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Abstract
A simple machine learning model of pluralisa-
tion as a linear regression problem minimising
a p-adic metric substantially outperforms even
the most robust of Euclidean-space regressors
on languages in the Indo-European, Austrone-
sian, Trans New-Guinea, Sino-Tibetan, Nilo-
Saharan, Oto-Meanguean and Atlantic-Congo
language families. There is insufficient evi-
dence to support modelling distinct noun de-
clensions as a p-adic neighbourhood even in
Indo-European languages.

1 Introduction

In this paper, we study whether p-adic metrics are
a useful addition to the toolkit of computational
linguistics.

It has been known in the mathematical commu-
nity since 1897 —– although only clearly since
(Hensel, 1918) — that there is an unusual and un-
expected family of distance metrics based on prime
numbers which can be used instead of Euclidean
metrics, which have infinitesimals (to support cal-
culus), the triangle inequality (to support geome-
try), and other useful properties all the while main-
taining mathematical consistency. They are known
as the p-adic metrics. (Gouvea, 1997) provides a
valuable and readable introduction to p-adic analy-
sis.

Given a prime number p it is possible to define a
1-dimensional distance function d as:

dp(r, r) = 0

dp(r, q) =

 1 if p - (r − q)
1

p
dp

(
r
p ,

q
p

)
otherwise

(Where x - y means “x does not divide y”)
For example, if p = 3 then d3(1, 4) = 1

3 and
d3(2, 83) =

1
81 .

In particular, if p = 2, the authors have found
that the 2-adic distance is a surprisingly useful mea-
sure for grammar morphology tasks. In many of
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Figure 1: Pluralisation as a linear regression problem
with solution y = 232x+ 116

the languages in this study we found that identi-
fying the grammar rules for pluralisation turned
into a problem of finding a linear regressor which
minimised a p-adic metric.

2 Pluralisation as linear regression

In this paper we use a simple and naive approach
for converting vocabulary words into vectors: use
whatever the unicode bit sequence for the word
would be; this bit sequence can also be viewed as an
integer vector with one element. This is of course
extremely arbitrary and subject to the whims of
the unicode consortium, but it is the most common
way to represent text from any human language on
a computer.

Note that in this naive encoding scheme words
like “sky”, “fry” and “butterfly” are very close us-
ing a 2-adic metric — the last 32 bits are the same,
meaning that the distance between them is less than
or equal to than 2−32. Using a Euclidean metric
“butterfly” is at least

(
232
)6

= 2192 apart from the
other two words. A little exploration will observe
that noun declensions in many languages — espe-
cially ones in the Indo-European family — have
this property that they consist of words that form
tight 2-adic clusters.

This odd correspondence between 2-adic geome-
try and grammar morphology extends to declension
rules for case and number where they exist. Con-
sider that the first two rules in Figure 2 have the
property that in the naive UTF-32 encoding they
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1. If the singular form ends in “y”, replace the “y” with
“ies”.

2. For singulars ending in “o” or “i” or “ss” append “es”.

3. There are irregular nouns: “person” 7→ “people”,
“sheep” 7→ “sheep”

4. If no other rule applies, append “s”.

Figure 2: A simplified and incomplete set of rules for
forming plurals in English

can all be accurately modelled using a linear re-
gression performed on points in the local 2-adic
neighbourhood. The fourth rule is illustrated in
Figure 1, with singulars and plurals of “cat”, “dog”
and “eye” plotted. They lie on the straight line
y = 232x+ 116.

2.1 Mathematical Challenges

Unfortunately, finding the line through a set of
points that minimises the sum of the p-adic mea-
sure of the residuals is harder than finding the
line that minimises the sum of the square of the
residuals. Having chosen a prime p, the for-
mulation looks similar: given a set of points
{(xi, yi), i ∈ {1 . . . N}}, find m and b to min-
imise f(m, b) =

∑N
i=1 |yi − (mxi + b)|p where

| · · · |p is the p-adic measure described in sec-
tion 1. But, there is no guarantee that there is
a unique (m, b) that minimises f . Consider the
data set {(0, 0), (1, 0), (1, 1), (1, 2), (1, 3)}. The 2-
adic sum of distances from those points is 5

2 for
y = 0, y = x, y = 2x and y = 3x.

The derivatives of f with respect to m and b
are also unhelpful: there are an infinite number of
inflection points for any non-trivial data set.

Fortunately, it is possible to prove that the p-adic
line of best fit — unlike the Euclidean line of best
fit — must pass through two of the data points1,
which at least provides an O(n3) algorithm for
finding optimal (m, b) values: draw a line through
every pair of points and try them all. The proof is
in Appendix A.

2.2 Data

The dataset of singular and plural forms we used in
this research is the LEAFTOP dataset, as described
in (Baker and Molla-Aliod, 2022). This consists

1In this way, the p-adic line of best fit is similar to the
line of best fit supplied by the Theil-Sen, Siegel or RANSAC
algorithms.

Algorithm Neigh-
bourhood
Metric

Number
of neigh-
bours

Regr-
essor

Global p-adic N/A N/A p-adic
Global Siegel N/A N/A Siegel
Local p-adic p-adic 3 . . . 20 p-adic
Local Siegel Euclidean 3 . . . 20 Siegel
Hybrid Siegel p-adic 3 . . . 20 Siegel

Table 1: Enumeration of algorithms and configurations
tested, as discussed in Section 3.

of singular and plural noun pairs from Bible trans-
lations in 1,480 languages2 grouped by language
family using the union of the Ethnologue (Eberhard
et al., 2021) and Glottolog (Hammarström et al.,
2021). Since they differ on the world’s primary
language families, and not every language can or
should be assigned to a language family3, there are
overlaps and gaps in the LEAFTOP language fami-
lies that are reflected in the results of this research.

For many languages in our data set4 we believe
no language morphology task has ever been run,
and we thus set a baseline for these languages.

3 Experiment

The aim of this research is to identify whether or
not using a p-adic metric space is likely to generate
improvements on computational linguistics tasks.

A linear model will obviously not be able to cap-
ture irregular nouns. The 2-adic neighbourhood
will not capture nouns that belong to different noun
declensions but share the same ending. Comparing
a linear regression model (even if it is operating
over an unusual space) to a million-parameter neu-
ral network5 where such subtleties can be captured
is going to be uninformative in telling us about the
usefulness of p-adic metrics. As a result we are
comparing p-adic linear regression against meth-
ods that are clearly not the state-of-the-art, but are
methods which can be legitimately compared.

2Section 4 reports results on 1,497 languages. In the
LEAFTOP dataset, a language which has multiple orthogra-
phies is counted as one language (e.g. Chadian Arabic can
also be written in a Roman alphabet), where in this paper each
orthography has been counted as a separate language. Lan-
guages with significant geographic variations (such as Spanish
or Portuguese) are also considered one language by LEAFTOP,
and as multiple in this paper.

3Klingon, for example.
4Very little computational linguistics has been run on the

Trans-New Guinea family of languages, for example.
5Assuming that there were computational resources and

data available to perform this task on thousands of low-
resource languages.
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Figure 3: Strip and box plot of the proportions correct
for each algorithm

The choice of the Siegel regressor (Siegel, 1982)
as the representative for Euclidean regression was
forced by the need for robustness to a large number
of outliers. The LEAFTOP data set is known to
be only 72% accurate and any irregular nouns will
also be outliers. Huber 1964, Theil-Sen 1950 and
ordinary least squares regression are all ruled out
by these criteria.

The Siegel and p-adic regressors were run in
“global” mode (learn from as many examples as
possible) and “local” mode (learning from a small
number of nearby words). To identify the impact
of the p-adic neighbourhood vs the impact of the
p-adic linear regressor, local Siegel was run twice,
once with a p-adic (a “hybrid” of a Euclidean re-
gressor and a p-adic neighbourhood) and once with
a Euclidean neighbourhood (labeled “local Siegel”).
The complete set of algorithms and their configura-
tions is listed in Table 1.

The only metric that can be used for this compar-
ison is L0 — accuracy — since any other metric
(e.g. L1 or L2 norms) will bias the results towards
the metric space that they operate in. A leave-one-
out cross validation was done for each algorithm
for each language.

4 Results

A plot of results by algorithm is in Figure 3. Sum-
mary statistics for each language family and algo-
rithm combination are shown in Table 3.

In all language families (and overall across all
languages), p-adic approaches outperformed Eu-
clidean ones, however the results were not all statis-
tically significant. The differences in performance
between algorithms on a language do not follow
a normal distribution. Since the research question
is simply “which is better?” the magnitude of the
effect is unimportant, and a Wilcoxon signed-rank
test can be used. The Pratt method was used for
handling situations where the scores were identical
and no sign can be calculated. The probability is

Table 2: Experimental Results. Lighter colours indi-
cate stronger statistical significance.

that of a one-sided result.

There are 80 statistical tests required to perform
to confirm validity. There are 17 languages fami-
lies in the Ethnologue and Glottolog plus another
3 pseudo-families from the LEAFTOP labelling
(Unclassifed, Unrecorded and All). For each of
these 20 families, there are 4 tests: global p-adic
vs global Siegel; local p-adic vs local Siegel; lo-
cal p-adic vs Siegel using a p-adic neighbourhood;
Siegel with a Euclidean neighbourhood vs a p-adic
neighbourhood. The correction to apply to the raw
statistical test results is therefore p 7→ 1−(1−p)80.
It is this latter (corrected) number6 that is reported
in Table 2.

There is strong evidence that noun pluralisation
in languages in the Indo-European, Austronesian,
Trans New Guinea, Sino-Tibetan, Niger-Congo,
Nilo-Saharan, Oto-Meanguean and Atlantic-Congo
families can be modelled better with p-adic linear
regression than with Euclidean. This is also true
for the unclassified languages in the LEAFTOP
dataset.

Moreover, the data in Table 2 also support the
hypothesis that a randomly chosen human language
will model better using p-adic linear regression
than Euclidean.

6For example, the test result for probability that global
p-adic regression is equivalent to global Euclidean Siegel on
Afro-Asiatic languages is 0.00263 — which would have been a
very clear result! — but with 80 experiments, we would expect
to see some low-probability results. Thus the probability of
seeing a result as extreme as we saw for at least one of the 80
experiments by chance is much higher: 0.23.
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Table 3: Average proportion correct for each combina-
tion of language family and algorithm. Darker values
indicate higher accuracy.

4.1 How much does a p-adic neighbourhood
pre-filter help?

There are many language families where training
on the vocabulary in the p-adic neighbourhood pro-
duced a better average correctness score: Indo-
European, Afro-Asiatic, Nilo-Saharan, Dravidian,
Tupian and Arawakan. Because of the discrepan-
cies between the Ethnologue and Glottolog on the
categorisation of Australian languages, it appears
that there are two other language familiies (“Aus-
tralian aboriginal” and “Pama-Nyungan”) where
p-adic neighbourhoods are useful for predicting the
plural of a word. In addition, languages where
LEAFTOP has no language family information
(“Unrecorded”) also appear to benefit from p-adic
neighbourhoods.

Unfortunately, none of these results hold up. The
raw p-value of the Wilcoxon test comparing global
versus local p-adic methods on Indo-European lan-
guages is 5.98 ∗ 10−3, but given that there are 9
tests to perform, the Bonferroni adjustment tells
us that the probability of seeing a result like that
is 0.053. Close, but not compelling proof. None
of the other language families passed significance
testing either.

Turning it around, and looking at the other 11
language families (including “All” and “Unclassi-
fied”), 7 of these show a statistically significant
difference between the local and global versions
of p-adic linear regression. P-values for these ex-
perimental results are in Table 4. This can be inter-
preted to mean that either these language families
do not generally have noun declensions, or that
using p-adic distance is a poor way of separating
those noun declensions.

Language family Bonferroni-adjusted
p-value of test

Austronesian 2.39 ∗ 10−6
Trans New Guinea 0.032
Sino-Tibetan 1.92 ∗ 10−5
Niger-Congo 8.76 ∗ 10−7
Atlantic-Congo 2.44 ∗ 10−6
Unclassified 0.0048
All languages 2.69 ∗ 10−13

Table 4: p-values of Wilcoxon tests for global p-adic
regression versus local regression

Note also that the Hybrid algorithm (Siegel re-
gressor trained on a p-adic neighbourhood) also
underperforms a Euclidean-trained Siegel regres-
sor.

5 Related Work

Murtagh (e.g. his overview paper Murtagh, 2014)
and Bradley (e.g. Bradley, 2009, Bradley, 2008)
have written the most on p-adic metrics in machine
learning, having explored clustering and support
vector machines in some depth. (Khrennikov and
Tirozzi, 2000) provides an algorithm for training
a neural network. An extensive literature search
has failed to find any other p-adic adaptions of
traditional machine learning algorithms. This paper
is the first to discuss p-adic linear regression.

Expanding the literature search more broadly,
we find that there have been very few side-by-side
comparisons of Euclidean metrics versus strongly
mathematically-formulated non-Euclidean metrics
for tasks in computational linguistics.

(Nickel and Kiela, 2017), (Tifrea et al., 2018)
and (Saxena et al., 2022) performed their learning
of word embeddings on a non-Euclidean metric,
choosing a Poincaré hyperbolic space. Calculating
derivatives and finding minima of a function in a
Poincaré space is substantially more complex both
mathematically and computationally than for a Eu-
clidean space. p-adics are simpler in both regards,
but give rise to a space with similar hyperbolic
properties. We believe that this may be a fruitful
area of future research.

6 Conclusion

We demonstrated superiority over Euclidean meth-
ods on languages in the Indo-European, Aus-
tronesian, Trans New-Guinea, Sino-Tibetan, Nilo-
Saharan and Oto-Meanguean and Atlantic-Congo
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Algorithm Seconds
per run

Total
runs

Approx
CPU days

Global p-adic 8814.6 8643 881.8
Global Siegel 32.7 8643 3.3
Local Siegel 0.368 155574 0.66
Local p-adic 10.1 155574 18.2
Hybrid Siegel 0.398 155574 0.72

Table 5: Computation time

language families.
Based on this, we expect that substituting p-adic

metrics for Euclidean metrics in other computa-
tional linguistics tasks and machine learning meth-
ods may be an exciting area of research.
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1. ∀i, j, i 6= j,
yi−yj
xi−xj ∈ Z

2. It contains the origin (x0, y0) = (0, 0)
and one of the optimal lines of best fit
passes through the origin, and can there-
fore be written as y = mx

3. i 6= 0⇒ xi 6= 0

4. The data set is sorted such that∣∣∣y1−mx1xi

∣∣∣
p
≤
∣∣∣yi−mxixi

∣∣∣
p

for all i where

i > 1

Table 6: Constraints on the data set for the proof
in subsection A.2

A Proof that the p-adic line of best fit
passes through at least two points in
the dataset

The proof is in three sections:

1. A proof that a p-adic line of best fit must pass
through at least one point. (Subsection A.1).

2. A proof that for a data set with some strong re-
strictions, that if a p-adic line of best fit passes
through one particular point in a dataset that it
must pass through a second point. (Subsection
A.2).

3. A set of short proofs that every data set which
doesn’t satisfy those restrictions is related to
a data set which does satisfy them, and that
the p-adic lines of best fit can be calculated
directly from them.

The phrase “optimal line” will be used to mean
“one of the set of lines whose p-adic residual sum
is equal to the minimum residual sum of any line
through that data set”.

The notation Resp({(xi, yi)}, y = mx+ b) will
be used for “the sum of the p-adic residuals of the
line y = mx+ b on the set {(xi, yi)}.

A.1 p-adic best-fit lines must pass through
one point

Proof. Suppose that there exists one or more lines
that are optimal for a given data set of size s, and
suppose further that none of these lines passes
though any point in the data set.

Let one of these optimal lines be y = mx+ b.

Order the points (xi, yi), in the dataset by their
residuals (smallest first) for this line:

|yi − ŷi|p 6 |yi+1 − ŷi+1|p
Since y = mx + b does not pass through any

point in the dataset, |ŷ0 − y0|p > 0, and we can
write the residual |ŷ0 − y0|p as apn for some non-
zero value of a (satisfying |a|p = 1) and some
value (possibly zero) of n. The ordering criteria
means that |apn| ≤ |yi − ŷi|p for all i.

Consider the line y = mx+b−apn. Its residual
sum is

Resp({(xi, yi)}, y = mx+ b− apn)

=

s∑
i=0

|ŷi − apn − yi|p

= |ŷ0 − apn − y0|p +
s∑
i=1

|ŷi − apn − yi|p

= 0 +

s∑
i=1

|ŷi − apn − yi|p

≤
s∑
i=1

max(|ŷi − yi|p , |ap
n|p)

=

s∑
i=1

|ŷi − yi|p

<

s∑
i=0

|ŷi − yi|p

= Resp({(xi, yi)}, y = mx+ b)

As this final line is the residual sum for the line
y = mx+ b, and the first line is strictly less than
the final, y = mx+ b− apn is a more optimal line
than y = mx+ b, contradicting the premise.

A.2 p-adic best-fit lines must pass through
two points

Consider a data set {(xi, yi)} of size s with the
properties listed in Table 6. Then the chosen op-
timal line which passes through the origin also
passes through another point in the dataset.

Proof. Suppose that the chosen optimal line passes
through only one point in the data set.

Let m′ = m+ y1−mx1
x1

and consider the residual
sum of the line y = m′x (which passes through
both (x0, y0) and (x1, y1)).
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Resp({(xi, yi)}, y = m′x)

=

s∑
i=0

∣∣∣∣(m+
y1 −mx1

x1
)xi − yi

∣∣∣∣
p

= |0|+
∣∣∣∣(m+

y1 −mx1
x1

)x1 − yi
∣∣∣∣
p

+

s∑
i=2

∣∣∣∣(m+
y1 −mx1

x1
)xi − yi

∣∣∣∣
p

= |mx1 + y1 −mx1 − yi|p

+
s∑
i=2

∣∣∣∣(m+
y1 −mx1

x1
)xi − yi

∣∣∣∣
p

= 0 +
s∑
i=2

∣∣∣∣(m+
y1 −mx1

x1
)xi − yi

∣∣∣∣
p

=

s∑
i=2

∣∣∣∣mxi − yi + y1 −mx1
x1

)xi

∣∣∣∣
p

≤
s∑
i=2

max(|mxi − yi|p ,
∣∣∣∣y1 −mx1x1

xi

∣∣∣∣
p

)

=

s∑
i=2

max(|mxi − yi|p ,
∣∣∣∣y1 −mx1x1

∣∣∣∣
p

· |xi|p)

≤
s∑
i=2

max(|mxi − yi|p ,
∣∣∣∣yi −mxixi

∣∣∣∣
p

· |xi|p)

=

s∑
i=2

max(|mxi − yi|p , |mxi − yi|p)

=

s∑
i=2

|mxi − yi|p

< 0 + |y1 −mx1|p +
s∑
i=2

|mxi − yi|p

=

s∑
i=0

|mxi − yi|p

= Resp({(xi, yi)}, y = mx)

The last term is the residual sum from the line
y = mx (a line which was supposed to be optimal
for the data set), which is strictly larger than the
residual sum from y = m′x. This contradicts the
premise.

A.3 Loosening the criteria

This subsection loosens the criteria of the proof in
subsection A.2.

The first three arguments (and the last half of the
fourth argument) have a common structure.

They start with a data set of points D and find
a way of taking an arbitrary linear function f and
performing a non-singular (invertible) linear trans-
formation to turn them into a set D′ and f ′ where
the residuals of the two functions are also invert-
ibly linearly transformed, with the transformation
coefficients solely based on the contents of D.

That is, there will be a set-transformation func-
tion of the form Td(x, y) = (t0x+ t1, t2y + t3), a
function transformation Tf (f) : Tf (f(x, y)) =
f(t4x + t5, t6y + t7), and a residual trans-
formation Tr(Resp(D, f)) = Resp(D

′, f ′) =
t8Resp(D, f)) + t9. The coefficients t0. . .t9 are
dependent only on D, and t0, t2, t4, t6 + t8 are all
non-zero.

Thus, if a line f is optimal forD, then the line f ′

will be optimal for D′ and vice versa. As a result,
the interesting property of the optimal line f ′ of D′

(that f ′ must pass through two points in D′ if it is
optimal) will also apply to D and f .

Scaling of y. Given two datasets, D = {(xi, yi)}
and D′ = {(xi, αyi)} and a line y = mx + b
with a residual r on D, there is another line y =
αmx + αb with a residual |α|p r on D′ (and vice
versa). This is a straightforward consequence of
factorisation:

Resp({(xi, αyi)}, y = αmx+ αb)

=
∑
i

|αmxi + αb− (αyi)|p

= |α|p ·
∑
i

|mxi + b− yi|p

= |α|pResp({(xi, yi)}, y = mx+ b)

Scaling of x. Likewise, there are relationships be-
tween data sets with scaled x values. If D =
{(xi, yi)} and D′ = {(αxi, yi)}, then the resid-
ual of the line y = mx+ b on D is the same as the
residual of the line y = m

α x+ b on D′.
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Resp({(αxi, yi)}, y =
m

α
x+ b)

=
∑
i

∣∣∣m
α
(αxi) + b− yi

∣∣∣
p

=
∑
i

|mxi + b− yi|p

= Resp({(xi, yi)}, y = mx+ b)

Therefore, a data set having some rational (non-
integer) coefficients can be transformed into a data
set with integral coefficients where the optimal
lines are similarly transformed with only a con-
stant multiplier effect on each residual sum simply
by multiplying through by the product of all de-
nominators.

Moreover, if D = {(xi, yi)} has integer coordi-
nates, then D′ = {αxi, yi)} where α is the product∏
j,k,j<k(ujvk − ukvj) will not only have integer

coordinates, but every line between two points in
D′ will have an integer gradient (and therefore an
integer y-intercept).

This generalises the result from subsection A.2
even when condition (1) from Table 6 is not satis-
fied.

Translation in the plane. Similar mechanisms ap-
ply for translation by a fixed offset in the (x, y)
plane: by adding a constant to all x or y values.
GivenD = {(xi, yi)} andD′ = {(xi+a, yi+c)},
the line y = mx+ b has the same residual sum on
D as y = mx+ (b+ c−ma) does on D′.

Resp({(xi + a, yi + c)}, y = mx+ (b+ c−ma))

=
∑
i

|m(xi + a) + (b+ c−ma)− (yi + c)|p

= |mxi + b− yi|p
= Resp({(xi, yi)}, y = mx+ b)

This generalises the result from subsection A.2
to cover data sets where condition (2) from Table 6
is not satisfied.

When xi = 0 for some or all i. If condition (3)
from Table 6 is violated, then there are two sub-
cases to handle.

Firstly, if xi = 0 for all i then the optimal line
is a vertical line along the y-axis, which has the
property of passing through two points in the data
set.

Alternatively, if xi 6= 0 for some i, then define Z
as being the set of points of D where xi = 0, and
D′ = (D \Z)∪ (0, 0) where \ is the set difference
operator.

Then for any function f(x) defined as y = mx+
b,

Resp(D, f) = Resp(D
′, f) + Resp(Z, f)

= Resp(D
′, f) +

∑
z∈Z

b− yz

The last term is a constant that only depends on
the elements ofD, not f , thus defining an invertible
linear transformation between the residuals.

Condition (4) from Table 6 can be achieved by
sorting the dataset.

B NAACL Reproducibility Checklist

This appendix responds to the request for repro-
ducibility from (NAACL, 2021).

NAACL requirements are shown in a bold font.
For all reported experimental results:

• A clear description of the mathematical
setting, algorithm, and/or model Details in
section 2.

• A link to a downloadable source
code, with specification of all depen-
dencies, including external libraries
https://github.com/solresol/
thousand-language-morphology
and https://github.com/
solresol/padiclinear

• A description of computing infrastructure
used A little over half the computation was
run on a 48-cpu node in the Gadi super-
computing facility. The remainder was done
on Arm64 virtual machines running Ubuntu
21.10 at Amazon, the author’s M1 Macbook
Air and the author’s x64-based Ubuntu 22.10
Linux system.

• The average runtime for each model or al-
gorithm, or estimated energy cost On the

https://github.com/solresol/thousand-language-morphology
https://github.com/solresol/thousand-language-morphology
https://github.com/solresol/padiclinear
https://github.com/solresol/padiclinear
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author’s x64-based Ubuntu system (where it
was possible to guarantee no contention), the
average run times are given in Table 5.

• The number of parameters in each model
Global P-adic and Global Siegel have no pa-
rameters. Local Siegel, Local P-adic Linear
and Hybrid have one parameter: the number
of neighbours to include in the training set.

• Corresponding validation performance for
each reported test result There are not sep-
arate validation and test sets in this paper.

• A clear definition of the specific evaluation
measure or statistics used to report results.
As discussed in section 3, the only metric
which can be used is accuracy.

For all results involving multiple experi-
ments, such as hyperparameter search:

• The exact number of training and evalua-
tion runs For the Local Siegel, Local P-adic
Linear and Hybrid algorithms, 18 different
neighbourhoods were explored.

• The bounds for each hyperparameter Min-
imum 3, maximum 20. Anything below 3
makes no sense, and with anO(n3) algorithm,
growing beyond 20 starts to become computa-
tionally infeasible.

• The hyperparameter configurations for
best-performing models Attached as a data
file.

• The method of choosing hyperparameter
values (e.g. manual tuning, uniform sam-
pling, etc.) and the criterion used to select
among them (e.g. accuracy) There was no
need for hyperparameter selection as it was
possible to cover the entire solution space.

• Summary statistics of the results (e.g.
mean, variance, error bars, etc.) Detailed
in section 4

Answers about all datasets used: See (Baker
and Molla-Aliod, 2022) — https://github.
com/solresol/leaftop

https://github.com/solresol/leaftop
https://github.com/solresol/leaftop
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