eisner
(1997); Satta and Kuhlmann (2013) use the head-
splitting trick to accelerate projective and nonpro-
jective dependency parsing.

Span-based constituency parsing. Span-based
parsing is originally proposed in continuous con-
stituency parsing (Stern et al., 2017; Kitaev and
Klein, 2018; Zhang et al., 2020c; Xin et al., 2021).
Span-based constituency parsers decompose the
score of a constituency tree into the scores of its
constituents. Recovering the highest-scoring tree
can be done via the exact CYK algorithm or greedy
top-down approximate inference algorithm (Stern
et al., 2017). Kitaev and Klein (2018) propose a
self-attentive network to improve the parsing ac-
curacy. They separate content and positional at-
tentions and show the improvement. Zhang et al.
(2020c) use a two-stage bracketing-then-labeling
framework and replace the max-margin loss with
the TreeCRF loss (Finkel et al., 2008). Xin et al.
(2021) recently propose a recursive semi-Markov
model, incorporating sibling factor scores into the
score of a tree to explicitly model n-ary branching
structures. Corro (2020) adapts span-based parsing
to discontinuous constituency parsing and obtains
the state-of-the-art result.

7 Conclusion

In this work, we have presented a headed-span-
based method for projective dependency parsing.
Our proposed method can utilize more subtree in-
formation and meanwhile enjoy global training and
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exact inference. Experiments show the competitive
performance of our method in multiple datasets.
In addition to its empirical competitiveness, we
believe our work provides a novel perspective of
projective dependency parsing and could lay the
foundation for further algorithmic advancements
in the future.
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A Parsing algorithm

The parsing algorithm first computes all the chart
items defined above and then recovers the parse
tree from top down. For a given headed span, it
finds the best segmentation of left child spans and
right child spans, and then adds dependency arcs
from the headword of the given headed span and
the headword of each child span. Finding the best
segmentation is similar to the inference procedure
of the semi-Markov CRF model (Sarawagi and Co-
hen, 2004). Then we apply the same procedure to
each child headed span (within the best segmenta-
tion) recursively. We also maintain the following
backtrack points in order to recover the predicted
projective tree:

Bi,j =

1, αi,j = max
i<h≤j

(βi,j,h)

0, αi,j = max
i<k<j

(αi,k + αk,j)

Ci,j = arg max
i<k<j

(αi,k + αk,j)

Hi,j = arg max
i<h≤j

(βi,j,h)

The parsing algorithm is formalized in Alg.1.

B Implementation details

We use "bert-large-cased" for PTB, "bert-base-
chinese" for CTB, and "bert-multilingual-cased"
for UD, so the dimension of the input BERT em-
bedding is 1024, 768, and 768 respectively. The
dimension of POS tag embedding is set to 100 for
CTB and UD. The hidden size of BiLSTM is set to
1000. The hidden size of biaffine functions is set
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Algorithm 1 Inference algorithm for headed span-
based projective dependency parsing
Require: Input sentence of length n

Calculate all α, β,B,C,H .
arcs← {(ROOT→ H0,n)}
function FINDARC(i, j)

if i+ 1 = j then
return {j}

else if Bi,j = 1 then
h← Hi,j

if i+1 < h < j then
L← FINDARC(i, h− 1)
R← FINDARC(h, j)
Children← L ∪R

else if h = j then
Children← FINDARC(i, j − 1)

else
Children← FINDARC(i+ 1, j)

end if
for c in Children do

arcs← arcs ∪ (h→ c)
end for
return {h}

else
c← Ci,j

L← FINDARC(i, c)
R← FINDARC(c, j)
return L ∪R

end if
end function
FINDARC(0, n)
return arcs

to 600 for scoring spans and arcs (used in our reim-
plemented Biaffine Parser), 300 for scoring labels.
We add a dropout layer after the embedding layer,
LSTM layers, and MLP layers. The dropout rate is
set to 0.33. We use Adam (Kingma and Ba, 2015)
as the optimizer with β1 = 0.9, β2 = 0.9 to train
our model for 10 epochs. The maximal learning
rate is lr = 5e− 5 for BERT and lr = 25e− 5 for
other components. We linearly warmup the learn-
ing rate to the maximal value for the first epoch and
gradually decay it to zero for the rest of the epochs.
The value of gradient clipping is set to 5. We batch
sentences of similar lengths to better utilize GPUs.
The token number is 4000 for each batch, i.e., the
sum of lengths of sentences is 4000.
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