
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2134 - 2148

May 22-27, 2022 c©2022 Association for Computational Linguistics

bert2BERT: Towards Reusable Pretrained Language Models
Cheng Chen1†, Yichun Yin2, Lifeng Shang2, Xin Jiang2, Yujia Qin1,
Fengyu Wang1, Zhi Wang3,4‡, Xiao Chen2, Zhiyuan Liu1, Qun Liu2

1Department of Computer Science and Technology, Tsinghua University
2Huawei Noah’s Ark Lab, 3Tsinghua Shenzhen International Graduate School

4Peng Cheng Laboratory
{c-chen19,qyj20,wangfy20}@mails.tsinghua.edu.cn

{yinyichun,shang.lifeng,jiang.xin,chen.xiao2,qun.liu}@huawei.com
wangzhi@sz.tsinghua.edu.cn,liuzy@tsinghua.edu.cn

Abstract

In recent years, researchers tend to pre-train
ever-larger language models to explore the up-
per limit of deep models. However, large lan-
guage model pre-training costs intensive com-
putational resources, and most of the models
are trained from scratch without reusing the
existing pre-trained models, which is wasteful.
In this paper, we propose bert2BERT1, which
can effectively transfer the knowledge of an
existing smaller pre-trained model to a large
model through parameter initialization and sig-
nificantly improve the pre-training efficiency of
the large model. Specifically, we extend the pre-
vious function-preserving (Chen et al., 2016)
method proposed in computer vision on the
Transformer-based language model, and fur-
ther improve it by proposing a novel method,
advanced knowledge for the large model’s ini-
tialization. In addition, a two-stage learning
method is proposed to further accelerate the
pre-training. We conduct extensive experi-
ments on representative PLMs (e.g., BERT and
GPT) and demonstrate that (1) our method can
save a significant amount of training cost com-
pared with baselines including learning from
scratch, StackBERT (Gong et al., 2019) and
MSLT (Yang et al., 2020); (2) our method is
generic and applicable to different types of pre-
trained models. In particular, bert2BERT saves
about 45% and 47% computational cost of pre-
training BERTBASE and GPTBASE by reusing
the models of almost their half sizes.

1 Introduction

Pre-trained language models (PLMs), such as
BERT (Devlin et al., 2019), GPT (Radford et al.,
2018, 2019; Brown et al., 2020), ELECTRA (Clark
et al., 2020), XLNet (Yang et al., 2019) and
RoBERTa (Liu et al., 2019), have achieved great

† This work is done when Cheng Chen is an intern at
Huawei Noah’s Ark Lab.

‡ Corresponding author.
1Our code is available at https://github.com/

huawei-noah/Pretrained-Language-Model.

0 1 2 3 4 5 6 7 8
FLOPs (1e19)

1.4

1.6

1.8

2.0

2.2

2.4

2.6

M
LM

 L
os

s

4 5 6 7
1.40

1.42

1.44

1.46

1.48

1.437
100%75.7%54.8%

BERTBASE

StackBERT
bert2BERT

Figure 1: Loss curves of bert2BERT and baselines.
StackBERT (Gong et al., 2019) is based on the pro-
gressive training setting. More details are shown in
Table 2.

success in natural language processing (NLP).
However, the pre-training process of large PLMs
can be extremely computationally expensive and
produces huge carbon footprints. For example,
GPT-3 uses 3.1E+6 GPU hours for training, at an
estimated cost of $4.6 million2, consuming a lot
of computing resources. Therefore, how to reduce
the training cost of PLM is of great importance to
Green AI (Schwartz et al., 2020).

Recently, there is a trend of training extremely
large models to explore the upper limits of PLMs.
For example, large pre-trained models, includ-
ing GPT-3 (Brown et al., 2020) (175B), PanGu-
α (Zeng et al., 2021) (200B) and Switch Transform-
ers (Fedus et al., 2021) (1571B), have been proved
promising in language understanding and gener-
ation. However, these models are all pre-trained
from scratch independently without utilizing the
knowledge of smaller ones that have already been
trained. On the other hand, our empirical studies
show that the pre-trained models of different scales
could share similar knowledge, for example in Fig-
ure 2, the attention patterns of the two PLMs with
different sizes are similar.

To save the training cost of large models, we
2https://lambdalabs.com/blog/

demystifying-gpt-3/

2134

https://github.com/huawei-noah/Pretrained-Language-Model
https://github.com/huawei-noah/Pretrained-Language-Model
https://lambdalabs.com/blog/demystifying-gpt-3/
https://lambdalabs.com/blog/demystifying-gpt-3/

L2 H1 L2 H2 L2 H4 L2 H5 L12 H4 L12 H5 L12 H10 L12 H11

L2 H8 L2 H2 L2 H4 L2 H5 L12 H3 L12 H8 L12 H5 L12 H7

Figure 2: The comparisons of attention patterns between small and large PLMs. The upper ones are the attention
patterns of BERTBASE model whose architecture is {L=12, D=768}, and the lower ones are the attention patterns
of one small BERT model whose architecture is {L=12, D=512}. We find that there are a large number of similar
attention patterns in the same layer of the two models, indicating the possibility of reusing parameters of trained
small PLMs to speed up the pre-training of large PLMs. The attention maps of PLMs with different layers are also
similar, which is visualized in previous work (Gong et al., 2019; Yang et al., 2020).

propose the bert2BERT method, which can ef-
ficiently transfer the learned knowledge of the
smaller model to the large model. bert2BERT con-
sists of two components: (1) For parameter ini-
tialization, we first extend the function preserving
training (Chen et al., 2016) to PLMs by duplicating
and stacking the parameters of the existing smaller
PLM, which we call function-preserving initializa-
tion (FPI). FPI ensures that the initialized large
model has almost the same behavior as the small
model, so that the large model has a good starting
point for later optimization. We also find that dupli-
cating the weights of the upper layer to the current
layer can further accelerate the convergence of the
large model, which we call advanced knowledge
initialization (AKI). Although the AKI somewhat
violates the principle of function preserving, we
find that empirically it also has a good starting
point as shown in Table 1, which leads to a faster
convergence rate and achieves higher training effi-
ciency. (2) Secondly, a two-stage training strategy
is further applied to the large model to accelerate
the training process.

To demonstrate the superiority of our method,
we conduct extensive experiments on two repre-
sentative PLMs: BERT and GPT, with different
source model sizes. The results show that: (1) our
method can save a significant amount of computa-
tion in pre-training compared to the traditional way
of learning from scratch and progressive stacking
methods such as StackBERT (Gong et al., 2019)
and MSLT (Yang et al., 2020); (2) our method is
model-agnostic, which can be applied on a wide
range of Transformer-based PLMs. One typical
example is that, when using a small pre-trained

model with half the size of BERTBASE for initial-
ization, bert2BERT saves 45% computation cost
of the original BERTBASE pre-training.

In general, our contributions are summarized
as follows: (1) We explore a new direction for
the efficient pre-training by reusing the trained pa-
rameters of small models to initialize the large
model; (2) We successfully extend function pre-
serving method (Chen et al., 2016) on BERT and
further propose advanced knowledge initialization,
which can effectively transfer the knowledge of
the trained small model to the big model and
improve the pre-training efficiency; (3) The pro-
posed method outperforms other training meth-
ods and achieves 45% computation reduction on
BERTBASE; (4) Our method is generic, effective
for both the BERT and GPT models, and have great
potential to become an energy-efficient solution for
pre-training super large-scale language models.

2 Related Work

Efficient Pre-training in NLP. The efficiency of
pre-training has been explored by previous work.
Some works (Gong et al., 2019; Yang et al., 2020;
Gu et al., 2021) propose progressive learning to
accelerate the pre-training, which are motivated
by the fact that different layers have some simi-
lar knowledge (e.g., attention patterns). They start
pre-training a small model with fewer Transformer
layers, and then iteratively expand the model by
stacking the already trained layers on the top. An-
other line of work proposes to “back distill” the
knowledge of the small models into large models,
which is termed as knowledge inheritance (Qin
et al., 2021). Some works focus on the data effi-

2135

ciency (Wu et al., 2021) and take notes for rare
words during the pre-training process to help the
model understand them when they occur next.
ELECTRA (Clark et al., 2020) proposes a task
of replaced token detection to predict whether each
token in the input was replaced or not, which im-
proves the pre-training efficiency. Our method is
orthogonal to this kind of work and the combina-
tion of ELECTRA and bert2BERT could achieve
better efficiency. In addition, there are several other
orthogonal techniques for efficient pre-training:
mixed-precision training (Shoeybi et al., 2019),
large batch optimization (You et al., 2020), model
architecture innovation (Lan et al., 2020), layer
dropping technique (Zhang and He, 2020), etc.

Reusable Neural Network. Reusable neural net-
work, a topic related to transfer learning (Pan and
Yang, 2010), is introduced to accelerate the model
training in computer vision. One classical work is
Net2Net (Chen et al., 2016), which first proposes
the concept of the function-preserving transforma-
tion to make neural networks reusable. However,
Net2Net randomly selects the neurons to be split.
To handle this problem, some works (Wu et al.,
2019, 2020b; Wang et al., 2019b; Wu et al., 2020a)
leverage a functional steepest descent idea to de-
cide the optimal subset of neurons to be split. The
pruning technique (Han et al., 2015) is also in-
troduced for reusable neural networks (Feng and
Panda, 2020). In this paper, we study the reusable
pre-trained language model and propose a new
method, bert2BERT, to accelerate the pre-training
of BERT and GPT.

3 Preliminary

BERT consists of one embedding layer and multi-
ple Transformer (Vaswani et al., 2017) layers.

3.1 Embedding Layer
The embedding layer first maps the tokens in a
sentence into vectors with an embedding matrix
WE . Then one normalization layer is employed to
produce the initial hidden states H0.

3.2 Transformer Layer
The hidden states are iteratively processed by mul-
tiple Transformer layers as follows:

Hl = Transformerl(Hl−1), l ∈ [1, L] (1)

where L denotes the number of Transformer layers,
each including a multi-head attention (MHA) and
a feed-forward network (FFN).

MHA. It is composed of multiple parallel self-
attention heads. The hidden states of the previous
layer are fed into each head and then the outputs of
all heads are summed to obtain the final output as
follows:
Qi,Ki,Vi = Hl−1W

Q
l,i ,Hl−1W

K
l,i ,Hl−1W

V
l,i ,

HHEAD
l,i = softmax(

QiKi
T

√
dk

)ViW
O
l,i ,

MHA(Hl−1) =
a∑

i=1

HHEAD
l,i ,

HMHA
l = LayerNorm(Hl−1 +MHA(Hl−1)).

(2)
Hl−1 is linearly projected to queries (Qi), keys
(Ki) and values (Vi) using WQ

l,i ,W
K
l,i ,W

V
l,i re-

spectively. HHEAD
l,i indicates the context-aware

vector which is obtained by the scaled dot-product
of queries and keys in the i-th attention head. a
represents the number of self-attention heads. dk
is the head dimension acting as the scaling factor.

FFN. It consists of two linear layers and one
GeLU activation function (Hendrycks and Gimpel,
2016), that is:

HFFN
l = GeLU(HMHA

l W 1
l + b1l)W

2
l + b2l ,

Hl = LayerNorm(HMHA
l +HFFN

l).

(3)

Layer Normalization. Both the modules of
MHA and FFN have one layer normalization (Ba
et al., 2016) that stabilizes the dynamics of the hid-
den state in the Transformer. Formally, it is written
as:
LayerNorm(H) = (

H − µH

σH
)⊙W LN + bLN ,

(4)
where ⊙ means the element-wise multiplication.
The statistics of µH and σH are the mean and
variance of hidden states H respectively.

4 Methodology

4.1 Problem Statement
We aim to accelerate the pre-training of target
model T (Lt, Dt) by transferring the knowledge
of an existing pre-trained source model S(Ls, Ds),
where Ls|t means the numbers of Transformer
layer and Ds|t means the model width (i.e., hidden
size), satisfying Ls ≤ Lt and Ds ≤ Dt. Formally,
our problem is two-fold: (1) how to perform an ef-
fective parameter initialization for T by reusing the
trained parameters of S, and (2) how to efficiently

2136

train the initialized T , so that T can have a faster
convergence rate in pre-training.

4.2 Overview
Targeting the above problems, bert2BERT first ini-
tializes the target model T with the parameters of
the existing model S by the width-wise expansion
(Ds → Dt) and depth-wise expansion (Ls → Lt).
Through this expansion, the knowledge contained
in the parameters of the source model is directly
transferred to the target model. Then we further
pre-train the initialized target model with a two-
stage pre-training method. The overall workflow is
illustrated in Section 4.5.

Essentially, the width-wise expansion can be de-
composed into expansions of parameter matrices
(or vectors3). As illustrated in Figure 3, the ma-
trix expansion enlarges W ∈ R

dwin∗d
w
out of S to

U ∈ R
duin∗d

u
out of T by two kinds of operations:

in-dimension and out-dimension expansion.
In the following sections, we first introduce

two strategies of width-wise expansion: function-
preserving and advanced knowledge initialization.
Then, we introduce the depth-wise expansion and
detail the two-stage pre-training process.

4.3 Width-wise Expansion
For the paper clarity, we introduce two index map-
ping functions: gin and gout, where gin(i) means
the i-th in-dimension of U reuses the gin(i)-th in-
dimension parameters of W , gout(j) means the
j-th out-dimension of U reuses the gout(j)-th out-
dimension parameters of W . Both our two meth-
ods are defined with these two mapping functions.
W(i,j) means the parameter element, i and j re-
fer to the i-th in-dimension index and j-th out-
dimension index respectively. As shown in Fig-
ure 3, the i-th in-dimension parameters of W are
the parameters of the i-th input neuron of W or the
i-th column of W .

4.3.1 Function Preserving Initialization
Function preserving initialization (FPI) (Chen et al.,
2016) aims to make the initialized target model
have the same function as the source model, which
means that given the same input, the initialized tar-
get model has the same output as the source model.
In this paper, we extend FPI on a different archi-
tecture, Transformer-based pre-trained language
model. We give an example in Figure 3 to illustrate

3We omit the expansion of bias (vector) for simplicity. It
follows a similar process as the matrix expansion.

h1

𝑑out
𝑤

𝑑in
𝑤

❶ ❷
h2

x1 x2

y1 y2

𝑜

h1 h2

x1 x2

y1 y2

x1

h1 h2

x1 x2

y1 y2

x1

h2

𝑔in
{1: 1, 2: 2, 𝟑: 𝟏}

𝑔out
{1: 1, 2: 2, 𝟑: 𝟐}𝑝

𝑞 𝑟

𝑜
𝑞𝑝

𝑟

𝑎
𝑏 𝑐

𝑑

𝑜
2

𝑞
2

𝑞
2

𝑜
2

𝑞
2

𝑟
𝑞
2

𝑜
2
𝑞
2

𝑟

𝑝
𝑜
2
𝑞
2

𝑞
2

𝑟 𝑞
2

𝑜
2

𝑝 𝑜
2

𝑞
2

𝑟
𝑞
2

𝑑in
𝑢

𝑑in
𝑢

𝑑out
𝑢

𝑏
2

𝑏
2

𝑑
2

𝑑
2 ❸

COPY & RE-SCALE

COPY

𝑾
𝑼

𝑼
~

Change. 20211112

𝑞
2 𝑟

𝑞
2

Figure 3: Overview of the function preserving initializa-
tion (FPI). Given the same input {x1, x2}, FPI ensures
the initialized target model has the same output {y1, y2}
with the source model. The first and the second steps
are expanding the in-dimension and out-dimension of
the parameter matrix according to mapping functions
gin and gout respectively. After we expand the matrix
W into U , we use the in-dimension expansion on the
upper parameter matrix again to ensure the output {y1,
y2} same as the original one. From the view of neurons,
FPI copies the corresponding input and output neurons
to expand the neural network.

FPI. Formally, the mapping functions are defined
as follows:

gin(i) =

{
i i ∈ [1, dwin]

f({1, 2, ..., dwin}) i ∈ (dwin, d
u
in],

(5)

gout(j) =

{
j j ∈ [1, dwout]

f({1, 2, ..., dwout}) j ∈ (dwout, d
u
out],

(6)
where f(·) is uniform sampling. We denote the
weight expansion as U = EXPN(W ; gin, gout),
which includes in-dimension expansion (Eq. 7) and
out-dimension expansion (Eq. 8):

Cgin(i) =

duin∑
i′=1

I(gin(i
′) = gin(i))

Ũ(i,∗) =
1

Cgin(i)
W(gin(i),∗),

(7)

U(∗,j) = Ũ(∗,gout(j)), (8)

where I(·) is an indicator function, and Cgin(i) is
the count of gin(i) in the values of gin(·), which is
used to re-scale the original parameters to keep the
function preserving property.

Expansion for All Modules. We apply FPI
for all modules of BERT via matrix expansion
EXPN(·). Specifically, for the embedding matrix
WE , we only conduct the out-dimension expan-
sion:

UE
(∗,j) = WE

(∗,geout(j))
. (9)

MHA module can be decomposed into multiple
parallel self-attention heads and we conduct the
head-wise expansion for this module, which means

2137

increasing the number of attention heads. The head-
wise expansion is formulated as:

UQ|K|V |O = EXPN(WQ|K|V |O; g
q|k|v|o
in , g

q|k|v|o
out).

(10)
Specifically, the head-wise expansion means that

we reuse the head group parameters to construct
the new matrices. The i-th head group in l-th layer
contains WQ

l,i |W
K
l,i |W V

l,i |W
O
l,i in Eq. 2 and the out-

dimension expansion for WQ
l,i |W

K
l,i |W V

l,i is:

g
q|k|v
out (j) =

{
j j ∈ [1, as]

f({1, 2, ..., as}) j ∈ (as, at],
(11)

where j is the head index and as|t mean the head
numbers of source model and target model re-
spectively. The module has three constraints: {
geout = g

q|k|v
in ; gq|k|vout = goin; gq|k|vin = goout}, with

the first two constraints for hidden dimension con-
sistency (Wen et al., 2018; Chen et al., 2021) and
the third one for residual connection (Eq. 2).

For the FFN module, we perform the expansion
on the parameter matrices W 1|2 (Eq. 3) as follows:

U1|2 = EXPN(W 1|2; g
1|2
in , g

1|2
out). (12)

Similar to the MHA module, the mapping functions
of FFN also have three constraints: {goout = g1in;
g1out = g2in; g1in = g2out}.

For the layer normalization, we take the layer
normalization of FFN as an example, its expansion
is formulated as:

ULN
j = W LN

g2out(j)
. (13)

Note that in layer normalization (Eq. 4), the mean µ
and variance σ are calculated based on the hidden
representations H . Thus, the expansion of this
parameter inevitably induces a gap and prevents the
target model from strictly following the function
preserving principle. However, we empirically find
that the gap is so small that it can hardly affect the
initialization and convergence of the target model.
Thus we ignore this discrepancy.

We have validated the effectiveness of the
adapted FPI in different settings in Table 1. The
results show that the initialized model T achieves
almost the same loss as S, demonstrating that FPI
successfully retains the knowledge of the small
model when performing parameter expansion.

4.3.2 Advanced Knowledge Initialization
To further improve the convergence rate of the pre-
training target model, we propose the advanced
knowledge initialization (AKI), which expands new

Method S(12, 384) S(12, 512)

Original 1.89 1.67

Rand 10.40 10.42
DirectCopy 9.05 6.45
FPI 1.89 1.70
AKI 2.08 1.96

Table 1: The comparison of MLM losses between FPI
and baselines. “Original” refers to the MLM losses of
source pre-trained models S . “Rand” refers to the MLM
losses of randomly initialized target models. “Direct-
Copy” refers to a naive method that directly copies the
source model to the target model and the unfilled part
is randomly initialized, “FPI” represents the function
preserving method. We expand both models to the target
model T (12, 768) and find that FPI can make the target
model have similar losses with these trained source mod-
els. The loss gap between FPI and Original is brought
by layer normalization. “AKI” represents the advanced
knowledge initialization method.

matrices based on not only the parameters of the
same layer but also the parameters of the upper
layer in the source model. The intuition is based
on previous findings (Jawahar et al., 2019; Clark
et al., 2019) that adjacent Transformer layers have
similar functionality, which ensures that it will not
damage the knowledge contained in the parameters
of the current layer. Moreover, the knowledge that
comes from adjacent layers can break the symme-
try (Chen et al., 2016) appeared in FPI, which has
been demonstrated beneficial. We give an illus-
trative example in Figure 4 and formulate AKI as:

U l = EXPN(W l,W l+1; g
l|l+1
in , glout). (14)

Specifically, we first do the in-dimension expansion
for W l|l+1. Here we take W l as an example:

Cglin(i)
=

duin∑
i′=1

I(glin(i
′) = glin(i))

Ũ l
(i,∗) =

1

Cglin(i)

W l
(glin(i),∗)

.

(15)

It is similar with Eq. 7. Then we stack the ex-
panded matrices of Ũ l and Ũ l+1 to construct the
final matrix:

U l
(∗,j) =

{
Ũ l

(∗,j) j ∈ [1, dwout]

Ũ l+1
(∗,glout(j))

j ∈ (dwout, d
u
out].

(16)

We directly copy the expanded Ũ l as the top part
of the new matrix and place the sampled parameters
from Ũ l+1 on the bottom of the new matrix.

We aggregate upper-layer information into a new
matrix for two intuitions: (1) it breaks the FPI sym-
metry that hinders model convergence (Chen et al.,

2138

𝑜 𝑝

𝑞 𝑟

𝑎 𝑏

𝑐 𝑑

𝑔in
𝑙

{1: 1, 2: 2, 𝟑: 𝟏}

𝑜
2
𝑞
2

𝑟

𝑝
𝑜
2
𝑞
2

𝑏
2
𝑑
2

𝑐

𝑎 𝑏
2
𝑑
2

𝑔in
𝑙+1

{1: 1, 2: 2, 𝟑: 𝟐}

𝑜
2
𝑞
2

𝑟

𝑝
𝑜
2
𝑞
2

𝑔out
𝑙

{1: 1, 2: 2, 𝟑: 𝟐}

𝑑
2

𝑐 𝑑
2

❶ ❷

Cheng 20211113

COPY

𝑑in
𝑤

𝑑out
𝑤

𝑑in
𝑢 𝑑in

𝑢

𝑑out
𝑢

𝑾𝑙+1

𝑾𝑙 ෩𝑼𝑙

෩𝑼𝑙+1

𝑼𝑙

Figure 4: Overview of AKI. It first performs the in-
dimension expansion on both the matrixes of current
and upper layers. Then it uses the widened matrix of
the current layer as the top part of the new matrix and
samples the row of the widened matrix of the upper
layer as the bottom part of the new matrix.

2016). For example, FPI makes the attention pat-
terns in the same layer repeated, which is redundant
and called symmetry; (2) upper-layer information
can be used as similar but high-level knowledge to
guide the model to converge faster. We display the
attention patterns of the target model initialized by
AKI in Appendix E and find that the target model
can maintain the attention patterns of both current
and upper layers very well.

Expansion for All Modules. For embedding ma-
trix, we only do the out-dimension expansion as
Eq. 9 in the FPI. Both the modules of MHA and
FFN do the matrix expansion by following the de-
fined operation in Eq. 15 and Eq. 16. The con-
straints of mapping functions follow the setting of
FPI.

Empirically, we find that the AKI method out-
performs FPI, while the performance is worse if we
build a new matrix based on the matrix of the lower
layer (or low-level knowledge). How to construct
the optimal initialization for the target model with
the parameters of different layers remains an open
question and we leave it as future work.

For more details, we give a clear illustration of
the FPI and AKI process in Appendix F.

4.4 Depth-wise Expansion
After the width-wise expansion, we obtain a
widened model with the same width as the target
model. To bridge the depth gap, we perform depth-
wise expansion to increase model depth to the depth
of the target model. We illustrate this process in
Algorithm 1 and the main idea is to iteratively stack
the widened model until its depth is equal to the
target model (Gong et al., 2019).

4.5 Two-stage Pre-training
To further improve the pre-training efficiency of ini-
tialized target model, we propose a two-stage train-
ing method: (1) train sub-models with different

Algorithm 1 Target Model Initialization

Input: the target model T (Lt, Dt) and the source
model S(Ls, Ds).

1: T1(Ls, Dt)← do AKI or FPI with S(Ls, Ds)
2: k ← ⌊Lt/Ls⌋
3: for t = 2→ k do
4: Tt(Ls · t,Dt)← stack T1 on top of Tt−1

5: end for
6: T ← stack top Lt − Ls · k layers of T1.

Output: the initialized model T (Lt, Dt)

Algorithm 2 Two-stage Pre-training

Input: the initialized model T , large-scale unsu-
pervised dataset D, the epoch number of sub-
model training Eb and the epoch number of
whole training process E, the layer number lb.

1: Construct sub-models and these models have
the layer numbers of {lb, 2 · lb, . . . , Lt}.

2: for e = 1→ Eb do
3: for batch in D do
4: T ′ ← sample one sub-model.
5: Perform forward and backward of T ′.
6: Update only top lb layers of T ′.
7: end for
8: end for
9: for e = Eb → E do

10: for batch in D do
11: Perform forward and backward of T .
12: Update whole model T .
13: end for
14: end for
Output: the pre-trained model T

layers in a random manner to make the complete
model converge at a low cost. These sub-models
are built with bottom Transformer layers of the ini-
tialized target model and share one classification
layer. At each optimization step, we randomly sam-
ple one sub-model and only update its top Trans-
former layers and the shared classification layer.
(2) After the sub-structure training, we further per-
form the traditional full-model training. The details
of our method are displayed in Algorithm 2.

5 Experiment

5.1 Experimental Setup
Pre-training Details. We use the English
Wikipedia and Toronto Book Corpus (Zhu et al.,
2015) as the pre-training data. The settings of pre-
training are: peak learning rate of 1e-4, warmup

2139

Model FLOPs Ratio Loss SQuADv1.1 SST-2 MNLI MRPC CoLA QNLI QQP STS-B Avg.
(×1e19) (Saving) (MLM) (F1) (Acc) (Acc) (Acc) (Mcc) (Acc) (Acc) (Acc)

BERTBASE (Google) - - - 88.4(0.1) 93.6(0.2) 84.7(0.1) 87.9(0.9) 59.6(1.5) 91.6(0.1) 91.4(0.1) 89.6(0.5) 85.8(0.1)
BERTBASE † (Ours) 7.3 0% 1.437 89.6(0.1) 92.7(0.2) 84.6(0.2) 88.6(0.5) 57.3(4.0) 90.6(0.7) 90.6(0.1) 89.9(0.3) 85.5(0.5)

Progressive Training

MSLT† 6.5 10.7% 1.436 90.4(0.2) 92.9(0.2) 85.1(0.2) 87.9(2.1) 55.6(4.1) 90.7(0.2) 90.6(0.2) 88.2(0.6) 85.2(0.7)
StackBERT† 5.5 24.3% 1.433 90.4(0.2) 92.6(0.4) 85.3(0.1) 88.2(1.0) 63.2(0.9) 91.0(0.4) 91.0(0.1) 86.7(0.7) 86.0(0.2)

bert2BERT : S(12, 512)→ T (12, 768)

DirectCopy 6.4 12.2% 1.436 89.8(0.2) 92.9(0.3) 84.7(0.2) 86.2(0.6) 62.2(0.7) 90.2(0.6) 90.4(0.1) 89.2(0.1) 85.7(0.1)
FPI 5.1 30.4% 1.436 90.0(0.2) 92.6(0.4) 85.2(0.1) 87.1(0.5) 61.5(0.9) 90.9(0.6) 90.8(0.2) 89.7(0.2) 86.0(0.1)
AKI 4.5 38.4% 1.434 90.4(0.1) 92.5(0.4) 85.3(0.4) 87.8(0.9) 61.0(1.4) 91.2(0.2) 90.5(0.1) 89.5(0.2) 86.0(0.2)
bert2BERT 4.0 45.2% 1.433 90.0(0.2) 92.9(0.1) 85.1(0.1) 87.7(0.7) 60.0(1.2) 90.5(0.8) 90.4(0.1) 89.2(0.2) 85.7(0.4)

Table 2: Comparison between bert2BERT and baselines. We report mean (and standard deviation) performance
over 3 runs on the dev set. bert2BERT means the combination of AKI and two-stage pre-training here. FPI and
AKI mean that the function preserving initialization, advanced knowledge initialization respectively. † means the
re-implemented results, where the BERTBASE and StackBERT achieve similar results with the original paper, and
the MSLT result is different from the original paper may be due to the different training settings (e.g., in the original
paper, it uses the LAMB optimizer (You et al., 2020) and only trains the corpus with a max sequence length of 128).

steps of 10k, training epochs of E=40, batch size
of 512, sub-model training epochs of Eb=5, layer
number of lb=3. Unless otherwise noted, all meth-
ods including bert2BERT and baselines use the
same pre-training settings for fair comparisons. In
the settings of bert2BERT, the target model has
a BERTBASE architecture of T (12, 768) and the
source model has an architecture of S(12, 512).

Fine-tuning Details. For the evaluation, we use
tasks from GLUE benchmark (Wang et al., 2019a)
and SQuADv1.1 (Rajpurkar et al., 2016). We re-
port F1 for SQuADv1.1, Matthews correlation coef-
ficient (Mcc) for CoLA (Warstadt et al., 2019) and
accuracy (Acc) for other tasks. For the GLUE tasks
fine-tuning, we set the batch size to 32, choose the
learning rate from {5e-6, 1e-5, 2e-5, 3e-5} and
epochs from {4, 5, 10}. For the SQuADv1.1 fine-
tuning, we set the batch size to 16, the learning rate
to 3e-5, and the number of training epochs to 4. All
results are the average of 3 runs on the dev set.

Baselines. We first introduce a naive bert2BERT
baseline named DirectCopy, which directly copies
the small model to the target model and ran-
domly initializes the unfilled parameters. Stack-
BERT (Gong et al., 2019) and MSLT (Yang et al.,
2020) are also included as the baselines. Both of
them are trained in a progressive manner. Follow-
ing the original setting, for the StackBERT, we
first train the 3-layer BERT for 5 epochs, stack
it twice into a 6-layer BERT and then train it for
7 epochs. In the final step, we stack the 6-layer
model into BERTBASE and further train it with 28
epochs. For MSLT, we first perform 4-stage train-
ing. In each stage, we add the top 3 layers of the
model already trained to the top of the model and
then pre-train the new model by partially updating

the top 3 layers. Each stage of the partial training
process has 8 epochs. Finally, we further perform
20 full-model training epochs4 to achieve the same
loss as BERTBASE trained from scratch. The base-
lines are trained using the same optimizer, training
steps, and warmup steps as the bert2BERT.

5.2 Results and Analysis

We demonstrate the effectiveness of the proposed
method on the SQuAD and GLUE benchmark. The
results are shown in Table 2. We also represent the
loss curves in Figure 1 and Appendix A. The results
show that: (1) DirectCopy only saves 12.2% com-
putational costs, which indicates this naive method
of directly copying the trained parameters of the
source model to the target model is not effective;
(2) our proposed methods, FPI and AKI, achieve
better performances than the baselines. Although
AKI does not follow the function preserving, it has
a bigger loss than FPI at the start of training, AKI
achieves a faster convergence rate by using the ad-
vanced knowledge and breaking the symmetry; (3)
by performing the two-stage pre-training on the tar-
get model initialized by AKI, we can save 45.2%
computational costs. Note that the total parameters
of the source model are half of those of the target
model (54M vs. 110M). The loss of bert2BERT in
Figure 1 is high at the stage of sub-model training
because it represents the average loss of all sub-
models. We also compare the attention patterns of
the target models initialized by DirectCopy, FPI,
and AKI. The attention patterns and their discus-
sions are displayed in Appendix E.

4We have tried the same setting as the original paper with
8 epoch full-model running but it does not achieve the same
loss with BERTBASE (1.511 vs. 1.437).

2140

bert2BERT with Smaller Source Model. We
also evaluate bert2BERT on different settings,
where the source model S(6, 512), S(8, 512), S(10,
512) are significantly smaller than the target model
(35M | 42M | 48M vs. 110M). The results are
shown in Table 3 and loss curves are displayed
in Appendix B. We observe that DirectCopy for
S(6, 512) achieves no efficiency improvement over
the original pre-training, which indicates that the
significant size gap between the source and tar-
get model greatly reduces the benefit of Direct-
Copy methods. Compared with DirectCopy, our
proposed method reduces the computation cost by
23.3%, which again demonstrates the effectiveness
of bert2BERT. The results show that the smaller
the size gap between the source model and target
model, the greater the cost savings of bert2BERT.
We also note that it is more challenging to speed
up the target model with a small source model S(6,
512). We encourage future work to explore to trans-
fer the knowledge from smaller source models to
improve the pre-training efficiency of the target
model.

Settings Model FLOPs Ratio Loss Avg.
(× 1e19) (Saving) (MLM)

S(6, 512)
DirectCopy 7.3 0% 1.440 89.1
bert2BERT 5.6 23.3% 1.435 89.3

S(8, 512) bert2BERT 4.6 36.8% 1.435 89.2

S(10, 512) bert2BERT 4.2 42.7% 1.434 89.1

Table 3: bert2BERT with smaller source model. Avg
means the average score of SST-2/MNLI/SQuADv1.1.

Effect of Sub-model Training Epochs. Our
training procedure includes two stages: sub-model
training and full-model training. Here, we study the
effect of the number of sub-model training epochs
by performing bert2BERT on the different settings
of Eb={0, 5, 10, 20}. The results are presented in
Table 4 and the loss curves are displayed in Ap-
pendix C. We observe that our method achieves the
best efficiency when the epoch number is set to 5,
while a larger or smaller epoch number will bring
a negative impact.

Model FLOPs Ratio Loss Avg.
(× 1e19) (Saving) (MLM)

bert2BERT : S(12, 512)→ T (12, 768)

bert2BERT (Eb = 0) 4.5 38.4% 1.434 89.4
bert2BERT (Eb = 5) 4.0 45.2% 1.433 89.3
bert2BERT (Eb = 10) 4.1 43.9% 1.436 89.3
bert2BERT (Eb = 20) 5.4 25.4% 1.448 89.1

Table 4: Effect of sub-model training epochs. Avg
means the average score of SST-2/MNLI/SQuADv1.1.

5.3 Application on GPT
Datasets. To demonstrate that our method is
generic, following the BERT setting, we also use
the English Wikipedia and Book Corpus in the GPT-
training. For the evaluation, we use the datasets of
WikiText-2, PTB, and WikiText103 and evaluate
these models under the zero-shot setting without
fine-tuning on the training set.

Implementation Details. We use the architecture
of {L=12, D=768} for the GPT target model, and
pre-train it with the learning rate of 1e-4, training
epochs of 20. For bert2BERT, we use the source
model with an architecture of {L=12, D=512},
initialize the target model with AKI, and pre-train
it by the full-model training (Eb=0).

Results and Analysis. We compare the original
pre-training method and bert2BERT, the results
are shown in Table 5 and Appendix D. We ob-
serve that the proposed method saves 47% compu-
tation cost of GPT pre-training, exhibiting a sim-
ilar trend to BERT pre-training. Although GPT
and BERT have different architectures (e.g., post-
LN and pre-LN (Xiong et al., 2020)) and are pre-
trained with different tasks, bert2BERT saves a sig-
nificant amount of training cost on both these two
models, which shows that the proposed method is
generic and is effective for different kinds of PLMs.

Model FLOPs PTB WikiText-2 WikiText103
(× 1e19) (w/o FT) (w/o FT) (w/o FT)

bert2BERT : S(12, 512)→ T (12, 768)

GPT 4.9 133.8 47.0 53.5
bert2BERT 2.6 (47% ↓) 132.1 47.9 53.0

Table 5: Experiments on GPT. We report the perplexity
for these tasks. “w/o FT” means that the pre-trained
model is directly evaluated on the test set without fine-
tuning on the train set.

5.4 Application on T5
Datasets. To demonstrate that our method can
be used to train larger models, we use the Baidu
Wikipedia, Sougou Wikipedia, and Zhihu to train
the T5 model (Raffel et al., 2020). For the evalu-
ation, we use the dataset of the original Chinese
natural language inference task (OCNLI) (Hu et al.,
2020).

Implementation Details. Since the bert2BERT
method is suitable for BERT and GPT, it can also
be used for the T5 model, which consists of an en-
coder and a decoder. The target T5 model’s archi-
tecture is {Le=12, Ld=12, D=1024, A=16}, where

2141

Le and Ld means the numbers of encoder and de-
coder Transformer layers respectively, D means
the hidden size, A means the number of attention
heads. We pre-train it with the learning rate of
1e-4, batch size of 1024. For bert2BERT, we use
the source model with an architecture of {Le=12,
Ld=12, D=256, A=4}, initialize the target model
with FPI, and pre-train it by the full-model training
(Eb=0). Note that the scale gap between the source
model and the target model is over 10 times (31M
vs. 360M), which is a challenging setting.

Results and Analysis. We compare the original
pre-training method and bert2BERT method on the
T5 model, the results are shown in Table 6. We ob-
serve that the proposed method saves at least 25%
computation cost of T5 pre-training. It demon-
strates the effectiveness of the method on larger
models.

Model FLOPs Loss OCNLI
(× 1e20) (MLM) (Acc)

bert2BERT : S(12, 12, 256, 4)→ T (12, 12, 1024, 16)

T5 1.6 1.90 72.03
bert2BERT 1.2 (25% ↓) 1.90 72.75

Table 6: Experiments on the T5 model.

6 Conclusion and Future Work

This paper proposes an efficient pre-training
method, bert2BERT, which reuses the parameters
of the small trained model as the initialization
parameters of the large model. We employ the
proposed method in BERT and GPT under differ-
ent settings of model sizes. The extensive results
show that bert2BERT is generic to Transformer-
based models and saves a significant amount of
computation cost. Moreover, the detailed analy-
sis shows that our techniques, function-preserving,
advanced knowledge initialization, and two-stage
pre-training, are all effective. In the future, we
will apply bert2BERT on training super large-
scale language models (e.g., use the 10B source
model to train the 100B target model) and extends
its scope to other PLMs such as ELECTRA and
BART (Lewis et al., 2020).

Acknowledgements

This work is supported in part by NSFC (Grant No.
61872215), and Shenzhen Science and Technology
Program (Grant No. RCYX20200714114523079).
We would like to thank Yifeng Liu, Binbin Deng,
Ziliang Yang, Jiaxin Shi for their support of this
work.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-

ton. 2016. Layer normalization. ArXiv preprint,
abs/1607.06450.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Cheng Chen, Yichun Yin, Lifeng Shang, Zhi Wang, Xin
Jiang, Xiao Chen, and Qun Liu. 2021. Extract then
distill: Efficient and effective task-agnostic BERT
distillation. In Artificial Neural Networks and Ma-
chine Learning - ICANN 2021 - 30th International
Conference on Artificial Neural Networks, Bratislava,
Slovakia, September 14-17, 2021, Proceedings, Part
III, volume 12893 of Lecture Notes in Computer Sci-
ence, pages 570–581. Springer.

Tianqi Chen, Ian J. Goodfellow, and Jonathon Shlens.
2016. Net2net: Accelerating learning via knowledge
transfer. In ICLR.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276–286, Florence, Italy. Association for Com-
putational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. CoRR.

2142

https://arxiv.org/abs/1607.06450
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1007/978-3-030-86365-4_46
https://doi.org/10.1007/978-3-030-86365-4_46
https://doi.org/10.1007/978-3-030-86365-4_46
http://arxiv.org/abs/1511.05641
http://arxiv.org/abs/1511.05641
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/pdf/2101.03961.pdf
https://arxiv.org/pdf/2101.03961.pdf

A. Feng and P. Panda. 2020. Energy-efficient and robust
cumulative training with net2net transformation. In
IJCNN.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei
Wang, and Tie-Yan Liu. 2019. Efficient training of
BERT by progressively stacking. In Proceedings of
the 36th International Conference on Machine Learn-
ing, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, volume 97 of Proceedings of Machine
Learning Research, pages 2337–2346. PMLR.

Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen
Chen, and Jiawei Han. 2021. On the transformer
growth for progressive BERT training. In Proceed-
ings of the 2021 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5174–5180, Online. Association for Computational
Linguistics.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. Advances in neural infor-
mation processing systems, 28.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). ArXiv preprint,
abs/1606.08415.

Hai Hu, Kyle Richardson, Liang Xu, Lu Li, Sandra
Kübler, and Lawrence S. Moss. 2020. OCNLI: origi-
nal chinese natural language inference. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, Online Event, 16-20 November 2020,
volume EMNLP 2020 of Findings of ACL, pages
3512–3526. Association for Computational Linguis-
tics.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure
of language? In ACL, pages 3651–3657, Florence,
Italy. Association for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In ACL, pages 7871–7880, Online. As-
sociation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. TKDE.

Yujia Qin, Yankai Lin, Jing Yi, Jiajie Zhang, Xu Han,
Zhengyan Zhang, YuSheng Su, Zhiyuan Liu, Peng
Li, Maosong Sun, and Jie Zhou. 2021. Knowledge
inheritance for pre-trained language models. CoRR.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren
Etzioni. 2020. Green ai. Communications of the
ACM, 63(12):54–63.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
CoRR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019a.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Dilin Wang, Meng Li, Lemeng Wu, Vikas Chandra, and
Qiang Liu. 2019b. Energy-aware neural architec-
ture optimization with fast splitting steepest descent.
CoRR.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

2143

https://ieeexplore.ieee.org/abstract/document/9207451
https://ieeexplore.ieee.org/abstract/document/9207451
http://proceedings.mlr.press/v97/gong19a.html
http://proceedings.mlr.press/v97/gong19a.html
https://doi.org/10.18653/v1/2021.naacl-main.406
https://doi.org/10.18653/v1/2021.naacl-main.406
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://doi.org/10.18653/v1/2020.findings-emnlp.314
https://doi.org/10.18653/v1/2020.findings-emnlp.314
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://ieeexplore.ieee.org/abstract/document/5288526/
https://ieeexplore.ieee.org/abstract/document/5288526/
https://arxiv.org/pdf/2105.13880.pdf
https://arxiv.org/pdf/2105.13880.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://arxiv.org/pdf/1909.08053.pdf
https://arxiv.org/pdf/1909.08053.pdf
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://arxiv.org/pdf/1910.03103.pdf
https://arxiv.org/pdf/1910.03103.pdf
https://doi.org/10.1162/tacl_a_00290

Wei Wen, Yuxiong He, Samyam Rajbhandari, Minjia
Zhang, Wenhan Wang, Fang Liu, Bin Hu, Yiran Chen,
and Hai Li. 2018. Learning intrinsic sparse structures
within long short-term memory. In 6th International
Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Lemeng Wu, Bo Liu, Peter Stone, and Qiang Liu. 2020a.
Firefly neural architecture descent: a general ap-
proach for growing neural networks. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Lemeng Wu, Dilin Wang, and Qiang Liu. 2019. Split-
ting steepest descent for growing neural architectures.
In NeurIPS, pages 10655–10665.

Lemeng Wu, Mao Ye, Qi Lei, Jason D. Lee, and Qiang
Liu. 2020b. Steepest descent neural architecture opti-
mization: Escaping local optimum with signed neural
splitting. CoRR.

Qiyu Wu, Chen Xing, Yatao Li, Guolin Ke, Di He, and
Tie-Yan Liu. 2021. Taking notes on the fly helps
language pre-training. In ICLR.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tie-Yan Liu. 2020. On layer
normalization in the transformer architecture. In Pro-
ceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Vir-
tual Event, volume 119 of Proceedings of Machine
Learning Research, pages 10524–10533. PMLR.

Cheng Yang, Shengnan Wang, Chao Yang, Yuechuan
Li, Ru He, and Jingqiao Zhang. 2020. Progres-
sively stacking 2.0: A multi-stage layerwise train-
ing method for bert training speedup. arXiv preprint
arXiv:2011.13635.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In NeurIPS, pages 5754–5764.

Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu,
Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.
2020. Large batch optimization for deep learning:
Training BERT in 76 minutes. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Wei Zeng, Xiaozhe Ren, Teng Su, Hui Wang, Yi Liao,
Zhiwei Wang, Xin Jiang, ZhenZhang Yang, Kaisheng
Wang, Xiaoda Zhang, Chen Li, Ziyan Gong, Yi-
fan Yao, Xinjing Huang, Jun Wang, Jianfeng Yu,
Qi Guo, Yue Yu, Yan Zhang, Jin Wang, Hengtao
Tao, Dasen Yan, Zexuan Yi, Fang Peng, Fangqing
Jiang, Han Zhang, Lingfeng Deng, Yehong Zhang,

Zhe Lin, Chao Zhang, Shaojie Zhang, Mingyue Guo,
Shanzhi Gu, Gaojun Fan, Yaowei Wang, Xuefeng
Jin, Qun Liu, and Yonghong Tian. 2021. Pangu-
α: Large-scale autoregressive pretrained chinese lan-
guage models with auto-parallel computation.

Minjia Zhang and Yuxiong He. 2020. Accelerating
training of transformer-based language models with
progressive layer dropping. In Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. In 2015 IEEE Interna-
tional Conference on Computer Vision, ICCV 2015,
Santiago, Chile, December 7-13, 2015, pages 19–27.
IEEE Computer Society.

2144

https://openreview.net/forum?id=rk6cfpRjZ
https://openreview.net/forum?id=rk6cfpRjZ
https://arxiv.org/pdf/2102.08574.pdf
https://arxiv.org/pdf/2102.08574.pdf
https://proceedings.neurips.cc/paper/2019/hash/3a01fc0853ebeba94fde4d1cc6fb842a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/3a01fc0853ebeba94fde4d1cc6fb842a-Abstract.html
https://arxiv.org/pdf/2003.10392.pdf
https://arxiv.org/pdf/2003.10392.pdf
https://arxiv.org/pdf/2003.10392.pdf
https://openreview.net/pdf?id=lU5Rs_wCweN
https://openreview.net/pdf?id=lU5Rs_wCweN
http://proceedings.mlr.press/v119/xiong20b.html
http://proceedings.mlr.press/v119/xiong20b.html
https://arxiv.org/pdf/2011.13635.pdf
https://arxiv.org/pdf/2011.13635.pdf
https://arxiv.org/pdf/2011.13635.pdf
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=Syx4wnEtvH
https://arxiv.org/pdf/2104.12369.pdf
https://arxiv.org/pdf/2104.12369.pdf
https://arxiv.org/pdf/2104.12369.pdf
https://arxiv.org/pdf/2010.13369.pdf
https://arxiv.org/pdf/2010.13369.pdf
https://arxiv.org/pdf/2010.13369.pdf
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11

A Ablation Study of bert2BERT

0 1 2 3 4 5 6 7 8
FLOPs (1e19)

1.4

1.6

1.8

2.0

2.2

2.4

2.6
M

LM
 L

os
s

4 5 6 7
1.40

1.42

1.44

1.46

1.48

1.437
100%87.8%69.6%61.6%54.8%

BERTBASE

DirectCopy
FPI
AKI

bert2BERT

Figure 5: Ablation study of bert2BERT. bert2BERT
means the combination of AKI and two-stage pre-
training.

The ablation study of bert2BERT is displayed
in Table 5. From the table, we observe that: (1)
all the proposed methods is better than the original
pre-training method and DirectCopy; (2) although
AKI has a worse initialization than FPI, it achieves
faster convergence rate than FPI; (3) the two-stage
pre-training furthers reduce the cost from 61.6%
to 54.8%; (4) the FPI curve has an upward trend
at the beginning. We conjecture that it is due to
the symmetry brought by FPI and the model needs
some optimization time to break this symmetry.

B bert2BERT with smaller source model

0 1 2 3 4 5 6 7 8
FLOPs (1e19)

1.4

1.6

1.8

2.0

2.2

2.4

2.6

M
LM

 L
os

s

4 5 6 7
1.40

1.42

1.44

1.46

1.48

1.437
100%76.7%63.2%57.3%

DirectCopy_L6
bert2BERT_L6

bert2BERT_L8
bert2BERT_L10

BERTBASE

Figure 6: Loss curves of bert2BERT and baselines with
smaller source models.

We test bert2BERT with different source models
and the loss curves are represented in Figure 6.

C Effect of sub-model training epochs

We study the effect of sub-model training epochs
on the pre-training efficiency. The loss curves are
represented in Figure 7. Note that the setting Eb =
20 has not achieved the same loss (1.437) as the
baseline BERTBASE in the 40 training epochs.

D Application on GPT

The loss curve of our method on GPT application
is displayed in Figure 8.

0 1 2 3 4 5 6 7 8
FLOPs (1e19)

1.4

1.6

1.8

2.0

2.2

2.4

2.6

M
LM

 L
os

s

4 5 6 7
1.40

1.42

1.44

1.46

1.48

1.437
100%61.6%54.8%

BERTBASE

Eb=0
Eb=5
Eb=10

Eb=20

Figure 7: Loss curves of bert2BERT with different sub-
model training epochs.

0 1 2 3 4 5
FLOPs (1e19)

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Lo
ss

2.5 3.0 3.5 4.0 4.5 5.0
2.84

2.86

2.88

2.90

2.870
100%52.4%

GPT bert2BERT

Figure 8: Pre-training loss curves of GPT.

E Comparisons of Attention Patterns

We take the source model S(4, 256) and target
model T (4, 512) as an example to analyze the at-
tention patterns of DirectCopy in Figure 10, FPI in
Figure 11 and AKI in Figure 12.

We display the attention patterns of the source
model S(4, 256) in Figure 9. Compared with the
source model, we observe that the newly added
attention patterns of DirectCopy are messy, and the
randomly initialized parameters destroy the atten-
tion patterns of the source model. The proposed
FPI method makes the new model have the same
attention patterns as the source model, thus the
knowledge of the source model is preserved. How-
ever, FPI always induces symmetrical attention pat-
terns in the same layer. This symmetry will hinder
the convergence. To handle this problem, we use
AKI method to reuse the parameters of the upper
layer (advanced knowledge) to break the symmetry,
and meanwhile make the knowledge in the same
layer richer. Through the AKI method, the attention
patterns of the upper layer can be also maintained
well in the target model. For example, as shown
in Figure 12, the newly added attention patterns of
the 1st layer in the target model are similar to the
ones of the 2nd layer in the source model.

F Illustration of FPI and AKI process

We illustrate the process of FPI and AKI in Figure
13 and 14 respectively.

2145

L1 H0 L1 H1 L1 H2 L1 H3

L2 H0 L2 H1 L2 H2 L2 H3

L3 H0 L3 H1 L3 H2 L3 H3

L4 H0 L4 H1 L4 H2 L4 H3

Figure 9: Attention patterns of the source model S(4, 256), which has 4 attention heads in each layer.

L1 H0 L1 H1 L1 H2 L1 H3 L1 H4 L1 H5 L1 H6 L1 H7

L2 H0 L2 H1 L2 H2 L2 H3 L2 H4 L2 H5 L2 H6 L2 H7

L3 H0 L3 H1 L3 H2 L3 H3 L3 H4 L3 H5 L3 H6 L3 H7

L4 H0 L4 H1 L4 H2 L4 H3 L4 H4 L4 H5 L4 H6 L4 H7

Figure 10: Attention patterns of the target model T (4, 512) based on the baseline DirectCopy method. The first 4
attention patterns (H0-H3) in each row correspond to the source model’s attention patterns, and the last 4 attention
patterns (H4-H7) are newly added.

2146

L1 H0 L1 H1 L1 H2 L1 H3 L1 H4 L1 H5 L1 H6 L1 H7

L2 H0 L2 H1 L2 H2 L2 H3 L2 H4 L2 H5 L2 H6 L2 H7

L3 H0 L3 H1 L3 H2 L3 H3 L3 H4 L3 H5 L3 H6 L3 H7

L4 H0 L4 H1 L4 H2 L4 H3 L4 H4 L4 H5 L4 H6 L4 H7

Figure 11: Attention patterns of the target model T (4, 512) based on our FPI method. The last 4 attention patterns
(H4-H7) in each row are obtained by FPI expansion.

L1 H0 L1 H1 L1 H2 L1 H3 L1 H4 L1 H5 L1 H6 L1 H7

L2 H0 L2 H1 L2 H2 L2 H3 L2 H4 L2 H5 L2 H6 L2 H7

L3 H0 L3 H1 L3 H2 L3 H3 L3 H4 L3 H5 L3 H6 L3 H7

L4 H0 L4 H1 L4 H2 L4 H3 L4 H4 L4 H5 L4 H6 L4 H7

Figure 12: Attention patterns of the target model T (4, 512) based on our AKI method. The last 4 attention patterns
(H4-H7) in each row are obtained by AKI expansion.

2147

a b
c d

e f

g h i j

a
b

c d
e

f a

b c

g/2

Layer Norm:

𝑢 = 𝐻.𝑚𝑒𝑎𝑛

𝑠 = (𝐻 − 𝑢)2. 𝑚𝑒𝑎𝑛
LayerNorm会出现难以避
免的不同但影响不大。当大

k
l m

n

Classifier

Embedding

Multi-Head
Attention (MHA)

Add & Norm

Feed Forward
Network (FFN)

Add & Norm

N x

o
p q

r

s
t u

v

g/2

h i/2
i/2j

k l
m

n
k

l

o/2

o/2

p
q/2 q/2

r

s t
u

v
s

t

a
b c

d
e

f

a b c

g/2

g/2

h

i/2 i/2
j

g/2

h g/2

k/2
k/2

l

m/2 m/2
n

k/2

l
k/2

o/2
o/2

p

q/2 q/2
r

o/2

p o/2

s/2 s/2

t

u/2 u/2
v

s/2

t
s/2

a
b c

d
e f

a b c
a

d
e

f
b c

w1 w2

w1 w2

w1 w2

w1 w1w2

w1 w1w2

W1/2 w2 W1/2

w1 w1w2

w1 w1w2

w2W1/2 W1/2

MHA/FFN Expansion step 1 MHA Expansion step 2 FFN Expansion step 2

𝑊𝑙
𝑄|𝐾|𝑉

𝑊𝐸𝑀𝐵

𝑊𝑙
𝑂

𝑊𝐿𝑁

a
b

c d
e

f a

b c

𝑊𝐿𝑁

𝑊𝑙
1

𝑊𝑙
2

𝑊𝐿𝑁

𝑊𝐸𝑀𝐵𝑇

𝑔𝑖𝑛 = {1, 2, 1}

FFN

MHA

a
b

c d
e

f a

b c

g/2

g/2

h

i/2 i/2
j

k l
m

n
k

l

o/2
o/2

p
q/2 q/2

r

s t
u

v
s

t

a
b c

d
e

f

a b c

w1 w1w2

w1 w1w2

W1/2 w2 W1/2

FPI

hidden neuronembedding neuron different heads’ neuron FFN neuron

Figure 13: FPI process. We use the FPI method to widen the source model with a width of 2 into a target model
with a width of 3. In the example, the source model and the target model have 2 and 3 attention heads respectively.
And the head dimension is 1. To facilitate the illustration, we reduce the number of neurons in the FFN layer. We
also note that since the MLM classifier of BERT is a transposition of the Embedding layer, they share a parameter
matrix. Therefore, in step 1, we expand the MLM classifier by re-scaling the parameter values of the LN layer
below the MLM classifier instead of following formula 7.

Layer Norm:

𝑢 = 𝐻.𝑚𝑒𝑎𝑛

𝑠 = (𝐻 − 𝑢)2. 𝑚𝑒𝑎𝑛
LayerNorm会出现难以避
免的不同但影响不大。当大

Classifier

Embedding

Multi-Head
Attention (MHA)

Add & Norm

Feed Forward
Network (FFN)

Add & Norm

N x

g/2

g/2

h

i/2 i/2
j

g’/2

h’ g’/2

k/2
k’/2

l

m/2 m’/2
n

k/2

l
k’/2

o/2
o/2

p

q/2 q/2
r

o’/2

p’
o’/2

s/2 s’/2

t

u/2 u’/2
v

s/2

t
s’/2

a
b c

d
e f

a b c

w1 w1w2

w1 w1w2

w2W1/2 W1/2

MHA Expansion step 2

FFN Expansion step 2

a
b

c d
e

f a

b c

𝑔𝑖𝑛 = {1, 2, 1}

FFN

MHA

a
b

c d
e

f a

b c

g/2

g/2

h

i/2 i/2
j

k l
m

n
k

l

o/2
o/2

p
q/2 q/2

r

s t
u

v
s

t

a
b c

d
e

f

a b c

w1 w1w2

w1 w1w2

W1/2 w2 W1/2

𝑊𝑙
1

𝑊𝑙
2

𝑊𝑙
𝑄|𝐾|𝑉

𝑊𝑙
𝑂

g’/2

g’/2

h’

i’/2 i’/2
j’

k’ l’
m’

n’
k’

l’

o’/2

o’/2

p’

q’/2 q’/2

r’

s’ t’
u’

v’
s’

t’

w’1 w’1w’2

𝑊𝑙+1
1

𝑊𝑙+1
2

𝑊𝑙+1
𝑄|𝐾|𝑉

𝑊𝑙+1
𝑂

𝑈𝑙
2

𝑈𝑙
1

𝑈𝑙
𝑄|𝐾|𝑉

𝑈𝑙
𝑂

AKI hidden neuron

embedding neuron different heads’ neuron

different layers’ FFN neuron

𝒍

-th layer Transformer𝒍 + 𝟏

-th layer Transformer

Figure 14: AKI process. We ignore its first step because it is the same as FPI’s first step. The main difference
between AKI and FPI is that in step 2, AKI copies some attention heads in MHA and some parameters in FFN of
the (l + 1)-th layer instead of only copying the l-th layer to construct the new l-th layer Transformer.

2148

