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Abstract

Machine Translation Quality Estimation (QE)
aims to build predictive models to assess the
quality of machine-generated translations in
the absence of reference translations. While
state-of-the-art QE models have been shown
to achieve good results, they over-rely on fea-
tures that do not have a causal impact on the
quality of a translation. In particular, there
appears to be a partial input bias, i.e., a ten-
dency to assign high-quality scores to transla-
tions that are fluent and grammatically correct,
even though they do not preserve the meaning
of the source. We analyse the partial input bias
in further detail and evaluate four approaches
to use auxiliary tasks for bias mitigation. Two
approaches use additional data to inform and
support the main task, while the other two are
adversarial, actively discouraging the model
from learning the bias. We compare the meth-
ods with respect to their ability to reduce the
partial input bias while maintaining the overall
performance. We find that training a multitask
architecture with an auxiliary binary classifi-
cation task that utilises additional augmented
data best achieves the desired effects and gen-
eralises well to different languages and quality
metrics.

1 Introduction

Despite the great advances of Machine Translation
(MT) models over the past years, the adequacy and
fluency of the translations cannot be guaranteed.
Without access to a gold-standard reference transla-
tion, it can be difficult to validate the reliability of
the MT model’s predictions. To address this issue,
the field of MT Quality Estimation (QE) emerged,
aiming to develop models that can approximate the
quality of machine-generated translations in a scal-
able way. However, recent research suggests that
state-of-the-art QE approaches tend to over-rely on
features that do not have a causal impact on the
quality of a translation. In particular, there appears
to be a partial input bias, i.e. a tendency to assign
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high quality scores to translations that are fluent
and grammatical, even though they do not resemble
the actual meaning of the source (Sun et al., 2020).

Building upon these findings, the objective of
our work is to characterise and, most importantly,
mitigate the partial input bias of QE models. We
focus on the use of auxiliary training tasks to
specifically target the observed biases while avoid-
ing strong modifications of the original model as
well as the expensive collection and manual la-
belling of additional training data. Our efforts
concentrate on testing and improving MonoTran-
sQuest, the best-performing architecture in the
shared task on sentence-level QE hosted as part
of the Fifth Conference on Machine Translation
(WMT 2020) (Specia et al., 2020). We work with
the recently published multilingual QE dataset
MLQE-PE (Fomicheva et al., 2020), allowing us to
test the generalisability of our approaches across
different languages and quality scores.

Our main contributions are as follows:

* Bias analysis. We expand on previous re-
search which suggested the partial input bias
in QE and find that the model as well as the an-
notators tend to over-rate the quality of fluent
but inadequate translations.

Bias mitigation. To the best of our knowl-
edge, we are the first to explore the mitigation
of biases with auxiliary tasks in the field of QE.
We group our approaches into four categories:
Multitask training with mixed languages, mul-
titask training with additional augmented data,
training with adversarial tasks and training
with debiased focal loss.

New architectures. We implement and com-
pare several multitask architectures and find
that iteratively training the tasks with two op-
timisers is better suited for our objective than
backpropagating a weighted sum of the losses.
Further, we reformulate focal loss for regres-
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sion tasks, a technique that is traditionally
based upon the cross-entropy loss.

* Results. Utilising the multitask architecture,
we successfully reduce the partial input bias
while maintaining the same performance as
the benchmark model and examine the best
model’s robustness.

In the subsequent sections, we first present re-
lated work, followed by the analysis of the partial
input bias. Building upon the findings, we explain
the four bias mitigation approaches in Section 4
and discuss the results in Section 5.

2 Related Work

2.1 Machine Translation Quality Estimation

QE is an area of research concerned with the de-
velopment of models for the prediction of the qual-
ity of machine-generated translations when gold
standard translations are not available. QE is nor-
mally addressed as a supervised machine learning
task, which may take as input general informa-
tion from the source and translated texts, as well
as from the MT system. The quality is typically
assessed at sentence level, but word- and document-
level QE are also possible (Specia et al., 2018,
pp- 2). Sentence-level QE has evolved from the
first feature-heavy prediction models (Blatz et al.,
2004) to neural architectures such as RNNs and
Transformers (Vaswani et al., 2017), which acceler-
ated the developments in the field by reducing the
work of manual feature engineering and improving
contextual representations (Kim et al., 2017; Wang
et al., 2018; Fan et al., 2019).

A prominent state-of-the-art QE architecture is
MonoTransQuest, proposed by Ranasinghe et al.
(2020). It builds upon XLM-R, a popular pre-
trained cross-lingual language model with a good
ability to generalise to low-resource languages
(Conneau et al., 2020). MonoTransQuest achieved
the best results for sentence-level direct assessment
score prediction in the WMT 2020 shared task on
QE (Specia et al., 2020).

Sun et al. (2020) showed that QE models like
MonoTransQuest have a tendency to over-rely on
spurious correlations, which is partially due to
skewed label distributions and statistical artifacts in
QE datasets. In particular, they show the existence
of a partial input bias, i.e. the tendency to predict
the quality of a translation based on just the target
sentence (Poliak et al., 2018). While the fluency

and grammatical correctness of the output is a fac-
tor influencing the quality, the original meaning
should be preserved, which is only possible if the
model takes both source and target into considera-
tion. Following their work, in an attempt to reduce
statistical artifacts, MLQE-PE (Fomicheva et al.,
2020) — a new QE dataset diversifying the topics
and languages covered — was created, which forms
the basis of this work and will be described in more
detail in Section 3.1.

2.2 Bias Mitigation with Auxiliary Tasks

We define auxiliary tasks in a broad sense, using
the term to refer to settings where a main task is
trained alongside one or more helper tasks used to
improve the main task’s performance and general-
isability. Most commonly, the tasks are trained in
a multitask-setting, where some layers are shared
across the tasks and some layers are task-specific.
The auxiliary tasks can either be related to the main
task or adversarial (Ruder, 2017). In addition, we
consider the concept of debiased focal loss, where
the main and auxiliary task are trained in separate
models which are connected via the loss function
(Karimi Mahabadi et al., 2020).

Related Tasks: In settings where the data
is limited, noisy or high-dimensional, using ad-
ditional tasks is a way of introducing an induc-
tive bias that prevents the model from overfitting
to noise (Caruana, 1997). In addition, the model
might be able to use new features that were learned
through an auxiliary task for the main task as well
(Ruder, 2019). MT models, for example, have
been shown to benefit from auxiliary tasks such as
named entity recognition, part-of-speech tagging
and dependency parsing (Niehues and Cho, 2017;
Kiperwasser and Ballesteros, 2018).

Adversarial Tasks: Adversarial tasks can be
used to actively discourage the model from overfit-
ting to domain-specific, spurious cues. The tech-
nique was introduced by Ganin and Lempitsky
(2015) and used for domain adaptation. More re-
cently, it has been successfully used to reduce par-
tial input biases in different fields of NLP, such as
natural language inference (NLI) (Belinkov et al.,
2019; Stacey et al., 2020) and visual question an-
swering (VQA) (Ramakrishnan et al., 2018). The
core idea is to train the auxiliary task using just the
partial input. During backpropagation, the gradient
is reversed. Consequently, the shared layers are up-
dated such that the adversary’s loss is maximised;
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the undesired behaviour is penalised. The method-
ology chapter illustrates the architectural design in
more detail.

Debiased Focal Loss: Another approach that
has recently been used to mitigate known biases,
particularly partial input biases, is debiased focal
loss. The notion of focal loss was first introduced
by Lin et al. (2017) as a means to improve classifi-
cation results on imbalanced classes by weighing
down the impact of samples that the model had
already learned to classify well. In the field of NLI,
Karimi Mahabadi et al. (2020) have shown that it
is possible to adapt the notion of focal loss to miti-
gate partial input biases. They train the main model
alongside a bias model that learns to predict the la-
bel based on the hypothesis only. In this scenario,
the bias model’s predictions are used to weight the
main model’s cross-entropy loss. Intuitively, sam-
ples that are classified well by the bias model are
weighted down so that the main model primarily
learns from less biased inputs. The bias model is
updated separately and discarded after training.

3 Bias Analysis

In the following, we will describe the dataset and
baseline model used, show benchmark results and
analyse the partial input bias in more detail.

3.1 Dataset

We work with the MLQE-PE dataset (Fomicheva
et al., 2020) which was specifically designed for
the training of MT QE models. Published in
2020, it formed the basis for the WMT 2020 and
2021 shared tasks on Quality Estimation (Specia
et al., 2020).1 It consists of 6 high-, mid- and
low-resource language pairs which originate from
Wikipedia articles: English-German and English-
Chinese, Romanian-English and Estonian-English
as well as Nepalese-English and Sinhala-English.
A seventh dataset, Russian-English, was curated
from Reddit posts and WikiQuotes. The transla-
tions were generated using Transformer-based Neu-
ral MT models. For each language, 9000 sentence
pairs (7000 train, 1000 dev, 1000 test) were anno-
tated on two different scales:

* Human-targeted Translation Edit Rate
(HTER): Each sentence-pair was edited by
two independent translators. The reported

"The train, dev and fesr20 test sets are available via
https://github.com/sheffieldnlp/mlge-pe

HTER score is the averaged edit rate com-
paring the machine-generated translations and
the post-edited versions. The score ranges be-
tween O (perfect translation) to 1 (everything
was edited).

e Direct Assessment Scores (DA): Each sen-
tence pair was judged on a scale from 0-100 by
at least 3 evaluators. The reported DA score is
the mean of the individual judgements. Differ-
ent than the HTER scores, the DA scale pro-
vides a measure of the severity of the errors,
where inadequate (i.e. non-meaning preserv-
ing) translations should not receive a score
higher than 70, even if only one word is incor-
rect.

3.2 Benchmark

We use the XLM-R based architecture MonoTrans-
Quest as our baseline model, which fine-tunes
XLM-R for sentence-level QE (Ranasinghe et al.,
2020). While there are alternative candidates with
a good performance on QE tasks, MonoTransQuest
was chosen for several reasons: State-of-the-art per-
formance, availability and replicability (all hyper-
parameters and the source code are open-sourced),
as well as the generic design of the architecture
which is transferable to related NLP domains.

We train separate MonoTransQuest models for
each combination of language pair and quality
score using the originally proposed architecture
and fine-tuned hyperparameters specified in the
TransQuest GitHub repository.” All experiments
were conducted on a 16GB Nvidia Tesla P100 GPU
and averaged across five trainings on the seeds 555,
666, 777, 888 and 999. Our results are shown in
Table 3 in the Appendix. In QE, the best prac-
tice is to use Pearson’s r to measure performance
(Specia et al., 2018, pp. 58). Most notably, the
Pearson correlation between the predictions and
the labels is lowest for the high-resource languages
English-German and English-Chinese. This has
also been observed in the QE shared task findings
(Specia et al., 2020). A possible explanation is the
high average quality of the generated translations,
making the labelling significantly harder and the
annotations less consistent, i.e. more noisy.

3.3 Partial Input Bias

We examine the partial input bias by training the
model on the combined representation of source

https://github.com/TharinduDR/
TransQuest
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Figure 1: Relative decrease of the correlation between prediction and labels when testing with source or target, only.

and target and testing how the performance changes
when the prediction is based on only one of the two.
If the performance does not significantly decrease,
the model has likely learned to base its predictions
mostly on one part of the input. Figure 1 shows
the results from this experiment. A clear target sen-
tence bias can be observed for the English-German
and English-Chinese language pairs. One reason
could be the good quality of the translations that
MT systems generate for high-resource languages:
The occurrence of adequacy errors is lower, so that
the target sentence may suffice for a decent pre-
diction. In contrast, the mid-resource Romanian-
English model, which shows the best overall per-
formance, appears to be most dependent on both
inputs. Figure 1 shows a clear performance deteri-
oration when the model is tested on just the source
or target sentence. One particularity of the RO-EN
dataset is the high abundance of fluent, but clearly
inadequate translations and hallucinations which
require both the source and translation to be de-
tected (Specia et al., 2020). The Russian-English
dataset is an exception where the source sentence
is a good predictor for the translation quality, most
likely due to the distinct nature of Reddit data and
WikiQuotes (both user-generated). This source sen-
tence bias could best be mitigated by curating a
new dataset which is why we chose not to focus
our efforts on the Russian-English dataset.

To further examine the nature of the partial input
bias, an in-depth analysis of the strongly affected
English-German translations was conducted. In
particular, the aim was to better understand how
MonoTransQuest, but also the annotators, judge
the quality of fluent but inadequate translations. To
achieve this, one of the authors, a German native
speaker, manually annotated translations in the test

set that are grammatically correct but do not pre-
serve the meaning of the source.’

In total, 145 out of 1000 translations were
marked as fluent but inadequate. A key takeaway
from the labelling process was that it is not only
the models that have a partial input bias — human
annotators clearly seem to over-rely on the target
fluency, too. Even if the instructions clearly spec-
ify that a DA score below 70 should be assigned
to inadequate translations,* annotators tended to
give higher scores if the sentence was fluent and
appeared logical. Figure 2 shows that more than
half of the fluent but inadequate translations were
given a score higher than 70, with an average rat-
ing of 81.5 A likely reason is that adequacy-related
mistakes are easy to miss when considering several
quality factors, i.e. spelling, grammar and content,
at the same time.

4 Methodology

Based on the bias analysis, our goal is to find an
effective and feasible way to reduce the impact
of spurious correlations and overly dominant fea-
tures. As outlined in the previous section, the
two high-resource datasets (EN-DE and EN-ZH)
clearly show the strongest partial input bias. They
will therefore be at the centre of the bias miti-
gation efforts. All four methods presented here-
inafter share the core idea of using auxiliary tasks
to achieve this aim: The main task — QE — is com-
bined with helper tasks designed to reduce known

3The annotated dataset is available via https://
github.com/agesb/TransQuest

“The DA annotation guidelines used in the MLQE-PE data
dictate that a score in 70-90 indicates a translation that closely
preserves the semantics of the source sentence.

>The HTER score was not examined in this analysis since it
does not explicitly account for the adequacy of the translation.
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Figure 2: DA label and prediction distribution of fluent but
inadequate translations.

biases. At test time, the auxiliary tasks can be dis-
carded. Hereinafter, we introduce four approaches
and the corresponding model architectures. The
first two methods are tailored to combat the biased
behaviour by supporting the model with additional
data. In contrast, the two alternative, restrictive
approaches actively penalise the model for learn-
ing unwanted behaviour. We define three criteria
to ensure comparability between the approaches:
A good solution should 1) mitigate the observed
biases, 2) retain the prediction quality of the bench-
mark model, and 3) avoid computational overhead
and interference with the original model’s design.

4.1 Supportive Approaches

We experiment with two different supporting tasks,
each combining the main task and the auxiliary task
in a multitask setup. The first approach is to train
with different language pairs, aiming to transfer in-
formation between the language domains. Instead
of mixing the languages arbitrarily, we build upon
the bias analysis and examine if using a less biased
language (RO-EN) to train the auxiliary task can
help to reduce biases in the main task (EN-DE or
EN-ZH). The bias analysis clearly showed that the
models trained on the RO-EN dataset performed
poorly when using just the source or target as input,
indicating that the predictive power of the individ-
ual sentences is low. Thus, the incentive for the
multitask model to over-rely on the target should be
reduced. In this scenario, both tasks are regression
problems and optimise the MSE loss.

The second approach is to collect additional
translations originating from the same topic and
language domain and use it as the input for the
auxiliary task. We choose WikiMatrix (Schwenk

et al., 2021), a large parallel sentence corpus based
on Wikipedia articles, as data source for the ex-
periments. Without further preprocessing, the vast
majority of these sentence pairs would qualify as
good translations. While labelling on a continuous
scale would require manual annotations, augment-
ing the data to achieve "bad" translations is more
feasible. Hence, we augment 50% of the data to ob-
tain bad translations. We experiment with two aug-
mentation strategies: First, we shuffle the sentences
to create mismatched sentence pairs. Second, we
augment the sentence to mimic fluent but inade-
quate translations as seen in the original MLQE-PE
dataset and discussed in Section 3.3. To do so, we
implement a contextual augmentation pipeline that
uses a language model (XLM-R) to replace 30% of
the nouns, adjectives, verbs and adverbs such that
the meaning of the sentence is changed while the
grammatical correctness is preserved in the major-
ity of cases.® In both cases, the main task optimises
the MSE loss, and the auxiliary task is a binary clas-
sification problem using the binary cross-entropy
loss.

4.2 Restrictive Approaches

We experiment with two setups that directly pe-
nalise the biased behaviour. First, we combine the
main task with an adversarial task in a multitask ar-
chitecture. Intuitively, the adversary is incentivised
to predict the quality scores based on the target sen-
tence only. The shared layers, on the other hand,
are penalised for learning a mapping between target
sentence and scores. The risk of working with an
adversarial task setup is that it optimises towards
eliminating all cues associated with the adversary.
In QE, however, the target sentence provides rel-
evant information, such as grammar and spelling.
As a result, the overall model performance might
suffer. As an alternative to training with adversarial
tasks and a multitask architecture in general, we
repurpose the concept of debiased focal loss for
regression. While model architecture and training
method are different, the underlying idea to use
the partial input based predictions to influence the
learning remains the same. The subsequent sec-
tion explains the multitask architecture used for the
first three approaches as well as the re-formulated
debiased focal loss technique in more detail.

®The augmentation pipeline was published as part
of the NL-Augmenter library (Dhole et al., 2021):
https://github.com/GEM-benchmark/NL-Augmenter/tree/
main/transformations/contextual_meaning_perturbation
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4.3 Architecture & Training

4.3.1 MultiTransQuest

To realise the first three approaches, we propose
the architecture MultiTransQuest, expanding on
the MonoTransQuest baseline. The pre-trained lan-
guage model XLM-R remains at the core and is en-
tirely shared between tasks. The two key changes
affect the final layers and the optimisation strategy:
Firstly, we exchange the original prediction head to
support multiple tasks. As illustrated in Figure 3,
the final layers and loss functions are separate per
task, thus allowing the mixing of regression and
classification tasks. The figure exemplarily shows
the adversarial setup, where the gradients are re-
versed during back-propagation, i.e. weighted with
-1. For the two supportive tasks, we use the same
setup but remove the weighted gradient layers and
adjust the input and loss function for the auxiliary
tasks accordingly. We experiment with different
numbers of shared and separate layers. Secondly,
we adapt the training procedure to support multiple
tasks. The data loader is designed so that it alter-
nates between the tasks per training step, with each
batch containing only samples for one task which
are then passed through the shared layers and the
corresponding task-specific layers. We compare
two optimisation strategies:

* Training the tasks in turns, where backpropa-
gation is performed per batch and task. Each
task works with a separate AdamW optimizer
to avoid averaging gradients across tasks.

* Performing one forward pass for every task
and combining the calculated losses as
a weighted sum which is backpropagated
through all layers using a single optimizer.

4.3.2 Debiased Focal Loss Architecture

In contrast to the previously discussed multitask
approaches, debiased focal loss enables a complete
separation of the main model and bias model, thus
requiring no changes to the core MonoTransQuest
architecture. To the best of our knowledge, (de-
biased) focal loss has only been applied to clas-
sification tasks so far as it explicitly modifies the
cross-entropy loss function. Since our QE task is
formulated as a regression problem, we attempt to
find an equivalent strategy to weigh down biased
examples when working with MSE loss. In our
scenario, the bias model is trained on partial inputs,
receiving the translated sentence only. The better

T 4 MultiTransQuest i 4
v ‘

Output logits

Separate Layers
(Adversarial Task)
: v
Weighted Weighted
Gradient Layer Gradient Layer

i | Hidden representation

Output logits

Separate Layers
(Main Task)

Hidden representation

Shared Layers

i | CLS embedding CLS embedding

XLM-R Tokenizer

MLQE-PE MLQE-PE

-

Figure 3: Multitask architecture with gradient reversal.

the bias model’s prediction, the lower the MSE and
the more biased the sample. In line with the origi-
nal debiased focal loss idea, we can therefore use
the bias model’s loss as an indication for the bias
per sample.

As the MSE loss can vary greatly during training,
we decide against training both models in an end-
to-end approach. First, the trained bias model is
used to predict the respective quality scores for
the training set, using only the target. Next, the
absolute error for each of the training samples is
calculated. We use the error to approximate the
partial input bias: The lower the error, the easier it
is for the bias model to predict the sample’s quality
score correctly. To control the scale of the weights,
we normalise the error value between 0 and 1. The
resulting weights w are used to scale the MSE loss
of the main model f,; before backpropagation. We
use the hyperparameter 3 to exponentially scale
the loss (Eq. 1). We further experiment with a
sigmoid-shaped function scaled between 0 and 1

(Eq. 2).

DFL = w” ( ]Z(/} (x;) — @1)2 €Y

DFL =

1480



Data Experiment DA HTER
r MSE  rrarget r MSE  rtarget
benchmark | 0.3695+0.03 0.0239 0.4189 | 0.4734+0.01 0.0308 0.4555
bilingual | 0.37484+0.05 0.0285 0.2307 | 0.47184+0.01 0.0334 0.4103
EN-DE  augmented | 0.4163+0.04 0.0299 -0.0822 | 0.45124+0.01 0.0359 0.2279
adversarial | 0.2086£0.08 0.0215 @ -0.0926 | 0.44294+0.01 0.0334 | 0.1312
Jocal | 0.3184+0.05 0.0189 0.3148 | 0.4470+0.02 0.0312 0.4152
benchmark | 0.4249+0.01 0.0246 0.3746 | 0.3337+£0.01 0.0792 0.3103
bilingual | 0.4008+0.03 0.0317 0.3282 | 0.32224+0.01 0.0833 0.2623
EN-ZH  augmented | 0.3998+0.02 0.0300 = 0.1283 | 0.33284+0.02 0.0911 0.2237
adversarial | 0.3899+0.01 0.0289 | 0.0474 | 0.2824+0.01 0.0868 | 0.0695
Jocal | 0.4255+0.01 0.0437 0.3988 | 0.3322+0.01 0.0748 0.2969

Table 1: Results. Comparison of the four bias mitigation approaches. Column r shows the mean Pearson correlation
of labels and predictions and the standard deviation over 5 runs, each training for 3 epochs = 15 minutes. Column
MSE is the average mean squared error. Column r target measures the performance when testing on the target

sentence only and thus approximates the bias mitigation effect, where a smaller correlation is better.

5 Results

In the following, we present and discuss the results
of the experiments conducted. Based on the analy-
sis in Section 3.3, the experiments concentrate on
the two most biased datasets English-German and
English-Chinese, each in combination with the DA
and HTER scores. For each of the four sections,
we assess different hyperparameter configurations
on the EN-DE validation set. A configuration is
considered to be good if the bias is reduced and
the overall performance is at least maintained. The
most promising variant is then evaluated on the
EN-DE and EN-ZH test set, to see if the method
generalises across language domains. Finally, we
compare the four methods against one another and
provide further analyses on the robustness of the
best-performing model. ’

5.1 Hyperparameters and Design Choices

Within each of the four approaches, we experiment
with different hyperparameter configurations and
design choices. While each setup requires individ-
ual fine-tuning, observed trends, backed by Table
4,5, 6,7 and 8 in the Appendix, include:

* For the multitask architecture, training the
tasks in turns with separate optimisers results
in a good balance between bias reduction and
maintaining performance. Backpropagating

"For reproducibility of the experiments, the source code
incl. configurations is published under https://github.
com/agesb/TransQuest. All hyperparameters not ex-
plicitly mentioned in the paper were kept constant.

the weighted loss is also possible, but requires
more task-specific fine-tuning.

* For supportive auxiliary tasks, more separate
layers, i.e. a larger degree of freedom, and a
larger batch size improve the performance, for
adversarial tasks the opposite is the case.

* When augmenting additional WikiMatrix data,
shuffling the sentence pairs achieves better
results than mimicking fluent but inadequate
translations with contextual augmentation.

* The effect of the debiased focal loss technique
is limited. A sigmoid-shaped weight distribu-
tion does not improve the results.

5.2 Comparison of the Four Approaches

Table 1 summarises the results obtained for each of
the four methods. With respect to the choice of ar-
chitecture, MultiTransQuest, used for methods 1-3,
reduces the partial input bias more effectively than
MonoTransQuest trained with focal loss. A key
advantage of the multitask architecture is that the
model is able to learn a balance between the tasks.
In contrast, the degree of freedom is significantly
limited for the focal loss architecture, where the
main hyperparameter is how to scale the weights.
We believe that this limitation is what makes the
model even more sensitive to the inseparability of
the bias and helpful features.

Contrasting the multitask-training with related
or adversarial tasks, we find that the two supportive
methods maintain a solid performance across all
four constellations, while also reducing the bias.
Compared to this, the adversarial approach gen-
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eralises less well, despite its successful applica-
tion in NLI and VQA. We hypothesise that this
discrepancy is rooted in the nature of the partial
inputs: In VQA as well as NLI, the task can only be
solved when considering both question and image
or premise and hypothesis, respectively. In contrast,
the translation provides information that is valuable
for the QE model regardless of the source, such as
the fluency of the generated sentence. Hence, it is
difficult to isolate the bias from valuable informa-
tion, an assumption that both adversarial training
and the focal loss technique rely on. Without an
unbiased reference dataset (which is hard to ac-
quire due to the subjective nature of the annotation
process) the line between desired information and
bias is difficult to quantify. The lower the corre-
lation between the existence of the bias and the
performance of the adversarial task, the noisier the
feedback that is propagated into the shared layers.

The best trade-off between overall performance
and bias reduction is achieved with MultiTrans-
Quest when combining the main task with a binary
classification task trained on shuffled WikiMatrix
data. The binary classification task is simple to
learn, yet impossible to solve without paying equal
attention to source and translation. For better illus-
tration of the model behaviour and improvements,
Figure 6 in the Appendix directly compares the
performance and bias reduction achieved by the
best model to the benchmark. In addition, Figures
7 and 8 show the distribution of DA and HTER
predictions generated by the debiased model.

Since the reduction of the performance on the
target sentence is only considering the reduction of
the partial input bias, we additionally aim to test
the model’s ability to generalise better on datasets
that barely exhibit the partial input bias. As a feasi-
ble alternative to collecting an unbiased reference
dataset in the same language domain, we assess
the models’ robustness in a zero-shot setting on
less biased RO-EN data. As elaborated on in Sec-
tion 3.3, the RO-EN dataset provokes the partial
input bias significantly less than the other language
pairs. Consequently, a model with reduced partial
input bias should perform better when tested on
the dataset, indicating improved robustness. We
train the MonoTransQuest benchmark and debiased
MultiTransQuest architecture on the EN-DE and
EN-ZH datasets and use these models to predict the
respective scores on the RO-EN dataset. Since this
is an out-of-domain setting, we do not expect the

models to reach a performance that can compete
with the models trained on Romanian-English data.
However, the debiased MultiTransQuest models
should outperform MonoTransQuest in this zero-
shot scenario, which is indeed the case as can be
seen from Table 2.

EN-DE model EN-ZH model
DA HTER DA HTER
MonoTQ 0.3756 0.3466 0.494  0.3650

MultiTQ | 0.5601 0.3543 0.5226 0.4334

Table 2: Zero-shot prediction quality on the RO-EN
dataset (Measured with Person’s r).

6 Future Work

Building upon the previously discussed results, we
propose ideas for future work. Considering the
experimental design, the multitask architecture pro-
vides additional degrees of freedom that were not
explored extensively, yet. For example, one could
vary the amount of training per task or learn the
training schedule as a parameter which adapts dy-
namically during the training process (Kiperwasser
and Ballesteros, 2018; Zaremoodi et al., 2018). In
addition, the number of auxiliary tasks could be
increased to two or more, mixing different task
types. To further evaluate the generalisability of
the proposed methods, experiments with additional
datasets, low-resource language pairs as well as
alternative QE architectures and language models
could be conducted, too.

Going beyond the field of Machine Translation
Quality Estimation, it would be interesting to see
the methods applied in adjacent areas of NLP. For
example, this could entail closely related settings,
such as quality estimation for machine-generated
text summaries, as well as the fields of NLI and
VQA, both of which face partial input biases. Other
observable biases could also be considered as can-
didates for the use of targeted bias reduction tech-
niques, provided that it is possible to design a coun-
terbalancing auxiliary task or isolate the bias well
enough to deploy adversarial approaches. We think
that if the latter scenario applies, the adapted debi-
ased focal loss technique for regression could be
worth further exploration, too.
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7 Conclusion

This paper expands on recent research which sug-
gests that QE models are susceptible to learning
spurious correlations. Based on additional analysis,
and inspired by related work in the fields of NLI
and VQA, we propose a range of auxiliary tasks
that inform the main Quality Estimation task dur-
ing training and are discarded at test time. First,
we train the main Quality Estimation task together
with additional, less biased data in a multitask set-
ting. Then, we explore adversarial training and
debiased focal loss to directly target the partial in-
put bias. We find that the former approaches yield
more stable results than the latter and conjecture
that this is due to the difficulty of isolating partial
input bias effects from useful predictive informa-
tion encoded in the translation. We show that our
proposed multitask architecture MultiTransQuest,
especially when trained with additional shuffled
WikiMatrix data, generalises well across the two
most biased language pairs and the two different
quality scores. Our method retains the overall pre-
diction quality, reduces the observed biases signif-
icantly and increases the models’ robustness in a
zero-shot setting.
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A Appendix

DA (xlm-r-base) HTER (xlm-r-base)
r p MSE r p MSE
high- EN-DE 0.3695+0.04 0.3874 0.0239 0.4734+0.01 0.4662 0.0308
resource EN-ZH 0.4249-+0.01 0.4155 0.0246 0.3337+£0.01 0.3301 0.0792
mid- RO-EN 0.8467+0.01 0.7914 0.0165 0.7971+0.01 0.6672 0.0416
resource ET-EN 0.6882+0.01 0.7018 0.0520 0.6695+0.01 0.6646 0.0327
RU-EN 0.7133+0.01 0.6781 0.0254 0.3970+0.01 0.3260 0.0613
low- NE-EN 0.7110+0.01 0.6770 0.0184 0.5462+0.01 0.5313 0.0397
resource SI-EN 0.5880+0.01 0.5427 0.0299 0.5530+0.04 0.5383 0.0393

Table 3: Pearson r, Spearman p and MSE for MonoTransQuest benchmark predictions on the test set (Direct
Assessment & HTER) Note that we did our best to reproduce the results but reached a slightly worse performance.
Possible reasons for the deviation are: the use of different random seeds, hardware or versions of the pre-trained
XLM-R model.

Distribution of DA Scores & Predictions (XLM-R base)
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Figure 4: Distribution of MonoTransQuest DA predictions

Distribution of HTER Scores & Predictions (XLM-R base)
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Figure 5: Distribution of MonoTransQuest HTER predictions
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Hyperparameter DA HTER
# Sep Sha LRAux Batch r p MSE  r(target) r p MSE  r(target)
I 1 0 2e-5 8 0.2839 0.3248 0.0160  0.2343 0.4819 0.4596 0.0304  0.4145
2 2 0 2e-5 8 0.3490 03723 0.0154  0.1967  0.4086 0.4161 0.0315 0.3726
3 3 0 2e-5 8 0.3630 0.4142  0.0141 0.1979  0.4542 0.4432 0.0303 0.4000
4 3 1 2e-5 8 0.3619 0.3781 0.0165 0.1808 0.4594 0.4450 0.0306  0.3812
5 3 0 3e-5 8 0.3578 0.3747 0.0167 0.2522  0.4459 04365 0.0330 0.3691
6 3 0 2e-5 1 0.3811 0.4235 0.0175  0.1759  0.4630 0.4460 0.0300  0.4018

Table 4: Approach la: EN-DE with RO-EN as auxiliary task and backpropagation per task (Modified hyperparame-
ter: Sep = Number of separate layers; Sha = Number of shared layers on top of XLM-R; LR Aux = Learning rate of
the auxiliary task; Batch = Batch size)

Hyperparameter DA HTER
# Batch Sep Weight r P MSE  r(target) r p MSE r(target)
1 16 3 50/50  0.3217 0.3304 0.0169  0.2768 04713 0.4645 0.0307 0.4118
2 8 3 50/50 03763 0.4115 0.0164  0.2915 0.4983 0.4794 0.0296 0.4254
3 8 2 50/50  0.3625 0.3902 0.0163  0.2666 0.4956 0.4691 0.0297  0.4028
4 8 2 30/70 03314 0.3638 0.0165  0.0631 0.4698 0.4825 0.0307  0.3992

Table 5: Approach 1b: EN-DE with RO-EN as auxiliary task and summed loss (Modified hyperparameter: Batch =
Batch size; Sep = Number of separate layers; Weight = Weighting of the tasks (main/auxiliary) in the loss function)

Hyperparameter DA HTER
# Batch Sep Augment r p MSE  r (target) r p MSE  r(target)
1 8 2 shuffle 0.2583 0.3423 0.0147 0.0026 04645 04169 0.0320 0.3222
2 8 3 shuffle 0.2357 0.4222 0.0179 -0.0349 0.4609 0.4378 0.0388 0.3133
3 16 2 shuffle 0.4220 0.4431 0.0161 -0.0861 0.4489 0.4241 0.0412 0.1764
4 16 3 shuffle 0.3481 0.3859 0.0172 -0.0521 0.4629 0.4386 0.0365 0.3560
5 16 2 context  0.2402 0.2891 0.0203 0.1206 0.4467 04304 0.0306 0.3345

Table 6: Approach 2: Training with augmented WikiMatrix data as auxiliary task (Modified hyperparameter: Batch
= Batch size; Sep = Number of separate layers; Augment = Sentence augmentation strategy)

Hyperparameter DA HTER
# Batch Sep Grad Rev r p MSE  r(target) r p MSE  r(target)
1 16 1 -1 0.3015 0.3588 0.0184 -0.0868 0.4459 0.4075 0.0316 0.3221
2 16 2 -1 0.1738  0.2355 0.0231  0.0981 0.4619 0.4508 0.0332 -0.2574
3 16 3 -1 0.1160 0.2450 0.0172  0.0049 0.0921 0.1091 0.0374 -0.0744
4 8 1 -1 0.3356 0.3957 0.0162 0.1049 0.4213 0.4089 0.0333 0.0548
5 8 1 -0.5 0.3159 0.3714 0.0161 0.1084 0.4509 0.4357 0.0317 0.1153

Table 7: Approach 3: MultiTransQuest trained with target bias adversary (Modified hyperparameter: Batch =
Batch size; Sep = Number of separate layers; Grad Rev = Weight of the gradient reversal layer)

Hyperparameter DA HTER
# Batch Weight r p MSE r(target) r p MSE  r(target)
1 8 [0,1],86=1 0.4380 04608 0.0144 0.4038 0.4648 0.4445 0.0326 0.4484
2 16 [0,1,6=1 0.4027 04289 0.0148 0.3574 0.4623 0.4453 0.0306 0.4010
3 16 [0,1], 8 =2 04112 04313 0.0146 0.3470 0.4363 04193 0.0313 0.3822
4 16 [01],8=3 0.4104 0.4189 0.0152 0.3320 04713 0.4530 0.0302 0.4022
5 16 [0,1], 3=3.5 0.3394 0.3745 0.0158 0.2764 0.4462 0.4442 0.0320 0.3843
6 16 [0,1],8 =4 0.3323 0.3391 0.0155 0.2885 0.4472 04478 0.0324 0.4119
7 16 [0,1],86=3 0.3322  0.3580 0.0155 0.2913 0.4661 04365 0.0299 0.3961
S-shaped

Table 8: Approach 4: MonoTransQuest model trained with target bias focal loss (Modified hyperparameter: Batch
= Batch size; Weight = Weighting of the bias model)
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Augmented Data - Results for EN-DE Augmented Data - Results for EN-ZH
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Figure 6: Shuffled WikiMatrix data: Performance and partial input bias reduction
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Figure 7: MultiTransQuest: DA prediction distribution
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Figure 8: MultiTransQuest: HTER prediction distribution
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