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Abstract

We address the challenging task of Localiza-
tion via Embodied Dialog (LED). Given a di-
alog from two agents, an Observer navigating
through an unknown environment and a Loca-
tor who is attempting to identify the Observer’s
location, the goal is to predict the Observer’s
final location in a map. We develop a novel
LED-Bert architecture and present an effective
pretraining strategy. We show that a graph-
based scene representation is more effective
than the top-down 2D maps used in prior works.
Our approach outperforms previous baselines.

1 Introduction

A key goal in Al is to develop embodied agents that
can accurately perceive and navigate an environ-
ment as well as communicate about their surround-
ings in natural language. The recently-introduced
Where Are You? (WAY) dataset (Hahn et al., 2020)
provides a setting for developing such a multi-
modal and multi-agent paradigm. This dataset (col-
lected via AMT) contains episodes of a localization
scenario in which two agents communicate via turn-
taking natural language dialog: An Observer agent
moves through an unknown environment, while a
Locator agent attempts to identify the Observer’s
location in a map.

The Observer produces descriptions such as ‘I’'m
in a living room with a gray couch and blue arm-
chairs. Behind me there is a door.” and can respond
to instructions and questions provided by the Lo-
cator: ‘If you walk straight past the seating area,
do you see a bathroom on your right?’ Via this
dialog (and without access to the Observer’s view
of the scene), the Locator attempts to identify the
Observer’s location on a map (which is not avail-
able to the Observer). This is a complex task for
which a successful localization requires accurate
situational grounding and the production of rele-
vant questions and instructions.
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Figure 1: WAY Dataset Localization Scenario: The Lo-
cator has a map of the building and is trying to localize
the Observer by asking questions and giving instruc-
tions. The Observer has a first person view and may
navigate while responding to the Locator. The turn-
taking dialog ends when the Locator predicts the Ob-
server’s position.

One of the benchmark tasks supported by WAY
is ‘Localization via Embodied Dialog (LED)’. In
this task a model takes the dialog and a represen-
tation of the map as inputs, and must output a pre-
diction of the final location of the Observer agent.
The model’s performance is based on error distance
between the predicted location of the Observer and
its true location. LED is a first step towards devel-
oping a Locator agent. One challenge of the task
is to identify an effective map representation. The
LED baseline from (Hahn et al., 2020) uses 2D
images of top down (birds-eye view) floor maps to
represent the environment and an (x,y) location for
the Observer.

This paper provides a new solution to the LED
task with two key components. First, we propose to
model the environment using the first person view
(FPV) panoramic navigation graph from Matter-
port (Anderson et al., 2018a), as an alternative to
top-down maps. Second, we introduce a novel vi-
siolinguistic transformer model, LED-Bert, which
scores the alignment between navigation graph
nodes and dialogs. LED-Bert is an adaption of
ViLBERT (Lu et al., 2019) for the LED task, and
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we show that it outperforms all prior baselines. A
key challenge is the small size of the WAY dataset
(approximately 6K episodes), which makes it chal-
lenging to use transformer-based models given their
reliance on large-scale training data. We address
this challenge by developing a pretraining approach
- based on (Majumdar et al., 2020) - that yields an
effective visiolinguistic representation.
Contributions: To summarize:
1. We demonstrate an LED approach using navi-
gation graphs to represent the environment.
2. We present LED-Bert, a visiolinguistic trans-
former model which scores alignment be-
tween graph nodes and dialogs. We develop
an effective pretraining strategy that leverages
large-scale disembodied web data and similar
embodied datasets to pretrain LED-Bert.
3. We show that LED-Bert outperforms all base-
lines, increasing accuracy at Om by 8.21 abso-
lute percent on the test split.

2 Related Work

BERT Bidirectional Encoder Representations from
Transformers (BERT) is a transformer based en-
coder used for language modeling. BERT is trained
on massive amounts of unlabeled text data, and
takes as input sentences of tokenized words and
corresponding positional embeddings per tokens.
BERT is trained using the masked language model-
ing and next sentence prediction training objectives.
In the masked language modeling schema, 15% of
the input tokens are replaced with a [MASK] token.
The model is then trained to predict the true value
of the input tokens which are masked using the
other tokens as context. In the next sentence pre-
diction schema, the model is trained to predicted
if the two input sentences follow each other or
not. BERT is specifically trained on Wikipedia and
BooksCorpus (Zhu et al., 2015).

VIiLBERT ViLBERT (Lu et al., 2019) is a multi-
modal transformer that extends the BERT archi-
tecture (Devlin et al., 2018) to learn joint visio-
linguistic representations. Similar multi-modal
transformer models exist (Li et al., 2020, 2019;
Su et al., 2020; Tan and Bansal, 2019; Zhou et al.,
2020). ViLBERT is constructed of two transformer
encoding streams, one for visual inputs and one
for text inputs. Both of these streams use the stan-
dard BERT-BASE (Devlin et al., 2018) backbone.
The input tokens for the text stream are text tokens,
identical to BERT. The input tokens for the visual

stream are a sequence of image regions which are
generated by an object detector pretrained on Vi-
sual Genome (Krishna et al., 2017). The input to
ViLBERT is then a sequence of visual and textual
tokens which are not concatenated and only en-
ter their respective streams. The two streams then
interact using co-attention layers which are imple-
mented by swapping the key and value matrices
between the visual and textual encoder streams for
certain layers. Co-attention layers are used to at-
tend to one modality via a conditioning on the other
modality, allowing for attention over image regions
given the corresponding text input and vise versa.

Vision-and-Language Pre-training Prior work
has experimented with utilizing dual-stream trans-
former based models that have been pretrained with
self-supervised objectives and transferring them to
downstream multi-modal tasks with large success.
This has been seen for tasks such as Visual Ques-
tion Answering (Antol et al., 2015), Commonsense
Reasoning (Zellers et al., 2019), Natural Language
Visual Reasoning (Suhr et al., 2018), Image-Text
Retrieval (Lee et al., 2018), Visual-Dialog (Mura-
hari et al., 2020) and Vision Language Navigation
(Majumdar et al., 2020). Specifically VLN-Bert
and VisDial + BERT adapt the VILBERT architec-
ture and utilize a pretraining scheme which inspired
our approach to train LED-Bert.

3 Approach

3.1 Environment Representation

A key challenge in the LED task is that environ-
ments often have multiple rooms with numerous
similar attributes, i.e. multiple bedrooms with the
same furniture. Therefore a successful model must
be able to visually ground fine-grained attributes.
Strong generalizability is also required in order to
generalize to unseen test environments. The LED
baseline in (Hahn et al., 2020) approaches localiza-
tion as a language-conditioned pixel-to-pixel pre-
diction task — producing a probability distribution
over positions in a top-down view of the environ-
ment, illustrated in Part A, in the Supplementary,
Figure 3. This choice is justified by the fact that
it mirrors the observations that the human Locator
had access to during data collection, allowing for
a straightforward comparison. However, this does
not address the question of what representation is
optimal for localization.

We propose to use a navigation-graph map repre-
sentation derived from the panoramic-RGB graphs
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of the Matterport environments (Chang et al.,
2017), illustrated in Part B, in the Supplementary,
Figure 3. The Observer agent traverses these same
navigation graphs during data collection, which
may result in a strong alignment between the dia-
log and the nodes. Using this approach, the LED
task can be framed as a prediction problem over the
possible nodes in the navigation graph. At infer-
ence time, this can be accomplished by producing
an alignment score between each node in the test
environment and the test dialog, and then returning
the node with the highest score as the predicted
Observer location.

3.2 Adapting ViLBERT for LED

To formalize the graph based LED task, we con-
sider a function f that maps a node location n and
a dialog x to a compatibility score f(n,z). We
model f(n,z) using a visiolinguistic transformer-
based model we denote as LED-Bert, shown in
Figure 2. The architecture of LED-Bert is struc-
turally similar to VILBERT and VLN-Bert (Majum-
dar et al., 2020), but with some key differences due
to our need to ground dialog and fine-tune on the
relatively small WAY dataset. This enables trans-
ferring the visual grounding learned during pre-
training on disembodied large-scale web data and
similar embodied grounding tasks. In the imple-
mentation we initialize the majority of LED-Bert
using pretrained weights from VLN-Bert.

The input to the LED-Bert model is a dialog and
and a single node from the environment graph map.
We represent each panoramic node [ as a set of
image regions 71, ...,7r. We represent an dialog
x as a sequence of tokens wl, ...,wr. Then for a
given dialog-node pair the input to LED-Bert is the
following sequence:

<IMG> 7T1,...,7% <CLS> wi,...,wr, <SEP> (1)

where IMG, CLS, and SEP are special tokens.
Transformer models are by nature invariant to se-
quence order and they only model interactions be-
tween inputs as a function of their values (Vaswani
et al., 2017). This leads to the standard practice of
adding positional embeddings for each input token
to re-introduce order information. For the dialog
tokens we simply use an index sequence order en-
coding. However the panoramic node visual tokens
have a more complicated positional encoding, as
the panorama is broken up into image regions. The
visual positional information is very important for
encoding spatial relationships between objects and
for scene understanding as a whole. For instance

consider the question the Locator might ask, ‘Are
you located to the right of the blue couch?’ This
question will require information about which re-
gion of the panorama the couch is located in. We
address this by follow the VLN-Bert (Majumdar
et al., 2020) strategy of encoding the spatial loca-
tion of each image region, ;. Each image region
is encoded terms of its location in the panorama
(top-left and bottom-right corners in normalized
coordinates as well as area of the image covered)
and its elevation relative to the horizon. Note all
angles are encoded as [cos(6), sin(#)]. The result-
ing encoding is an 11-dimensional vector S which
is projected into 2048 dimensions using a learned
projection WS,

3.3 Training Procedure for LED-Bert

LED-Bert can be trained from scratch using the
WAY dataset however due to the small size ( 6k
episodes) of the WAY dataset and since large-
transformer models have been shown to work best
on large amounts of data we follow the 4 stage
pretraining procedure of prior work (Majumdar
et al., 2020; Murahari et al., 2020; Lu et al., 2019).
These works do extensive pretraining for multi-
modal transformers using large scale web-data.
The pipeline for pretraining has 4 stages and is
also visualized in Figure 2.

Stage 1-3 are the same as (Majumdar et al.,
2020), and we replace the 4th stage with fine-tuning
for node localization over the WAY dataset. To
train LED-Bert for localization, we consider the
task as a classification task over the possible nodes
in the graph, on average there are 117.32 nodes,
with the largest environment containing 345 nodes.
We run LED-Bert on each node-dialog pair and
extract the final representations for each stream,
denoted as hc1,g and h1yg, using these we com-
pute a compatibility score by doing element-wise
multiplication of the two vectors and passing them
through a single linear layer. The scores are nor-
malized via a softmax layer and then supervised
using a cross-entropy loss against a one-hot vector
with a mass at the ground truth node.

4 Experiments

4.1 Baselines

We propose a set of strong baseline methods to
compare against the LED-Bert architecture. All
approaches use the panoramic maps thus ensuring
the same prediction space.
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Figure 2: We propose the LED-Bert for the LED task. The model is pretrained in 3 stages over different datasets
before being fine-tuned over the node-dialog pairs of the WAY dataset (Hahn et al., 2020). The language stream of
the model is first pretrained on English Wikipedia and the BooksCorpus (Zhu et al., 2015) datasets. Second, both
streams of the model are trained on the Conceptual Captions (Sharma et al., 2018) dataset. Third, both streams are
train on the path-instruction pairs of the Room2Room dataset (Anderson et al., 2018b). Finally we fine-tune the
model over the node-dialog pairs of the WAY dataset (Hahn et al., 2020).

Table 1: Comparison of the LED-Bert model with baselines and human performance on the LED task. We report

average localization error (LE) and accuracy at k meters (all + standard error).

val-seen val-unseen test
Method LE|l Acc@Om? Acc@5m T LE|l Acc@Om? Acc@5m*t LE|l Acc@Om? Acc@5m*t
Human Locator 6.00 47.87 77.38 3.20 56.13 83.42 5.89 44.92 75.00
Random Node 20.8 0.33 10.82 18.61 1.9 11.05 20.93 0.92 11.00
Center Node 15.68 0.66 12.79 13.72 1.21 14.16 16.17 2.25 12.25
LingUNet-Skip 9.65 18.27 58.36 13.80 5.18 23.83 19.41 4.83 19.67
Late Fusion 12.56 17.38 47.54 12.87 7.77 34.37 15.86 8.92 32.75
Attention Model 9.83 18.36 56.07 10.93 10.54 41.11 14.96 6.92 34.42
Attention over History Model 11.64 21.64 49.18 11.44 10.02 43.18 14.98 7.14 33.68
Graph Convolutional Network 10.95 19.67 59.13 9.10 8.64 46.99 14.32 9.46 35.10
LED-Bert 9.04 25.57 60.66 8.82 21.07 52.5 11.12 17.67 51.67

Human Performance: Uses the average perfor-
mance of AMT Locator workers from the WAY
dataset. We snap the human prediction over the top
down map to the nearest node.

Random: Selects a random node from the test envi-
ronment as the predicted location for each episode.

Center: Selects the panoramic node closest to the
centroid of the 3D environment point cloud.

LingUNet-Skip: Uses the LingUNet-Skip model
introduced in the top down floor map task set up of
LED (Hahn et al., 2020). In this set up, the floor on
which the Observer was located was given as input
to the models. In the navigation graph LED task set
up the floor is not given and the model must predict
over the panoramic nodes across the entire house,
rather than a single floor. To create a fair com-
parison between models, we run LingUNet-Skip

across all floors in the environment via inputting
one floor at a time and then taking the pixel with the
highest probability across all floors as the predicted
location. We then snap this point to the closest
panoramic node and calculate localization error via
geodesic distance on the navigation graph.

Joint Embedding: This baseline learns a common
embedding space between the dialogs and corre-
sponding node locations. Each panoramic node is
represented by 36 image patches and image fea-
tures are extracted for each patch. Visual features
are extracted using a ResNet152 (He et al., 2016)
pretrained on Places 365 (Zhou et al., 2017). We
experiment with three types of joint embedding
architectures - late fusion, dialog based attention,
dialog history based attention. All models encode
the dialog in the same way and is described below.
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Graph Convolutional Network Both the joint-
embedding baselines and LED-Bert discard edge
information. We propose a framework that uses
Graph Convolutional Networks (GCN) (Zhang
et al., 2019) to model the LED task using the navi-
gation graph as input which incorporates edge in-
formation. In the graph representation input to the
model, nodes attributes are visual features and edge
attributes contain the pose transformation between
connected nodes. The goal of the GCN architec-
ture is to model the relational information between
the nodes of the graph and the localization dialog
in order to produce a probability distribution of
localization likelihood over the nodes.

Dialog Encoding: The Locator and Observer mes-
sages are tokenized using a standard toolkit (Loper
and Bird, 2002). The dialog is represented as a
single sequence with identical ‘start’ and ‘stop’ to-
kens surrounding each message, and then encoded
using a single-layer bidirectional LSTM. Word em-
beddings are initialized using GloVe (Pennington
et al., 2014) and fine tuned end-to-end. In the first
model called the ‘late-fusion model’, the LSTM
has a 2048 dimension hidden state and the node
features are down-sampled using self attention to
be of size 2048. The visual and dialog features
are fused through late fusion passed through a two-
layer MLP and softmax and the output is a predic-
tion over the possible nodes in the environment. In
the ‘attention model’, the visual and dialog features
are fused instead through top-down bottom up at-
tention, the final layers of the model are also an
MLP and softmax. In the ‘attention over history
model’, there are two separate LSTMs. The former
encodes dialog history and the later encodes the
current message. Attention via dialog-history is ap-
plied over the visual features, then the encoded cur-
rent message and visual features are fused through
late fusion followed by an MLP and softmax.

4.2 Metrics

We propose to evaluate the localization error (LE)
of our models using geodesic distance instead of
euclidean distance as used in (Hahn et al., 2020).
Geodesic distance is more meaningful than eu-
clidean distance for determining error across rooms
and across floors in multi-story environments. To
discern the precision of the models, we report a
binary success metric that places a threshold & on
the LE. Accuracy (Acc) at O meters indicates the
correct node was predicted. Accuracy at k meters

indicates that the node predicted was within k me-
ters of the true node.
4.3 Results

Table 1 shows the performance of our LED-Bert
model and relevant baselines on the val-seen, val-
unseen, and test splits of the WAY dataset.

Human and No-learning Baselines. Humans suc-
ceed 44.92% of the time in test environments at 0
meters; this shows it is a difficult task.

Attention and History increase performance.
Adding bottom-up and top-down attention in-
creases performance, additionally separating the
encoders for the current message from the dialog
history further increases performance. While it is
possible to pretrain the LSTM language encoder,
we observe that the common method of using pre-
trained GloVE (Pennington et al., 2014) embed-
dings and training the LSTM from scratch is suffi-
cient for learning the language model.

Graph Networks see slight improvement. Graph
networks see slight increase in performance on the
test split. While we believe pretraining the GNN
models would boost performance, there is not a
straight forward large-scale web-data pretraining
schema for the GNN models on this task.

LED-Bert outperforms all baselines. LED-Bert
significantly outperforms the other cross-modal
modeling baselines in terms of both accuracy and
localization error — improving the best baseline,
Graph Convolutional Network (GCN), by an ab-
solute 7.54% (test) to 12.43% (val-seen and val-
unseen). There remains a gap between our model
and human performance — especially on novel en-
vironments (-% vs -% on test).

5 Conclusion

In summary, we propose a viso-linguistic trans-
former, LED-Bert, for the LED task and instantiate
a new version approach which does localization
over the navigation graph. We demonstrate a pre-
training schema for LED-Bert which utilizes large
scale web-data as well as other multi-modal em-
bodied Al task data to learn the visual grounding
required for successful localization’s in LED. We
show LED-Bert is able to achieve SOTA perfor-
mance and outperform other learned baselines by a
significant margin.
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Top Down Maps RGB Panoramic Nodes

Figure 3: Examples of the types of map representations of the Matterport3D (Chang et al., 2017) indoor environments
which can be used for the Localization via Embodied Dialogue task. Part A shows the top down floor maps used in
the original LED paper. Part B shows an overlay of the navigation graph of panoramic nodes over the top down map,
note the lines represent traversability between nodes and the circles represent the panoramic node location. Part C
shows examples of the FPV panoramic nodes in different environments. Note each of these images are mapped to a
node in a connectivity graph for the respective environment.

6 Supplementary

6.1 Environment Representation

The LED baseline in (Hahn et al., 2020) approaches
localization as a language-conditioned pixel-to-
pixel prediction task — producing a probability dis-
tribution over positions in a top-down view of the
environment, illustrated in Part A, Figure 3. In this
paper we used a navigation-graph map representa-
tion derived from the panoramic-RGB graphs of
the Matterport environments (Chang et al., 2017),
illustrated in Part B, Figure 3.

301



