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Abstract

Entity-centric summarization is a type of con-
trollable summarization that aims to produce
a summary of a document that is specific to a
given target entity. Extractive summaries pos-
sess multiple advantages over abstractive ones
such as preserving factuality and can be directly
used in downstream tasks like target-based sen-
timent analysis or incorporated into search ap-
plications. In this paper, we explore methods to
solve this task by recasting it as a sentence se-
lection task, as supported by the EntSUM data
set. We use methods inspired by information
retrieval, where the input to the model is a pair
representing a sentence from the original docu-
ment and the target entity, in place of the query.
We explore different architecture variants and
loss functions in this framework with results
showing an up to 5.8 F1 improvement over past
state-of-the-art and outperforming the competi-
tive entity-centric Lead 3 heuristic by 1.1 F1. In
addition, we also demonstrate similarly strong
results on the related task of salient sentence
selection for an entity.

1 Introduction

Controllable summarization is a recently growing
area of research, where the aim is to provide a
summary that is specific to a user’s information
need, which could be a target entity (Maddela et al.,
2022), aspect (Amplayo et al., 2021) or topic —
or can represent the user’s preferred style (Fan
et al., 2018) or length (Kikuchi et al., 2016; Dou
et al., 2021). Controllable summarization offers the
promise of making summarization more usable to
users, enabling them to achieve their end goals by
summarizing the information they are interested in
(Jones, 1999).

Extractive summarization aims to extract pas-
sages or entire sentences from the original sum-
maries, as opposed to abstractive summarization
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which aims to generate an entirely new sum-
mary (Nenkova et al., 2011). Although most recent
research has focused on abstractive summarization
techniques, these possess several disadvantages,
the most prominent being the potential for lack of
factuality and coherence (Cao et al., 2018; Kryscin-
ski et al., 2019; Lebanoff et al., 2019), as well
as difficulty in correctly assessing the summary
quality automatically (Rankel et al., 2013; Peyrard,
2019; Zhang et al., 2019). On the other hand, ex-
tractive summarization mitigates these issues by
extracting text from the original document and, if
the data set contains the sentence or passage level
information, evaluation can then be performed us-
ing standard metrics, such as F1. The extractive
entity-centric summarization methods can be used
directly to aid users in interactive applications such
as search (Varadarajan and Hristidis, 2006; Turpin
et al., 2007), through either highlighting or extract-
ing passages in the document. Extractive summa-
rization also has the potential to be used as an in-
termediary step or auxiliary task in downstream
entity-centric tasks, such as entity salience (Gamon
et al., 2013; Dunietz and Gillick, 2014), aspect-
based sentiment classification (Pontiki et al., 2016),
or information retrieval.

This paper presents the first in-depth study of
extractive entity-centric summarization methods.
We take advantage of the unique properties of the
EntSUM data set (Maddela et al., 2022), which
provides multiple layers of annotations regarding
the entities, including the sentences salient for the
entity in a document and the sentences that con-
struct a summary about an entity. We are thus able
to recast the entity-centric extractive summariza-
tion task as selecting the summary sentences re-
garding an entity in a document. This allows us
to compute reliable F1 metrics to compare sev-
eral approaches, including heuristics and adapta-
tions to extractive summarization of controllable
summarization methods. We propose new meth-
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ods for entity-centric summarization using the bi-
encoder framework with pre-trained Transformer-
based models which significantly outperform past
approaches to entity-centric summarization and fur-
ther, outperform the challenging entity-centric lead-
3 baseline in summarization tasks.

Our contributions are (1) framing the entity-
centric summarization task as sentence selection;
(2) a new state-of-the-art method for the task; (3)
data analysis for insight into model behavior.

2 Data

We use the EntSUM data set introduced in (Mad-
dela et al., 2022) to evaluate our methods. The
EntSUM data set consists of 2,788 entity-centric
summaries across 645 documents annotated on top
of the test split of the New York Times (NYT)
(Sandhaus, 2008) summarization data set. In this
paper, we use 2 out of the 4 annotations in EntSUM:
the salient sentences to the entity and the summary
sentences for an entity.

Each entity is mentioned on average in 3.95 sen-
tences. Annotators labeled as salient sentences to
the entity all sentences relevant to a given entity
with an average of 5.8 sentences/entity. Annotators
selected sentences to compose the entity-centric
summary as a subset of the salient sentences, re-
sulting in an average of 2.49 sentences.

3 Task Definition

We define the task of extractive entity-centric
summarization as selecting a set of sentences
{S¢...S;} from a single document D =
{S1...5,}, when given the document D and a
target entity e as input. This type of problem for-
mulation is facilitated by the EntSUM data set, as
explicit annotations exist at the sentence level. This
also allows us to use standard precision, recall and
F1 metrics for the evaluation of extractive summa-
rization.

To date, sentence-level classification was rare
due to the complexity and resource-intensive na-
ture of obtaining the annotations. Most large single-
document summarization data sets have been col-
lected by aligning full documents with a hand-
written abstractive summary obtained from titles
(Narayan et al., 2018), bullet points (Hermann et al.,
2015) summaries created for indexing purposes
(Sandhaus, 2008) or TL;DR’s created by scientific
paper authors (Cachola et al., 2020). The lack of
sentence-level annotations required previous ex-

tractive summarization methods (See et al., 2017;
Liu and Lapata, 2019; Zhong et al., 2020) to be
trained on greedily generated weak sentence-level
labels obtained using content overlap metrics such
as ROUGE (Lin, 2004) or were evaluated on ab-
stractive summaries using overlap measures such
as ROUGE or BERTScore (Zhang et al., 2019),
which at times are unable to properly capture se-
mantic similarity. This type of evaluation and setup
is more common in multi-document extractive sum-
marization research (Kim et al., 2011; Angelidis
and Lapata, 2018; Amplayo and Lapata, 2021; An-
gelidis et al., 2021). Evaluation using F1 is arguably
more reliable and less ambiguous, albeit there are
also some caveats associated with using this task
setup such as granularity (Nenkova et al., 2011).

4 Methods

We experiment with the categories of methods
listed below. Methods with Ent in their name iden-
tify sentences containing the target entity and re-
strict inference to only those sentences. Entities are
identified by using the Flair NER model (Akbik
et al., 2018) and SpanBERT (Joshi et al., 2020) for
coreference resolution, then matched to the target
entity using string matching.

4.1 Heuristics

LeadK-Overall is a generic summarization
method that selects the first k sentences in the doc-
ument regardless of the target entity.

LeadK-Ent uses the entity detection pipeline to
identify the first £ sentences in a document with a
given entity. This is a strong heuristic correspond-
ing to the LeadK method for generic summaries,
which relies on the fact that the first few sentences
contain salient information (Nallapati et al., 2017).
All-Ent uses the entity detection pipeline to iden-
tify all sentences in a document with a given entity.

4.2 Oracle Methods

Oracle methods use annotations for a given task to
provide an upper bound to a series of methods.
LeadK-Oracle-Salient selects the top k sentences
from the gold salient sentence annotations.
LeadK-Oracle-Summary selects the top & sen-
tences from the gold summary sentence annota-
tions.

4.3 BERTSum Variants

In line with the original EntSUM paper Maddela
et al. (2022), we use extractive methods based on
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the state-of-the-art extractive generic summariza-
tion architectures of BERTSum (Liu and Lapata,
2019). Sentence representations are generated for
each sentence through a BERT encoder (Devlin
et al., 2019) Interactions between these sentences
are modeled through a summarization layer, which
generates a representation for each sentence that is
passed to a classifier to determine if the sentence
should be added to the summary. We choose up
to three sentences to control for summary length
when compared with the Lead3 methods.
BERTSum-Overall is the BERTSum model for
generic summarization.

BERTSum-Ent is an adaptation of BERTSum
which only uses the entity detection pipeline as
input and is trained on proxy summaries. This is
the best performing extractive method from Mad-
dela et al. (2022).

BERTSum-Prefix adds the target entity as a pre-
fix to the input document, which is then passed to
BERTSum-Ovr. This is inspired by entity prepend-
ing in controllable abstractive summarization (Fan
et al., 2018; He et al., 2020) and extractive aspect-
oriented opinion summarization (Ahuja et al.,
2022).

BERTSum-Coref-Prefix replaces the BERT en-
coder weights in BERTSum-Prefix with pre-trained
SpanBERT-coref! encoder weights with the aim on
enhancing the input with coreference information.

4.4 Bi-Encoders

The bi-encoder architecture takes an input pair and
uses two encoders to represent the two inputs in-
dependently as dense vectors. Training is done by
taking a loss function involving the two vectors
and the gold label, such as a cosine similarity loss.
At inference time, a similarity metric is computed
across the two representations. Bi-encoders us-
ing Transformer-based pre-trained language mod-
els have achieved state-of-the-art results in many
tasks that operate on pairs such as entity linking
(Wu et al., 2020), sentence similarity (Reimers and
Gurevych, 2019) or passage retrieval (Karpukhin
et al., 2020).

We experiment with the following versions using
BERT as the encoder in all cases:
Encoder types: we experiment with both having
the same encoder updated by both inputs (Tied)
and updated independently (Untied) when training

"https://github.com/mandarjoshi90/
coref

on the pair classification task.
Loss Functions: we use cosine similarity (Cos) or
contrastive loss (Cntr). Cosine similarity is com-
puted between the entity (e) and sentence (s) rep-
resentations and the binary label Y is used in the
loss defined as Le,s = ||Y — % ||2. Contrastive
loss (Hadsell et al., 2006) requires similar pairs
S and dissimilar pairs D to define the loss func-
tion as Leop, = (1 — Y)Lg + Y Lp, for a given
label Y € {0, 1} with the goal of maximizing the
margin between the positive and negative sample
boundary.
Sentence selection: we select sentences for the
summary either by thresholding on the cosine sim-
ilarity value (here, 0.5) between the target entity
and all sentences in the document (Thres) or by
taking the top k values (Top) above the threshold.
We experimented with adapting the BERTSum
architecture to a bi-encoder setup, however, the
results are underwhelming and are omitted for
brevity.

S Experimental Setup

5.1 Training

We follow the experimental setup of Maddela et al.
(2022), where we train on the NYT data set without
entity-centric annotations and use the annotated
EntSUM data set only for testing. We thus create
training data by creating weak labels for entity-
centric summaries from generic ones.

We train all our methods on the NYT corpus
consisting of 44,382 training and 5,523 validation
(document, summary) pairs as specified in (Kedzie
et al., 2018). This data set size increases to 464,339
training and 58,991 validation pairs when training
in the BERTSum setup as each document contains
multiple entities resulting in multiple document
summary pairs for a single document. This is fur-
ther extended to 16,710,624 training and 2,152,164
validation samples in the bi-encoder setup as the
training is done at a sentence level.

We use the first three sentences in the source texts
containing the entity as the gold training summary.
We only add the sentence to the gold summary if
the fuzz ratio in fuzzy string matching? is less than
60 with the existing sentences in the summary to
avoid duplication in meaning. For the bi-encoder
experiments, these sentences in the summary are
paired with the entity to be considered as positive

https://github.com/seatgeek/thefuzz
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examples, while all sentences not part of the sum-
mary are treated as negative examples.

For heuristic methods and selecting top sentences,
we use k = 3 for the summarization task and k = 6
for salient sentence selection. These values were
set using the summary statistics of the data set.

5.2 Hyperparameters

We follow the hyperparameters and implementa-
tion described in the BERTSum? for all the BERT-
Sum variants. In the bi-encoder experiments, we
train the model for 2 epochs with batch size 8 and
use 10% of train data for warm-up. We use default
hyperparameter values specified in the sentence-
transformers repository.*

5.3 Evaluation

We evaluate our methods using the F1 score, as the

prediction is at the sentence level. The EntSUM

data set contains 867 examples that contain two an-

notations for the same entity, which were collected

for quality assurance purposes. For thresholding,

use k£ = 3 for summarization and no constraints

for salient sentence selection. We use the follow-

ing method to compute the F1 score against both

references as follows:

* we evaluate the model independently on each of
the annotations;

» we average the F1 score across the two annota-
tions and assign this score to this example;

* these scores are then combined with the scores
obtained for the rest of the 1,921 single annota-
tions to obtain a score on the entire data set.

6 Results

Table 1 shows the performance of all the proposed
methods on extractive summarization (Summary),
as well as the upstream task of salient sentence
extraction, which aims to identify all sentences
relevant to a target entity. Our findings are:

* Bi-encoder (BE) methods obtain the best re-
sults, with 5.9 F1 above the past state-of-the-
art method (BERTSum-Ent) and, moreover, out-
performs the strong Lead3 heuristic by 1.1 F1
(Lead3-Ent).

* Inference using the entity identification pipeline
is necessary for high performance, with the best
method not using this being 11.2 F1 lower than
the best results.

3https ://github.com/nlpyang/BertSum
*nttps://www.sbert.net/

Model Salient Summary
Lead3-Overall 15.2 16.9
Lead3-Ent 51.5 72.0
Lead6-Ent 63.6 67.4
All-Ent 77.9 62.9
BERTSum-Overall 15.3 17.4
BERTSum-Ent - 67.2
BERTSum-Prefix 18.9 19.3
BERTSum-Coref-Prefix 31.2 24.2
BE-Cos-Tied-Thres 52.5 60.4
BE-Cos-Tied-Top 55.6 57.3
BE-Cos-Tied-Ent-Thres - 61.1
BE-Cos-Tied-Ent-Top - 73.0
BE-Cos-Untied-Thres 494 54.9
BE-Cos-Untied-Top 54.9 56.4
BE-Cos-Untied-Ent-Thres - 55.6
BE-Cos-Untied-Ent-Top - 72.7
BE-Cntr-Tied-Thres 70.7 61.9
BE-Cntr-Tied-Top 55.9 57.6
BE-Cntr-Tied-Ent-Thres - 71.9
BE-Cntr-Tied-Ent-Top - 731
Lead3-Oracle-Salient 56.1 74.4
Lead6-Oracle-Salient 79.8 76.6
Lead3-Oracle-Summary 52.5 85.8

Table 1: Results in F1 score on the EntSUM data set for
the tasks of salient sentence selection (Salient) and ex-
tractive summarization (Summary). Bold and underline
indicate the best and second best performing models.
Oracle methods use gold annotations and are excluded
from the best results.

» Results using oracle methods show that, given
gold salient sentences, the performance is close
to the best method (+1.3 F1), while the Lead3
method with gold summary sentences is 12.7
F1 higher. This shows that the remaining per-
formance gain is to be had by a better rank-
ing of salient sentences, even when constrained
to always selecting the top 3 sentences, rather
than the ability to retrieve these from the non-
salient ones. Note the gap between Lead3-
Oracle-Summary performance and 100 F1 is
caused by summaries that contain fewer than
3 sentences.

* Bi-encoders with untied encoders are less effec-
tive than sharing weights even in this asymmet-
ric setting. We believe the reason for this is that
the entity names as queries are fairly short and
the skewed ratio of 1:22 pairs of positive and
negative sentences makes it difficult for an inde-
pendent encoder to learn a rich representation of
the entity space.
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Figure 1: Distribution of sentence position predictions.

* The loss function choice does not have a very
large impact on the results, with the contrastive
loss achieving slightly better results.

* Methods that prepend the entity to the document
slightly outperform the entity agnostic methods,
but are over 40 F1 lower than bi-encoder ap-
proaches, demonstrating the inefficiency of this
type of approach.

* Entity agnostic summaries show performance
under 20 F1, highlighting the large gap between
the generic and controlled summarization tasks.

6.1 Salient Sentence Selection

We test our methods for summarization on the
salient sentence selection task to probe the extent
to which our methods are able to capture the entity
- sentence association, in addition to understand-
ing the importance of the sentence to the summary.
Table 1 shows that, despite not being trained for
this task, the best performing method performs bet-
ter than many heuristic-based methods (Lead3-Ent,
Lead6-Ent, Lead3-Oracle-Salient) and is only 9.1
F1 lower than taking the top 6 sentences annotated
as being salient to the entity, where 6 is the closest
integer value to the average number of salient sen-
tences. Training with contrastive loss is more effec-
tive at capturing entity-sentence relationship (e.g.
+18.2 F1 for BE-Cos-Tied-Thres vs BE-Cntr-Tied-
Thres) even if overall summarization performance
is similar (+1.5 F1). Note that the methods using
the entity detection pipeline are not evaluated on
the salient sentence selection task.

6.2 Model Prediction Analysis

Finally, we analyze the positions within the docu-
ment of the predictions compared to gold labels for
both summary and salient sentence selection tasks
across the two bi-encoder loss functions and with
or without using the entity extraction pipeline.
Figures 1a and 1b compare the salient sentence
task predictions with the two losses. We plot the

distribution of sentence position predictions to iden-
tify patterns where the models over/under predict.
We see that the number of sentences predicted in
the first half of the document is fewer, we conjec-
ture this is because fewer sentences exhibit a high
similarity score and because we also truncate to
the top 3 sentences if more are predicted. We see
in Figure 1a that the model prediction with Cosine
Similarity Loss is slightly underperforming the ent
pipeline, however, these differences are largely rec-
onciled when using the Contrastive Loss in Figure
1b where the lines almost overlap.

Figures 1c and 1d compare the models for sum-
mary sentence prediction when using the cosine
similarity and contrastive losses. We note that the
ent pipeline performs fairly well in being able to
predict the summary sentences with a high overlap
with the actual summary sentences. We observe an
interesting phenomenon when using Cosine Sim-
ilarity Loss as seen in Figure 1c where the model
predicts fewer summary sentences at the begin-
ning of the document but aligns well with the sum-
mary sentences close to the middle of the document.
However, when using contrastive loss, more sum-
mary sentences are predicted at the beginning of
the document and also across the rest of the docu-
ment, resulting in higher recall and thus improving
downstream performance.

7 Conclusions

This paper explored the task of entity-centric extrac-
tive summarization. Results showed that by leverag-
ing sentence encoders in a bi-encoder architecture,
we are able to substantially outperform previous
controllable extractive summarization methods and
the competitive Lead3 heuristic. This method also
performs well without adaptations in the auxiliary
task of salient sentence extraction. Future work can
investigate how best to build entity representations,
custom loss functions for this task and joint sen-
tence selection across the entire document.
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