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Abstract

Adapter-based tuning, by adding light-weight
adapters to multilingual pretrained language
models (mPLMs), selectively updates
language-specific parameters to adapt to a
new language, instead of finetuning all shared
weights. This paper explores an effective way
to leverage a public pool of pretrained language
adapters, to overcome resource imbalances for
low-resource languages (LRLs). Specifically,
our research questions are, whether pretrained
adapters can be composed, to complement
or replace LRL adapters. While composing
adapters for multi-task learning setting has
been studied, the same question for LRLs
has remained largely unanswered. To answer
this question, we study how to fuse adapters
across languages and tasks, then validate
how our proposed fusion adapter, namely
FAD-X, can enhance a cross-lingual transfer
from pretrained adapters, for well-known
named entity recognition and classification
benchmarks. 1

1 Introduction

While fine-tuning the multilingual pretrained lan-
guage models (mPLMs), such as mBERT (Devlin
et al., 2019) or XLM-R (Conneau et al., 2020)
has become a de-facto standard to tackle diverse
language tasks, task performance in low-resource
languages lags behind, due to resource imbal-
ances (Wu and Dredze, 2020).

To overcome this challenge, MAD-X (Pfeiffer
et al., 2020) tackles such performance degrada-
tion as a capacity issue, and adopts the idea of
adapters (Houlsby et al., 2019). For a new lan-
guage (or a task), they add a few parameters to
adapt, while keeping parameters for mPLMs frozen.
This approach enables a parameter-efficient adap-
tation to a new language or task, by tuning only

∗Corresponding author
1Code is available at https://github.com/

thnkinbtfly/FAD-X.

Figure 1: Bar graph: statistics of training resources for
language adapters (LAs) and task adapters (TAs), in log
scale. Line graph: relative F1 scores (%) of MAD-X
and proposed FAD-X, compared to mBERT fine-tuning
performance. We target LRLs in the red box, with
resources for both LA/TA being orders of magnitude
smaller.

language- and task-specific parameters, which can
also be released as pretrained adapters.

However, we argue that a significant resource
imbalance yet remains, especially for LRLs. To
illustrate, Figure 1 shows 8 highest/lowest resource
languages among those with pretrained adapters.
The gray bar suggests training resources for LA
(Wikipedia articles written in each language) and
the blue bar suggests those for TA (WikiAnn in Sec-
tion 3.2), which are dominated by high-resource
languages, especially English. This suggests that
pretrained adapters for our target problem of LRLs
(shown in the red box), are trained from resources
that are multiple orders of magnitude smaller: For
example, in Figure 1, resources for TA/LA for gn
are up to 20-fold and 1000-fold smaller respec-
tively, which causes a negative transfer of MAD-X,
to underperform mBERT baseline (shown in pur-
ple line). More significantly, the amount of lan-
guages supported by adapters (40+) is much less
than that of mBERT (100+), and even more signif-
icantly less than 6500+ languages that need to be
supported. These observations present two chal-
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Figure 2: Comparison of FtP (middle) and PtF (right) of FAD-X, and MAD-X (left) architecture.

lenges for LRLs, (a) pretrained LA may not exist,
or exist with poor quality, and (b) task-specific re-
source is also scarce.

In this paper, we propose Fusing multiple
ADapters for cross-lingual transfer (FAD-X), to
overcome imbalances, by transferring from both
LA and TA resources available for higher-resource
languages.

Inspired by multilingual PLM outperforming
monolingual PLM for LRLs from a cross-lingual
transfer (Wu and Dredze, 2020; Muller et al., 2021;
Chau and Smith, 2021), we study whether such a
transfer among adapters can be effective. Specif-
ically, we study whether pretrained LAs can be
fused to complement LRLs with lower-quality LA,
or even to support those with no adapter.

Toward this goal, given the pool of pretrained
adapters L and target language t, we propose to
utilize pretrained language adapter LAli ∈ L, to
train task adapter per each language, denoted as
TAli . We show that fusing such task adapters con-
tributes to overcoming limited training resources,
in training TA in the target language (the yellow
line in Figure 1 ensures positive transfers in all
LRLs with larger gains than MAD-X).

Contributions Our contributions are as follows:

• We devise FAD-X, a method to fuse adapters
trained from different languages.

• We propose two designs to fuse language and
task adapters, and evaluate the effectiveness
on two different tasks; For LRLs, we improve
+5.3% F1 on WikiAnn and +16.5% accuracy
on Amazon Review dataset, on average.

• We also validate FAD-X, in a more resource-
constrained setting, where LA does not exist

for the target language.

2 Proposed Method

2.1 Preliminaries
We first briefly review MAD-X (Pfeiffer et al.,
2020) architecture (left of Figure 2). For each layer
in a given PLM, MAD-X adds two adapters; lan-
guage adapter (LA) and task adapter (TA). When
h is the output of the original transformer layer,
MAD-X first alters output as LA(h), and updates
the parameters of LA using unlabelled data in lan-
guage t (Resource for LA in Figure 1), to ob-
tain LAt. Then, parameters for TA are trained
from resource for TA shown in Figure 1, from
TA(LAt(h)) to produce TAt. However, MAD-
X suffers when resources for LA/TA are scarce, as
shown in the LRLs in the red box in Figure 1.

2.2 FAD-X
To overcome the lack of resources for LA/TA ob-
served for LRLs, we propose FAD-X. Our key
idea is fusing task adapters trained with pretrained
adapters in other languages.

More formally, given a pool of n pretrained
adapters, L = {LAl1 , · · · , LAln}, our goal is fus-
ing TAli trained from each language adapter LAli ,
which can be implemented as one of the following
two designs, as also illustrated in Figure 2:

• Fused then Paired (FtP): We first fuse task
adapters F (TAl1 , · · · , TAln), then pair with
target language adapter LAt, or, Fuse =
F (TAl1 , · · · , TAln) ◦ LAt.

• Paired then Fused (PtF): Each task adapter
TA is paired by language adapter LA used
for training, or, Fuse = F (TAl1 ◦
LAl1 , · · · , TAln ◦ LAln).
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where F (A1, · · · , An) is formulated as Adapter-
Fusion module (Pfeiffer et al., 2021) as follows:

si = softmax(hTQ⊗Ai(h)
TK) (1)

zi = Ai(h)
TV, i ∈ 1, · · · , n (2)

F (A1, · · · , An)(h) =
∑
i

sizi (3)

In the above equation, ⊗ denotes the dot product,
and Q, K, and V represent the learnable query, key,
and value matrices. With the proposed architec-
ture, we can fully utilize other available pretrained
adapters.

3 Experiments

3.1 Setup
Datasets We used two datasets to confirm
the effect of our proposed method, FAD-X.
WikiAnn (Pan et al., 2017) is a multilingual dataset
for named-entity recognition (NER). We use the
split with balanced labels (Rahimi et al., 2019)
which covers 176 languages. The size of the dataset
highly differs over languages; As Figure 1 shows,
high-resource languages may have up to 20,000 ex-
amples for training, while low-resource languages
usually have only 100 examples. The Multilingual
Amazon Reviews Corpus Dataset (Keung et al.,
2020) contains reviews of items where the user can
give one to five stars to each record. There are
200,000, 5,000, and 5,000 reviews in train, valida-
tion, and test sets for each language, respectively.
We simulate LRLs by random sampling 1% of the
train datasets, which corresponds to 2,000 exam-
ples.

Languages For experiments conducted with
WikiAnn dataset, we select LRLs used in (Pfeiffer
et al., 2020) as target LRLs. We set L by collecting
one HRL per each language family. For the exper-
iment with Amazon Reviews dataset, we set L as
all languages except for the simulated target LRL.
We further describe the selected languages in the
Appendix.

Methods For given language t, we compare three
methods.

• Fuse(L): Fusion of adapters pretrained on
languages L, following our proposed method
FAD-X.

• S(t): A baseline which stacks TAt with LAt,
following a state-of-the-art method, MAD-X.

• S(t) w/ param+: A baseline which uses
adapters with same additional parameters as
Fuse(L).

Experimental Settings To train TAl for
WikiAnn in each language l, we use batch size
of 16, learning rate of 2e-5, and train for 100
epochs then select best checkpoint based on the
validation F1 score. We conduct each experiment 5
times and report the average test F1 score. We use
multilingual BERT (Devlin et al., 2019) with 104
languages for this experiment. To train on Amazon
Reviews dataset, we use multilingual BERT and
XLM-R (Conneau et al., 2020) as the base models,
and use batch size of 32, learning rate of 1e-5. We
train for 15 epochs following (Keung et al., 2020).
All experiments are run 5 times and we report the
average test accuracy.

Scenarios We consider two possible scenarios:

• LAt ∈ L. We conjecture that, with knowl-
edge transfer from adapters trained in other
languages, fused adapters outperform using
LAt only.

• LAt /∈ L (no adapter). LAt is proxied by that
of some li in L, which we select the HRL in
same language family, or English if isolated.

3.2 Analysis on WikiAnn

LAt ∈ L: Combining LAt with others in L was
complementary for all target languages (Table 1).

qu cdo ilo xmf mhr mi tk gn avg
mPLM (Pfeiffer et al., 2020) 71.80 48.30 80.20 63.20 61.70 87.10 69.20 62.90 68.05
S(t) (Pfeiffer et al., 2020) 72.90 51.80 79.10 67.50 70.40 88.00 70.30 56.90 69.61
S(t) 70.22 53.00 81.27 69.11 71.09 86.95 68.63 62.61 70.36
S(t) w/ param+ 67.46 56.33 80.37 70.50 69.75 90.12 67.86 62.88 70.66
Fuse(L) 75.88∗ 53.90 86.88 74.08 82.49 92.19∗ 71.67 68.11∗ 75.65

Table 1: LAt ∈ L results on WikiAnn. w/ param+: add the same number of parameters as in Fuse(L). ∗: Use PtF
architecture, based on Table 3.
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qu cdo ilo xmf mhr mi tk gn avg
S(t) 70.22 53.00 81.27 69.11 71.09 86.95 68.63 62.61 70.36
Fuse(L-LAt) 81.01 50.35 85.75 71.06 66.84 92.69 71.34 74.18 74.15
Fuse(L-LAt) w/ ml 76.01 51.55 84.73 65.09 66.68 92.00 70.53 71.43 72.25

Table 2: LAt /∈ L results on WikiAnn. w/ml: use most resource-abundant languages without consideration of
language families.

scenario arch qu cdo ilo xmf mhr mi tk gn

Fuse(L)
FtP 66.32 55.96 88.82 71.56 83.09 86.13 77.20 61.40
PtF 72.70 52.50 86.66 68.56 71.45 90.23 73.52 66.03

Fuse(L-LAt)
FtP 72.89 56.70 91.79 73.45 72.69 90.34 75.66 69.05
PtF 70.24 55.79 88.64 70.06 70.82 90.70 71.14 65.93

Table 3: Average val F1 scores in WikiAnn, comparing PtF and FtP designs.

LAt /∈ L: Alternatively, we assume LAt does
not exist and fuse only L−LAt. Table 2 shows that
such fusion outperforms the baseline on average.

Parameter Efficiency: We investigate whether
our improvement comes from an increase of
parameters– We add the same number of param-
eters as Q,K, V in the fusion module to S(t), de-
scribed in the row named ‘S(t) w/ param+’ in Ta-
ble 1.

Though such an increase does improve results
for some languages, it often negatively impacts
the performance as well. This indicates that our
fusion model proposes an effective use of increased
parameters.

Selection of HRLs for fusion: This section ex-
plores an alternative of choosing one HRL in the
same family (as discussed in Section 3.1), by se-
lecting the most resourced language (ml) regardless
of the family. Row named ‘Fuse(L-LAt) w/ ml’ in
Table 2 reveals the performance of such variant.
It is inferior to our original selection, by collect-
ing HRLs from multiple families. This indicates
the diversity of fusing multiple language families
enhances the cross-lingual transfer.

FtP vs PtF: In Section 2, we proposed two de-
signs to fuse with HRL adapters, FtP and PtF. We
investigate which approach is better with validation
scores in WikiAnn, revealed in Table 3. Surpris-
ingly, PtF cannot provide better performance than
FtP in most scenarios, even though it uses more
adapters. The only exceptions are qu, mi, gn.

We investigated whether these exceptions corre-
late with phonological similarity, which is studied
to highly correlate with cross-lingual transfer per-
formance of WikiAnn (Lauscher et al., 2020). This
is computed as cosine similarity between URIEL

LRL qu cdo ilo xmf mhr mi tk gn
sim 0.80 0.89 0.85 0.93 0.91 0.67 1.00 0.75

Table 4: Linguistic similarity between each target LRL
and closest HRL.

ja
mPLM 73.2
S(t) 71.7
Fuse(L) 72.7

Table 5: WikiAnn result in resource-abundant scenario.

phonology vectors (Littell et al., 2017). Table 4
reports the similarity of each language to closest
HRL– Three languages with the lowest scores are
shown in bold, where qu and gn are “isolated" with-
out a HRL in the same family, and mi is closer to
a HRL in another family. Though we leave deeper
analysis as a future work, this predicts languages
where FtP underperform.

Importance of resource-imbalanced scenario:
Our conjecture is that FAD-X helps MAD-X out-
perform mPLM baselines, when the resource for
LA or TA lags behind. To verify, we evaluate FAD-
X when such condition is violated. Table 5 shows
that in resource-abundant situations, although fu-
sion complements the adapters, it does not outper-
form the mPLM.

3.3 Analysis on Amazon Reviews
We further verify previous observations with Ama-
zon Reviews dataset. We perform same analyses,
as long as supported by this dataset.

LAt ∈ L: Similar to WikiAnn results, LAs in L
help LAt, for all target languages (Table 6). On
average, we observe 12% increase for mBERT, and
16.8% accuracy increase for XLM-R.
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mBERT XLM-R
en zh de ja es fr avg en zh de ja es avg

mPLM 44.94 41.91 45.30 39.92 45.10 44.11 43.55 52.42 48.09 52.94 49.36 51.70 50.90
S(t) 36.61 34.06 37.62 31.67 35.40 35.03 35.06 35.60 38.19 36.40 38.51 34.02 36.55
S(t) param+ 45.32 42.48 44.91 39.40 44.77 44.49 43.56 48.68 45.74 48.81 46.53 48.15 47.58
Fuse(L) 49.34 45.18 41.98 48.98 48.82 48.48 47.13 54.72 50.95 51.40 54.20 55.48 53.35

Table 6: LAt ∈ L results on Amazon Multi Review dataset with simulated low-resource scenario.

mBERT XLM-R
en zh de ja es fr avg en zh de ja es avg

S(t) 36.61 34.06 37.62 31.67 35.40 35.03 35.06 35.60 38.19 36.40 38.51 34.02 36.55
Fuse(L-LAt) 49.23 45.44 42.28 48.88 48.74 48.06 47.10 54.79 50.84 51.48 54.11 55.06 53.26

Table 7: LAt /∈ L results on Amazon Multi Review dataset with simulated low-resource scenario.

LAt /∈ L: LAs in L− LAt could substitute LAt

(Table 7), which is consistent with WikiAnn results.

Parameter Efficiency: Again, we examine
whether the parameter increment is the main cause
for the enhanced performance. By comparing last
two rows of Table 6 we can observe that, although
more parameters could lead to better performance,
FAD-X could utilize the given parameters more
efficiently.

FtP vs PtF: We investigate whether FtP outper-
form PtF consistently over various train data sizes,
with mBERT. We additionally build train sets by
randomly sampling 0.1% and 10% of the original
train datasets. Table 8 shows that, FtP generally
outperforms PtF over diverse train data sizes.

4 Related Work

Adapters Adapters proposed for domain adapta-
tions in computer vision tasks (Rebuffi et al., 2017,
2018), have been successful for language tasks, as a
parameter-efficient alternative to fine-tuning PLMs,
specifically for task (Houlsby et al., 2019) and do-
main adaptation (Bapna and Firat, 2019), avoiding
catastrophic forgetting (Santoro et al., 2016). The
closest work to ours is, AdapterFusion (Pfeiffer
et al., 2021) combines the representations from

several task adapters for monolingual target tasks.
Our distinction is enabling a cross-lingual transfer
across multiple language and task adapters.

Cross-lingual transfer A de-facto cross-lingual
transfer is finetuning PLMs: mBERT (Devlin
et al., 2019), XLM-R (Conneau et al., 2020), or
mT5 (Xue et al., 2021), while MAD-X (Pfeiffer
et al., 2020), leveraging three types of adapters:
language, task, and invertible adapters, have been
its parameter-efficient alternative. Our contribu-
tion is observing the weaknesses of MAD-X for
LRLs, and presenting a fusion to overcome such
weaknesses.

5 Conclusion

We proposed FAD-X, fusing multiple pretrained
adapters, for a cross-lingual transfer to LRLs, over-
coming the imbalances in resources for LA/TA.
We validate the effectiveness of our approach, for
LRLs with no pretrained adapter or that trained
with limited resources.
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lang language family R for TA R for LA

HRLs

English (en) Indo-European 20K 6.24M
Vietnamese (vi) Austroasiatic 20K 1.26M
Chinese (zh) Sino-Tibetan 20K 1.18M
Arabic (ar) Afro-Asiatic 20K 1.10M
Indonesian (id) Austronesian 20K 0.56M
Finnish (fi) Uralic 20K 0.50M
Turkish (tr) Turkic 20K 0.39M
Georgian (ka) Kartvelian 10K 0.15M
German (de) Indo-European 20K 2.53M
French (fr) Indo-European 20K 2.30M
Russian (ru) Indo-European 20K 1.70M
Spanish (es) Indo-European 20K 1.66M
Japanese (ja) Japonic 20K 1.25M

LRLs

Quechua (qu) Quechua 0.1K 22k
Min Dong (cdo) Sino-Tibetan 0.1K 15k
Ilokano (ilo) Austronesian 0.1K 14k
Mingrelian (xmf) Kartvelian 0.1K 13k
Meadow Mari (mhr) Uralic 0.1K 10k
Maori (mi) Austronesian 0.1K 7k
Turkmen (tk) Turkic 0.1K 6k
Guarani (gn) Tupian 0.1K 4k

Table 9: Languages we used for WikiAnn experiments. Bolded HRLs are the languages used for fusion. Underlined
HRLs are used as a comparison in Section 3.2.

A Appendix

A.1 Language Selection
For experiments conducted with WikiAnn dataset,
we investigate all unseen languages used in (Pfeif-
fer et al., 2020), which lack resource for task
adapters and language adapter, revealed in the bot-
tom of Table 9. To select languages to fusion
with, we choose one HRL per each language fam-
ily, which are bolded in Table 9. For experiment
with alternative selection (Section 3.2), we choose
languages with most abundant resources, without
consideration of diverse language families, which
are underlined in Table 9. Note that all languages
we deal with have pretrained language adapters
available in Adapter-Hub2. For the experiment
with Amazon Reviews dataset, we consider all lan-
guages available, except French, whose language
adapter was not provided on Adapter-Hub that fits
on XLM-R.

2https://adapterhub.ml


