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Abstract

The ability to capture temporal commonsense
relationships for time-related events expressed
in text is a very important task in natural lan-
guage understanding. However, pre-trained
language models such as BERT, which have
recently achieved great success in a wide range
of natural language processing tasks, are still
considered to have poor performance in tem-
poral reasoning. In this paper, we focus on the
development of language models for tempo-
ral commonsense inference over several pre-
trained language models. Our model relies
on multi-step fine-tuning using multiple cor-
pora and masked language modeling to predict
masked temporal indicators that are crucial for
temporal commonsense reasoning. We also ex-
perimented with multi-task learning and build a
language model that can improve performance
on multiple time-related tasks. In our experi-
ments, multi-step fine-tuning using the general
commonsense knowledge task as an auxiliary
task produced the best results. We obtained a
significant improvement in accuracy over stan-
dard fine-tuning in the temporal commonsense
inference task and on other time-related tasks.

1 Introduction
Commonsense reasoning is crucial for natural lan-
guage processing (NLP). Commonsense is the ba-
sic level of practical knowledge that is commonly
shared among most people1. A specific type of
commonsense is temporal commonsense. Tempo-
ral commonsense refers to the common knowledge
about various temporal aspects of events, such as
duration, frequency, and temporal order.

Capturing temporal commonsense relations for
time-related events expressed in sentences is a
very important task in natural language understand-
ing. However, pre-trained language models such
as BERT (Devlin et al., 2019), which have recently
achieved significant results in a wide range of NLP

1https://csrr-workshop.github.io/

tasks, are still said to perform poorly in tempo-
ral reasoning (Ribeiro et al., 2020). For example,
given two events, "going on a vacation" and "going
for a walk," most humans know that "vacation is
longer and occurs less frequently than walks," or
that "going on a walk is more frequent than going
on a vacation. However, it is difficult for computers
to make inferences based on such commonsense
knowledge.

In this paper, we focus on the development of a
language model for understanding temporal com-
monsense. In a prior study (Kimura et al., 2021),
BERT was used, and in this study, we also use
RoBERTa (Liu et al., 2019b) and ALBERT (Lan
et al., 2019), which are improved models of BERT.
We use them for multi-step fine-tuning using multi-
ple corpora and continual pre-training by perform-
ing the masked language modeling (MLM) task
(Devlin et al., 2019) on the target dataset. MLM
task is a fill-in-the-blank task that has been em-
ployed as a pre-training task for various language
models.

For multi-step fine-tuning, we thought an ad-
ditional stage of fine-tuning on an intermediate
related supervised task might help improve perfor-
mance because temporal datasets usually have only
a small amount of training data available. For con-
tinual pre-training on the target dataset, we aimed
to resolve the domain mismatch between the pre-
trained models and the target task, and make the
model better weight temporal indicators and event
triggers for our downstream tasks. In addition, we
apply multi-task learning to further improve our
model’s generalization performance.

Our contributions are summarized as follows:
• We propose a language model for understand-

ing temporal commonsense that effectively
leverages continual pre-training, multi-step
fine-tuning, and multi-task learning.

• We conducted multi-step fine-tuning and con-
tinual pre-training by performing the MLM
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Figure 1: Overview of the multi-step fine-tuning and continual pre-training methods.

task on the target dataset on three pre-trained
language models (BERT, RoBERTa, and AL-
BERT).

• We achieved the best performance with multi-
step fine-tuning using the general common-
sense knowledge task as auxiliary task on AL-
BERT.

• Although we focus on temporal commonsense
reasoning, we also examined and confirmed
the effectiveness of our multi-task learning
model on several other temporal-related tasks.

2 Related Work

Although research on temporal inference has been
conducted for a long time, in recent years, many
studies have been proposed on temporal expres-
sion extraction (Lee et al., 2014; Vashishtha et al.,
2019), temporal relation extraction (Ning et al.,
2017, 2018b), and the construction of timelines
(Leeuwenberg and Moens, 2018). As for temporal
commonsense, there are studies focusing on the du-
ration of events (Vempala et al., 2018; Vashishtha
et al., 2019), the temporal order of events (Ning
et al., 2018a), and so forth. Zhou et al. (2020) pro-
posed methods for constructing language models
that produce representations of events for relevant
tasks such as duration comparison, parent-child
relations, event coreference and temporal question-
answering tasks.

In particular, some recent works have focused
on the construction of challenging benchmarks for
temporal commonsense inference. The Story Cloze
Test (Mostafazadeh et al., 2016) dataset focuses on
the typical temporal and causal relationships be-
tween events. TORQUE (Ning et al., 2020) is a ma-
chine reading comprehension dataset that focuses
on the temporal ordering of events. MC-TACO
(Zhou et al., 2019) is a challenging multiple choice
temporal commonsense reasoning task that focuses
on temporal properties such as duration and order-
ing of events. TIMEDIAL (Qin et al., 2021) is a
dataset consisting of dialogues containing temporal

information and is a complex temporal common-
sense inference task using multi-turn dialogues.

In addition, pre-trained language models such as
BERT have succeeded on broad-coverage probing
benchmarks. However, in the case of domain mis-
match between the pre-trained model and the target
task, these models may still suffer catastrophic ac-
curacy degradation.

In this study, we focus on temporal common-
sense reasoning and attempt to improve the perfor-
mance of the pre-trained language model for under-
standing temporal commonsense. Our model effec-
tively leverages continual pre-training, multi-step
fine-tuning, and multi-task learning. It substantially
outperforms the standard fine-tuning approach.

3 Temporal Commonsense Reasoning
Task: MC-TACO

MC-TACO is a dataset that entirely focuses on a
specific reasoning capability: temporal common-
sense. MC-TACO considers five temporal proper-
ties: (1) duration (how long an event takes), (2)
temporal ordering (typical order of events), (3) typ-
ical time (when an event occurs), (4) frequency
(how often an event occurs), and (5) stationarity
(whether a state is maintained for a very long time
or indefinitely). It contains 13k tuples, each con-
sisting of a sentence, a question, and a candidate
answer, that should be judged as plausible or not.
The sentences are taken from different sources such
as news, Wikipedia and textbooks. An example
from this dataset is below. The correct answers are
in bold.

Paragraph: He layed down on the chair and
pawed at her as she ran in a circle under it.
Question: How long did he paw at her?
a) 2 minutes b) 2 days
c) 90 minutes e) 7 seconds
Reasoning Type: Duration

We mainly use the MC-TACO dataset for eval-
uating the performance of our model. In the later
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sections, we also show evaluation on additional
temporal-related tasks.

4 Methods

We focus on exploring different training techniques,
i.e., multi-step fine-tuning, continual pre-training,
and multi-task learning, for building our language
model for understanding temporal commonsense.
Each technique is detailed below.

4.1 Multi-Step Fine-Tuning

Multi-step fine-tuning (4.1) aims to supplement the
language model pre-training with an intermediate
fine-tuning stage on supervised tasks that are re-
lated to the target dataset. It has been shown to
improve model robustness and performance, espe-
cially for data-constrained scenarios (Phang et al.,
2018; Camburu et al., 2019). We first fine-tune
models on carefully selected auxiliary tasks and
datasets. This model’s parameters are further re-
fined by fine-tuning on the MC-TACO dataset.

4.2 Continual pre-training on the target
dataset

As mentioned in Section 2, performing continual
pre-training using the target dataset can be useful
to adapt the pre-trained model to the target task.
Based on this, we have applied the MLM task (De-
vlin et al., 2019) using MC-TACO on pre-trained
language models before performing standard fine-
tuning. The MLM task, which is used in the pre-
training of language models, is performed by ran-
domly replacing a subset of tokens by a special
token (e.g., [MASK]), and asks the model to pre-
dict them.

An overview of the multi-step fine-tuning and
continual pre-training methods is shown in Figure
1.

4.3 Multi-Task Learning

Multi-task learning (MTL) aims to improve the
generalization performance of the model by learn-
ing multiple related tasks simultaneously. It has
become increasingly popular in NLP because it can
improve the performance of related tasks by exploit-
ing their commonalities and differences (Zhang
et al., 2022). In this study, we use MT-DNN
(Liu et al., 2019a) to perform MTL and evaluate
the model’s performance on multiple time-related
tasks. MT-DNN is a multi-task learning frame-
work that can incorporate models such as BERT

BERT RoBERTa ALBERT
(large) (large) (xxlarge)

Parameters 334M 355M 235M
Layers 24 24 12
Hidden 1024 1024 4096
Embedding 1024 1024 128
Pre-training data size 16GB 160GB 16GB

Table 1: Summary of each pre-trained language model
used in our experiments.

and RoBERTa as the shared text encoding lay-
ers (shared across all tasks), while the top layers
are task-specific. We used the pre-trained BERT,
RoBERTa, and ALBERT models to initialize its
shared layers and refined them via MTL on multi-
ple time-related tasks.

5 Experiments

5.1 Text Encoders

In our previous study (Kimura et al., 2021), we
used BERT-base as the text encoder. In this study,
we explore the use of BERT-large, RoBERTa-large
and ALBERT-xxlarge models. RoBERTa is an im-
proved version of BERT, and has succeeded in
significantly improving on BERT’s accuracy by
adjusting the hyperparameters, changing the pre-
training method, and increasing the amount of data
for training, while keeping BERT’s mechanism in-
tact. ALBERT is also an improved model of BERT,
and is a lightweight, high-performance language
model that has surpassed the accuracy of BERT
by changing the type of pre-training task and how
to handle parameters. The summary of each pre-
trained language model is shown in Table 1. In
pre-training, BERT and ALBERT use the English
Wikipedia and BookCorpus, and RoBERTa uses
CC-News, OpenWebText and Stories datasets in
addition to them (Liu et al., 2019b).

5.2 Datasets

We use MC-TACO as the main training and evalua-
tion dataset. In addition, we use the TimeML, Cos-
mosQA, and SWAG datasets as auxiliary datasets
in the multi-step fine-tuning setting. A summary of
each dataset is provided below and in Table 2.

TimeML (Pan et al., 2006): This dataset is
specifically about duration of an event in a span of
text. The task is to decide whether a given event
has a duration longer or shorter than a day. An
example from this dataset showing a sentence with
an event (in bold) that has a duration shorter than a
day is below:
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train val test huggingface model implementation MT-DNN implementation
MC-TACO - 3,783 9,442 *ForSequenceClassification Pairwise Text Classification
TimeML 1,248 - 1,003 *ForSequenceClassification Pairwise Text Classification
MATRES 12,716 - 838 *ForSequenceClassification Single-Sentence Classification

CosmosQA 25,588 3,000 7,000 *ForMultipleChoice Relevance Ranking
SWAG 73,546 20,006 20,005 *ForMultipleChoice Relevance Ranking

Table 2: Summary of the datasets and their model implementations used in our experiments. We use huggingface
for the multi-step fine-tuning and continual pre-training experiments, and MT-DNN for the multi-task learning
experiments. The * symbol in the huggingface model implementation column stands for Bert, Roberta or Albert,
depending on the text encoder we use. When using MT-DNN, we use the Single-Sentence Classification, Pairwise
Text Classification, or Relevance Ranking implementations.

In Singapore, stocks hit a five year low.

CosmosQA (Huang et al., 2019): We propose to
enrich the temporal commonsense reasoning task
training by leveraging data from the general com-
monsense knowledge task. Since the commonsense
reasoning task commonly also involves reasoning
about temporal events, e.g., what event(s) might
happen before or after the current event, we hypoth-
esize that temporal reasoning might benefit from it.
CosmosQA is a general commonsense knowledge
task. This task focuses on reading between the lines
of a story where the causes and effects of events
are not explicitly mentioned and is a four-choice
multiple-choice question. An example from the
CosmosQA dataset is below. The correct answer is
in bold.

Paragraph: Did some errands today. My
prime objectives were to get textbooks,
find computer lab, find career services,
get some groceries, turn in payment plan
application, and find out when KEES
money kicks in. I think it acts as a refund
at the end of the semester at Murray, but
I would be quite happy if it would work
now.
Question: What happens after I get the
refund?
Option 1: I can pay my bills.
Option 2: I can relax.
Option 3: I can sleep.
Option 4: None of the above choices.

SWAG (Zellers et al., 2018): SWAG is also a
general commonsense knowledge task. The task is
to choose the correct ending among four options
that leverages commonsense knowledge. An exam-
ple from this dataset is below. The correct answer
is in bold.

Question: On stage, a woman takes a
seat at the piano. She

max train num learning
seq_len batch_size train_epoch rate

BERT
standard 128 16 5 1e-5fine-tuning
TimeML 128 16 4 2e-5
CosmosQA 256 32 1 2e-5
SWAG 256 32 2 2e-5
MLM 128 32 3 3e-5

RoBERTa
standard 128 16 20 1e-5fine-tuning
TimeML 128 16 6 2e-5
CosmosQA 512 16 1 1e-5
SWAG 256 32 2 1e-5
MLM 128 8 3 5e-5

ALBERT
standard 128 16 6 1e-5fine-tuning
TimeML 128 16 6 2e-5
CosmosQA 256 16 2 1e-5
SWAG 256 16 1 1e-5
MLM 128 8 3 5e-5

Table 3: Hyperparameter settings.

Option 1: sits on a bench as her sister
plays with the doll.
Option 2: smiles with someone as the
music plays.
Option 3: is in the crowd, watching the
dancers.
Option 4: nervously sets her fingers on
the keys.

5.3 Implementation Details
The hyperparameter settings used in our experi-
ments are shown in Table 3. For each dataset, we
select the best parameters based on validation ex-
periments. The parameters for MLM using the
target dataset are based on the values originally
used in the pre-training of the language model.

The bert-large-uncased, roberta-large and albert-
xxlarge-v2 models were used, and the Exact Match
(EM) and F1 scores were employed as the evalua-
tion metrics. The EM is the probability of correctly
labeling all answers to each question, and the F1-
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fine-tuned on EM [%] F1 [%]
BERT

standard fine-tuning 42.6 (42.9) 70.9 (71.0)
TimeML→MC-TACO 44.8 (43.7) 72.8 (70.8)
CosmosQA→MC-TACO 46.3 (43.6) 73.4 (70.7)
SWAG→MC-TACO 46.2 (44.7) 73.6 (72.6)

RoBERTa
standard fine-tuning 53.8 (54.4) 75.3 (77.6)
TimeML→MC-TACO 51.3 (51.1) 75.7 (76.1)
CosmosQA→MC-TACO 55.6 (55.2) 78.1 (77.3)
SWAG→MC-TACO 53.1 (53.9) 76.1 (77.3)

ALBERT
standard fine-tuning 55.0 (54.6) 77.1 (77.9)
TimeML→MC-TACO 51.8 (51.3) 77.9 (75.5)
CosmosQA→MC-TACO 59.5 (58.9) 80.3 (78.7)
SWAG→MC-TACO 52.8 (51.3) 77.3 (74.6)

Table 4: Test results on multi-step fine-tuning. The 5-
fold cross-validation results using the validation dataset
are shown in parenthesis ().

EM [%] F1 [%]
BERT

standard fine-tuning 42.6 (42.9) 70.9 (71.0)
MLM (MC-TACO) 45.2 (45.0) 72.5 (71.9)

RoBERTa
standard fine-tuning 53.8 (54.4) 75.3 (77.6)
MLM (MC-TACO) 51.2 (54.4) 76.2 (77.5)

ALBERT
standard fine-tuning 55.0 (54.6) 77.1 (77.9)
MLM (MC-TACO) 59.2 (58.3) 79.9 (78.2)

Table 5: Test results on MLM with target dataset. The 5-
fold cross-validation results using the validation dataset
are shown in parenthesis ().

score measures the average overlap between one’s
predictions and the ground truth (Zhou et al., 2020).

The model implementations we used in our ex-
periments are speficied in Table 2. We use hug-
gingface for the multi-step fine-tuning and contin-
ual pre-training experiments, and MT-DNN for the
multi-task learning experiments.

5.4 Results
Multi-Step Fine-Tuning
The results of the multi-step fine-tuning experi-
ments are shown in Table 4. The results show
that changing the language model from BERT to
RoBERTa and ALBERT improves accuracy. Over-
all, the best results were obtained when we used
ALBERT.

Continual pre-training on the target dataset
Table 5 shows the results when we perform MLM
on the target dataset. The results show that the
accuracy also improved by changing the model
used from BERT to RoBERTa and ALBERT. The
best results were also obtained when ALBERT was
used (with an EM score of 59.2% and an F1-score
of 79.9% on the test set).

Multi-Task Learning
We used MC-TACO, TimeML, CosmosQA, and
MATRES (Ning et al., 2018c) as auxiliary train-
ing data and evaluated on the time-related datasets
(MC-TACO, TimeML, and MATRES). MATRES
is a time-related task that focuses on the ordering
of events in a sentence and events annotated with
a temporal relation (BEFORE, AFTER, EQUAL,
VAGUE). An example of a sentence from this
dataset with two events (in bold) that hold the BE-
FORE relation is below:

At one point , when it (e1:became) clear
controllers could not contact the plane,
someone (e2:said) a prayer.

We performed MTL using ALBERT, which ob-
tained the best results in our previous experiments,
shown in Table 4 and Table 5. These results are
shown in Table 6. While there was an improvement
in accuracy with MTL on MATRES, there were dif-
ferences on MC-TACO depending on the auxiliary
dataset used for training, and no improvement on
TimeML.

5.5 Discussion
The experimental results show that changing the
text encoder used from BERT to RoBERTa and
ALBERT improves the accuracy of both multi-step
fine-tuning using an auxiliary dataset (Table 4, with
an EM score on the test set increasing from 46.3%
to 55.6% and 59.5%, respectively) and of continual
pre-training on the target dataset (Table 5, with an
EM score on the test set increasing from 45.2%
to 51.2% to 59.2%, respectively). These results
indicate a significant improvement over the BERT
baseline. This is a natural result considering that
RoBERTa and ALBERT are improved models of
BERT and have better performance than BERT on
benchmarks such as GLUE.

RoBERTa is an improved model of BERT, with
about 10 times the data size used for pre-training.
We think that pre-training on a large amount of data
improves performance in solving tasks that require
commonsense.

The best results were obtained when ALBERT
was used (with an EM score on the test set of 59.5%,
in Table 4, and an EM score on the test set of 59.2%,
in Table 5). The reason for this might also be the
difference in its pre-training method. ALBERT’s
pre-training method employs Sentence Order Pre-
diction (SOP) in addition to MLM. SOP is a binary
classification task that determines whether two text
segments are in the correct order, and focuses on
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Train dataset \ Evalation dataset MC-TACO TimeML MATRES
EM [%] F1 [%] acc [%] acc [%]

MC-TACO 57.6 80.6 - -
MC-TACO, TimeML 58.1 79.7 81.0 -
MC-TACO, MATRES 57.3 80.1 - 75.4
MC-TACO, CosmosQA 59.2 80.4 - -
MC-TACO, TimeML, MATRES 56.3 78.8 79.2 76.3
MC-TACO, TimeML, CosmosQA 53.0 76.5 79.9 -
MC-TACO, MATRES, CosmosQA 53.6 78.6 - 76.8
MC-TACO, TimeML, MATRES, CosmosQA 53.4 78.2 77.7 76.8
TimeML - - 81.1 -
TimeML, MATRES - - 79.4 77.2
TimeML, CosmosQA - - 80.4 -
TimeML, MATRES, CosmosQA - - 78.8 76.2
MATRES - - - 74.6
MATRES, CosmosQA - - - 74.7

Table 6: Test results on MTL using MT-DNN. Single-task learning results using MT-DNN are in blue, and those
exceeding the accuracy of single-task learning are in bold.

modeling inter-sentence coherence. We hypothe-
size that this pre-training task enables the model to
acquire additional temporal knowledge needed to
solve the MC-TACO task.

Focusing on the results of multi-step fine-tuning
using RoBERTa (Table 4), we can see that the pro-
posed method improves the standard fine-tuning
accuracy in many cases (with an EM score on the
test set increasing from 53.8% to 55.6%, and a
F1-score on the test set increasing from 75.3% to
75.7%, 78.1%, and 76.1%), but the increase in ac-
curacy is smaller than that of BERT and ALBERT.
The reason is that RoBERTa uses a much larger
number of data for pre-training than BERT or AL-
BERT, and a large corpus is learned at the time of
pre-training, thus multi-step fine-tuning may not be
effective.

Note here that EM measures how many ques-
tions a system is able to correctly label all candi-
date answers (Zhou et al., 2019). EM is a stricter
metric and we consistently obtain lower EM scores
than F1 scores in our experiments.

The results of the MTL experiments (Table 6)
were somewhat unstable, with the accuracy im-
proving in some cases (e.g., an EM score on the
test set of 59.2% with the model that trains with
MC-TACO and CosmosQA and evaluates on MC-
TACO) and worsening in others (e.g., an EM score
on the test set of 53.0% with the model that trains
with MC-TACO and TimeML and CosmosQA and
evaluates on MC-TACO), depending on the dataset
used. Task affinity is important for MTL, and per-
formance may deteriorate if unrelated tasks are
learned at the same time. In addition, we found
it surprising that all multi-task settings lead to im-
proved accuracy on MATRES. MATRES is a task

that treats verbs in sentences as events and predicts
their order. However, there are many temporal
expressions other than verbs in natural language
sentences (e.g., before, after, when, first, etc.), and
in order to predict the order of events, not only
verbs but also various parts of speech and other
factors such as duration might be effective. We hy-
pothesize this is why MTL improves the accuracy
on MATRES. We think it is necessary to further an-
alyze why these results are obtained in cases where
accuracy improves and in cases where it does not.

6 Conclusion

In this paper, we focused on the development
of a language model for temporal common-
sense reasoning, and tried to develop a language
model for understanding temporal commonsense.
We conducted multi-step fine-tuning, continual
pre-training, and multi-task learning on BERT,
RoBERTa, and ALBERT, using several datasets.
We confirmed that the multi-step fine-tuning model
that uses the general commonsense knowledge task
as an auxiliary task was often better than that ob-
tained by ordinary fine-tuning and we were able to
construct a language model that understands tem-
poral commonsense. Comparing BERT, RoBERTa,
and ALBERT, ALBERT produced the best results
overall.

For future work, we plan to further investigate
multi-task learning. In multi-task learning, we
would like to visualize attention scores, for exam-
ple, and pursue what setting can improve general-
ization performance. Also, we plan to construct a
new general-purpose language model that performs
well in a variety of time-related tasks.
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