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Abstract

Universal Sentence Encoder (USE) has gained
much popularity recently as a general-purpose
sentence encoding technique. As the name
suggests, USE is designed to be fairly general
and has indeed been shown to achieve supe-
rior performances for many downstream NLP
tasks. In this paper, we present an interest-
ing “negative” result on USE in the context of
zero-shot text classification, a challenging task,
which has recently gained much attraction.
More specifically, we found some interesting
cases of zero-shot classification, where topic
based inference outperformed USE-based in-
ference in terms of F1 score. Further investi-
gation revealed that USE struggles to perform
well on datasets with a large number of labels
with high semantic overlaps, while topic-based
classification works well for the same.

1 Introduction

What makes a sentence encoder universal? The tan-
talizing idea is to learn a general sentence encoding
technique that can achieve “good” performance
on a wide variety of downstream tasks. Recently,
Google’s Universal Sentence Encoder (USE) Cer
et al. (2018) has been shown to achieve great suc-
cess in various downstream tasks and promising
results in a way provided some justification to the
name “Universal Sentence Encoder” itself.

While USE Cer et al. (2018) is undoubtedly
one of the state-of-the-art sentence encoding tech-
niques available today, it’s success has primarily
been demonstrated within the “pre-train/fine-tune”
paradigm, where, it is assumed that the target labels
are known beforehand as well as a small amount
of training data is readily available, which can fa-
cilitate the fine-tuning process. Whereas, a more
challenging task is zero-shot text classification Yin
et al. (2019), where, neither the target labels are
known beforehand nor any training data is avail-
able for fine-tuning. How USE performs in case of

zero-shot text classification is, therefore an inter-
esting research question, which is relatively under-
explored at this moment.

To address this knowledge gap, we performed
a systematic study, where, we applied USE to per-
form the “Zero-shot Text Classification” task, as
defined by Yin et al. (2019). The goal of our study
is to investigate how powerful USE is for solving
an NLP task for which acquiring training data is
almost impractical.

To perform this study, we conducted extensive
experiments with seven real-world datasets. As a
baseline, we implemented two topic-based zero-
shot classification techniques for comparative anal-
ysis. We evaluated the goal-task performance
against the “Gold” standard labels annotated by
humans and computed F1 metric for each method
compared. Experimental results demonstrate that
topic-based inference clearly outperformed USE-
based inference in terms of F1 score for most of
the datasets, essentially yielding the so-called “neg-
ative” result. Further investigation revealed that
USE struggles to perform well on datasets with a
large number of labels with high semantic overlaps,
while topic-based methods work well for the same.

2 Background and Related Work

Universal Sentence Encoder: The utility of USE
has been tested for many popular NLP tasks includ-
ing Intent Classification Casanueva et al. (2020),
Fake-News Detection Majumder and Das (2020),
Duplicate Record Identification Lattar et al. (2020)
and COVID-19 Trending Topics Detection from
tweets Asgari-Chenaghlu et al. (2020). Perone
et al. (2018); Enayet and Sukthankar (2020) fo-
cused on the performances of different sentence
embedding techniques for transfer-learning tasks.
Rivas and Zimmermann (2019) reported that state-
of-the-art sentence embeddings are unable to cap-
ture sufficient information regarding sentence cor-
rectness and quality in the English language.
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Figure 1: Steps for Zero-shot Text Classification leveraging Universal Sentence Encoder.

Zero-Shot Classification: Veeranna et al.
(2016) adopted pre-trained word embedding for
measuring semantic similarity between a label and
documents. (Hascoet et al., 2019; Zhang et al.,
2019; Xie and Virtanen, 2021), performed zero-
shot learning using semantic embedding. Rios
and Kavuluru (2018) attempted to understand how
state-of-the-art topic inference methods perform
on infrequent labels. Rios and Kavuluru (2018)
explored few-shot and zero-shot learning methods
for multi-label text classification. Yin et al. (2019)
established a benchmark for zero-shot text clas-
sification problem by providing unified datasets,
standardized evaluations. Xia et al. (2018) stud-
ied the zero-shot intent detection problem for de-
tecting user intents without any labeled utterances.
Pushp and Srivastava (2017) proposed “TRAIN
ONCE, TEST ANYWHERE” approach which in-
volves training model to tackle unseen sentences,
tags, and new datasets. Puri and Catanzaro (2019)
proposed generative models for zero-shot text clas-
sification. Recently, Chen et al. (2021) imple-
mented zero-shot text classification via Knowledge
Graph Embedding for Social Media Data. Gong
and Eldardiry (2021) discussed about zero-shot
learning’s settings, methods, and applications.

Uniqueness of This Work: We explore the ef-
ficacy of USE for "Zero-shot Text Classification"
task and compare against topic-based zero-shot
methods, which is unique about this work.

3 Zero-shot Text Classification

Zero-shot Text Classification (0SHOT-TC) is a
challenging problem which aims to associate an
appropriate label with a piece of text, regardless
of the text domain without any training/fine-tuning.
The idea of zero-shot TC was coined by Yin et al.
(2019), and in this paper, we have specifically fo-
cused on Definition-Wild 0SHOT-TC discussed
by Yin et al. (2019), a visual depiction of which
is presented in Figure 1. More specifically, we
formalize our task as below:

Definition 1. 0SHOT-TC: Given a collection of
text articles T = {t1, t2, ..., tn}, a user x and a set
of user-defined labels Lx = {l1, l2, ..., lm} pro-
vided in real-time, classify each text article ti ∈ T
with zero or more labels from Lx without any fur-
ther fine-tuning.

Notably, it is possible that two different users
will focus on different set of labels for the same
dataset based on their application needs. Further-
more, creating customized training datasets before-
hand is no longer possible because the target labels
are provided in real-time by users.

3.1 USE Based Zero-shot Text Classification

The steps to classify text using Universal Sentence
Encoder is discussed in algorithm 1 and shown in
Figure 1. We used both DAN1 and Transformer2

based USE models Cer et al. (2018) to encode
target-labels and the article-text. Next, based on the
cosine similarity score between a label-embedding
and the article text-embedding, the particular la-
bel is assigned if the similarity is higher than a
threshold, or dropped otherwise.

Algorithm 1 Zero-shot TC using sentence encoder

1: Input: Article text, Labels and Keywords
2: Output: Articles labeled with zero to many

labels
3: Article text and label are converted into Text

and Label embeddings using Universal Sen-
tence Encoder

4: Measure cosine similarity between Text and
Label embeddings

5: for threshold = 0.0, 0.05, . . . , 1 do
6: if cosine similarity > threshold then
7: classify text with label
8: end if
9: end for

1https://tfhub.dev/google/universal-sentence-encoder/4
2https://tfhub.dev/google/universal-sentence-encoder-

large/5
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Also, we adopted two different ways for tar-
get label embedding: 1) Label embedding using
article-text which contains explicit mentions of la-
bel names (P1) and 2) Label embedding using label
name and keywords (P2). The details of these em-
beddings have been discussed in appendix A.2.1
and A.2.2, respectively.

4 Experimental Design

4.1 Datasets for Case-Study

In our experiments we worked with 2 different type
of datasets. (A) Large datasets (Medical and News
datasets) having article count > 2000 and average
article length as 641, collected from Sarkar and
Karmaker (2022), and (B) Small datasets (User
review datasets: Cellular phone, Digital camera1,
Digital camera2, DVD player, Mp3 player) hav-
ing article count < 2000 and average article length
as 17, created by Hu and Liu (2004) and anno-
tated by Karmaker Santu et al. (2016). Some statis-
tics about these datasets are presented in Table 1,
whereas details such as label names, label count,
keywords etc. had been discussed on the respective
papers. Both the datasets are already tagged with
one or more labels (ground truth) and also each
label is defined by a set of respective informative
keywords. The keywords serves the purpose of aux-
iliary information Akata et al. (2016), required to
perform zero-shot classification tasks (more details
in Appendix A.1).

Dataset Articles # of Labels Labels/article
Medical 2066 18 1.128

News 8940 12 0.805
Cellular phone 587 23 1.058
Digital camera1 642 24 1.069
Digital camera2 380 20 1.039

DVD player 839 23 0.781
Mp3 player 1811 21 0.956

Table 1: Statistics on large and small datasets

4.2 Methods, Baseline and Evaluation

As our baseline, we implemented a constrained
topic-based zero-shot classification approach
(based on the Generative Feature Language
Models (GFLM) proposed by Karmaker Santu
et al. (2016)). More specifically, we implemented
two variants of the baseline approach: 1) GFLM-S
(inference based on topic distribution of an entire
document) and GFLM-W (inference based on topic
distribution of a single word). This approach is

based on generative probabilistic model which is a
unsupervised statistical learning. The parameters
are optimized automatically using an Expectation-
Maximization algorithm in an unsupervised fash-
ion; hence no training is required and consequently,
can be considered as zero-shot [for details, see Kar-
maker Santu et al. (2016)]. For USE, we imple-
mented four different Zero-shot Text Classifiers: 1)
USE with Transformer architecture and P1 label
embeddings (USEP 1

T ). 2) USE with Transformer
architecture and P2 label embeddings (USEP 2

T ).
3) USE with DAN architecture and P1 label embed-
dings (USEP 1

D ). 4) USE with DAN architecture
and P2 label embeddings (USEP 2

D ). As evaluation
metric, we report the traditional Precision, Recall
and the F1 scores. To compute the F1 score, we
first sum the respective True Positive, False Pos-
itive, and False Negative values across all labels
and then plug them into the F1 equation to get
micro-averaged F1 score.

5 Results and Findings

We first present the results on the seven datasets
used in our experiments for the four variants of
the USE-based Zero-shot Text Classifiers. Table 2
summarizes performance of the classifiers, which
demonstrated that DAN based architectures per-
formed slightly better than the transformer based
architecture overall, while P1 label embeddings
turned out to be superior than the P2 embeddings.

Dataset USEP1
T USEP2

T USEP1
D USEP2

D
Medical 0.503 0.486 0.516 0.495

News 0.438 0.423 0.445 0.464
Cellular phone 0.486 0.484 0.483 0.482
Digital camera1 0.408 0.447 0.457 0.454
Digital camera2 0.438 0.505 0.501 0.483

DVD player 0.449 0.403 0.449 0.440
Mp3 player 0.463 0.391 0.466 0.401

Table 2: F1 Measure for USE-based classifiers with
different embeddings. P1 denotes Label embedding us-
ing explicit annotated text and P2 denotes Label embed-
ding using label name and keywords.

Based on the findings above, we further looked
into the precision and recall scores of the DAN-
architecture based USE classifiers (reported in Ta-
ble 3) along with the baseline methods, GFLM-W
and GFLM-S. It is evident from Table 3 that GFLM-
W and GFLM-S perform significantly better than
USE in terms of precision. Although in some cases,
recall values of USE approaches were found to be
better than the GFLM-W and GFLM-S, one should
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USEP1
D USEP2

D GFLM-S GFLM-W
Dataset Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
Medical 0.447 0.611 0.516 0.475 0.517 0.495 0.597 0.481 0.533 0.597 0.477 0.530

News 0.437 0.445 0.445 0.400 0.550 0.464 0.564 0.440 0.494 0.562 0.437 0.492
Cellular phone 0.398 0.612 0.483 0.407 0.594 0.482 0.494 0.501 0.498 0.480 0.529 0.504
Digital camera1 0.451 0.462 0.457 0.619 0.358 0.454 0.473 0.449 0.461 0.656 0.367 0.471
Digital camera2 0.546 0.463 0.501 0.419 0.569 0.483 0.567 0.438 0.494 0.540 0.460 0.497

DVD player 0.334 0.685 0.449 0.430 0.452 0.441 0.461 0.487 0.474 0.468 0.507 0.486
Mp3 player 0.370 0.630 0.466 0.345 0.478 0.401 0.531 0.470 0.509 0.588 0.457 0.515

Table 3: Detailed performance comparison of USE DAN model with baseline GFLM-S and GFLM-W.
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Figure 2: F1 score plot for different methods, for (a) Digital camera1, (b) Medical datasets, over threshold between
0 and 1.

note that this higher recall has little practical value
as the corresponding precision is low. On the other
hand, GFLM-W and GFLM-S achieved compara-
tively high precision while preserving reasonable
recall. For GFLM-W, GFLM-S, and USE the infer-
ence threshold (θ) was varied between 0 and 1 and
then the maximum score is reported in the table.
We have also presented performance of GFLM-W,
GFLM-S, and USE for a fixed number of labels
over different threshold in figure 2. At the end, re-
sults were surprising as USE was outperformed by
simple topic-based inference techniques for zero-
shot classification tasks, which motivated us to dig
deeper into the reasons of USE’s score.

5.1 Why is USE Failing?

We performed a deeper investigation on whether
USE can distinguish two closely related labels with
a high semantic overlap, which inspired us to look
at correlation heat-maps among different labels for
each dataset. The correlation of two labels can be
trivially computed using cosine similarity between
two label embeddings (We would like to mention
here that embeddings produced by the USE are ap-
proximately normalized). Figure 3 shows an exam-
ple correlation heat-map of Digital camera1 dataset

labels, where, darker color represent high corre-
lation compared to the lighter one. For instance,
embedding vector for Lens and Focus possess a
higher correlation. Likewise, Size and Weight have
high correlation as they are semantically close. In
fact, we observed similar highly correlated labels
for other datasets too. Due to space limitation, heat-
maps of other datasets are presented in appendix
A.3.
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Given these overlapping labels in our datasets,
we hypothesised that USE is demonstrating sub-
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optimal performance because it is failing to accu-
rately distinguish between two labels with high
semantic overlap. To test whether this is indeed the
case, we greedily started reducing the number of
labels. The motivation here is to analyze whether
USE performance rises with decreasing number of
overlapping labels and vice-versa.
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Figure 4: F1 score plot for Medical dataset for descend-
ing number of labels

For removing the labels, we took a greedy ap-
proach where we first identified the highly corre-
lated labels. At each iteration, we reduced 2-3 la-
bels based on the semantic overlap and performed
classification using the same method described in
algorithm 1. The label count-performance trade-
off is better demonstrated via figure 4 for “Medi-
cal” dataset, (for rest of the datasets, results are
presented in the appendix). It is evident from
the trend of the performance that as we reduce
the number of labels, performance clearly rises.
Upon error analysis, we observed that for Medical
dataset if an article is related to "Arthritis" and
"Pain Management" Universal Sentence Encoder
labeled the article with "Osteoporosis", "Arthri-
tis" and "Pain Management". The reason being
"Arthritis" and "Osteoporosis" has high correla-
tion / semantic similarity measure around 0.682.
Reducing the label count moderated these kinds
of scenarios. To be precise, when label "Osteo-
porosis" was excluded from the set, for the same
article USE inferred "Arthritis" and "Pain Man-
agement". As a result, false positive counts min-
imise and performance uprise. We also continued
the experiment with GFLM models with the re-
duced labels but we found that the performance
was mostly stable in case of GFLM with little rise
in F1 score. This shows the GFLM models do not
suffer for the high number/overlap of target labels.

6 DISCUSSION AND CONCLUSION

In this paper, we present a so-called “negative” re-
sult on USE in the context of "Zero-shot Text Clas-
sification". Our experimental results reveal that
basic topic-based inference models outperformed
USE-based inference, which is indeed surprising.
Further investigation revealed that USE struggles
to achieve good performance on zero-shot classi-
fication tasks with a large number of labels with
high semantic overlap. On the other hand, sim-
ple topic based inference techniques were found
to be pretty robust as a zero-shot classifier. One
possible explanation for such performance may be
attributed to the fact that topic-distribution vectors
are constrained (sums to 1), while USE vectors
are unbounded (real numbers). Such constrained
representation of topic-vectors may make them su-
perior in terms of their capability to distinguish be-
tween two highly overlapping labels compared to
same for unbounded USE vectors, which were not
trained following such constraints. In normal su-
pervised learning settings, USE usually learn those
distinctions from training labels, however, in case
of zero-shot cases, that distinguishing capability is
perhaps not developed well.

In summary, this paper highlights a limitation of
the USE encoding technique and forms a cardinal
basis for further research on the limitation of USE.
Our findings also suggest that we may be still far
away from a sentence encoding technique that is
indeed “universal”.
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A Appendix

A.1 Challenges of Zero-shot TC
A closer look into into the datasets revealed that
they are comprised of articles with varying length
and each article is a complex representation of
various concepts, entities and events and most of
the labels are not explicitly mentioned in the arti-
cle and are thus “implicit” labels. The difference
between the two can be further clarified through
an example. We consider a label as explicit if
the label name/phrase is explicitly mentioned in
the article text. For example, the following sen-
tence is from an article related to label Corona
virus, “Americans should feel much better about
the corona virus coming under control”, which
mentions the label Corona virus explicitly in the
text body. Whereas, for implicit cases, the label
name is not directly mentioned in the article text,
rather the label is somewhat implied. For exam-
ple, the following sentence is taken from an article
annotated with the label Women’s Health, "Stud-
ies question: ban on alcohol during pregnancy."
Here, the text does not contain the phrase Women’s
Health, yet a human can easily relate it to the same
label. Recognizing implicit label is an arduous job.
Probing our datasets, we ascertained significant
portions of the data contains these implicit label,
hence their accurate identification, is indeed very
challenging, specially for "Zero-shot Text Classifi-
cation" without any supervision.

To mitigate the issue of the ubiquity of implicit
labels, we started to find alternative approaches. On
further assessment, we realized that in cases where
label names are not directly mentioned in the text,
some informative keywords related to the label are
always present in the article text. Indeed, each label
can be imagined as a cloud of its informative key-
words and different labels will essentially yield dif-
ferent word clouds. More interestingly, these infor-
mative keywords (word cloud) can be provided by
the end user conducting the classification task. In
fact, we realized this is what mostly happens in real-
world cases. However, we did not have any end user
involved in the task and also the keywords related
to the labels were not readily available. Hence,
we used TF-IDF heuristics and then extracted set
of keywords for each label. For example, the ar-
ticles related to label ‘Women’s Health’ yielded
informative keywords like ‘Pregnancy’, ‘Breast’,

‘Uterus’,‘Postpartum’, ‘Pregnant’, ‘Miscarriage’
etc. This informative keywords are an important

factor for the task and hence necessary.

A.2 Label Embedding Approaches

We have used 2 different approaches for computing
label embedding. The consecutive sections discuss
about different procedures for generating label em-
bedding.

A.2.1 Label embedding using explicit
annotated text (P1)

1. As discussed in algorithm 1, inputs are fed to
pre-trained USE, such as article text and the
labels with associated keywords.

2. Based on the labels and keywords "Explicit An-
notator" module annotate some of the article
which we consider as explicit annotated text.
For an example, "The camera is great!!!", this
review contains the the label "camera" explicitly,
therefore "Explicit Annotator" marks the text as
to be potentially connected to "camera".

3. These "Explicit Annotated Text" along with la-
bels (in which user is interested) and candidate
text (to be classified) are fed to Universal Sen-
tence Encoder. Two separate vectors are gener-
ated by USE: a) Text Embedding: embedding
generated for the candidate text, directly using
USE; and b) Label Embedding: Label embed-
ding is obtained by computing the average of all
explicit annotated text. For an example, if the
"Explicit Annotator" method identify 10 reviews
based on labels and keywords search, which
might be related to label "Camera" then we ob-
tain 10 sentence embeddings and average them
to get the label embedding for label "Camera".

4. Once the text and label embeddings have been
computed, then semantic similarity between the
text embedding and each label embedding is
computed in terms of the cosine similarity.

5. Finally, based on a threshold technique, most
relevant labels are inferred as the output.

A.2.2 Label embedding using label name and
keywords (P2)

1. The input is same as stated in the A.2.1, article
text and the label with associated keywords.

2. Also similar to previous method, two separate
vectors are generated by USE: a) Text Embed-
ding: sentence embedding generated on the can-
didate text, directly from USE; and b) Label
Embedding: However, here label embedding is
obtained by computing the average vector of
label name embedding and keywords embed-
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ding. For an example, if the label was “Sound”
and set of associated keywords were “Audio”,
“Headphone”, “Earbud” and “Earphone”, then
we compute the label embedding by taking av-
erage of label name (“Sound”) and all the asso-
ciated keywords (“Audio”, “Headphone”, “Ear-
bud” and “Earphone”) embeddings.

3. The procedure for final text classification is
same as discussed in step 4 and 5 previously.

A.3 Correlation Analysis
Heat maps for all datasets for correlation analysis
has been presented in figure 5.

A.4 Performance comparison of GFLM and
USE

Figure 6 present detailed comparison over all the
methods for threshold between 0 to 1.

A.5 Label Vs Performance
Table 4 contains details for all datasets over dif-
ferent count of labels. Figure 7 is presented for
showing label count vs performance trade-off.
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Figure 5: Correlation or semantic similarity heat-maps for (a) Medical, (b) News, (c) Cellular phone, (d) Digital
camera2, (e) DVD player and (f) Mp3 player datasets.
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Figure 6: F1 score plot for different methods for (a) Cellular phone, (b) Digital camera2 , (c) DVD player, (d) Mp3
player, (e) News datasets, over threshold between 0 and 1.
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Dataset Label Count GFLM-S GFLM-W USEP1
D USEP2

D

Medical

18 0.531 0.530 0.517 0.495
16 0.888 0.531 0.544 0.527
14 0.542 0.534 0.569 0.546
12 0.542 0.539 0.574 0.569
10 0.540 0.537 0.584 0.584
8 0.543 0.537 0.615 0.623
6 0.559 0.556 0.631 0.650

News

12 0.494 0.491 0.445 0.464
11 0.486 0.487 0.479 0.479
10 0.497 0.495 0.498 0.489
9 0.482 0.485 0.521 0.516
8 0.497 0.497 0.534 0.547
7 0.498 0.496 0.559 0.572
6 0.485 0.480 0.569 0.585

Cellular phone

23 0.498 0.504 0.483 0.482
20 0.524 0.526 0.500 0.515
17 0.530 0.532 0.538 0.541
14 0.536 0.540 0.541 0.556
12 0.536 0.532 0.570 0.560
10 0.526 0.534 0.582 0.580
8 0.537 0.533 0.592 0.586

Digital camera1

24 0.461 0.471 0.457 0.454
20 0.495 0.506 0.486 0.488
18 0.494 0.493 0.509 0.517
16 0.506 0.499 0.522 0.524
14 0.504 0.510 0.527 0.541
12 0.518 0.512 0.534 0.547
10 0.526 0.523 0.546 0.567
8 0.525 0.534 0.565 0.596

Digital camera2

20 0.494 0.497 0.501 0.483
18 0.497 0.499 0.519 0.521
16 0.507 0.507 0.550 0.556
14 0.529 0.519 0.569 0.577
12 0.529 0.538 0.580 0.609
10 0.578 0.581 0.600 0.651
8 0.586 0.596 0.650 0.696

DVD player

23 0.474 0.486 0.449 0.440
19 0.476 0.491 0.487 0.473
17 0.488 0.515 0.516 0.493
14 0.494 0.512 0.536 0.507
12 0.497 0.519 0.557 0.516
10 0.503 0.521 0.594 0.527
8 0.506 0.514 0.609 0.543

Mp3 player

21 0.509 0.515 0.466 0.401
18 0.503 0.509 0.487 0.410
16 0.492 0.503 0.494 0.421
14 0.501 0.511 0.502 0.427
12 0.494 0.510 0.516 0.439
10 0.512 0.534 0.525 0.450
8 0.521 0.527 0.549 0.481

Table 4: Performance comparison of all the datasets over varying number of labels. Results presented in the table
is for the DAN architecture over 2 different embedding process P1 and P2.
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Figure 7: F1 score plot for (a) News, (b) Cellular phone, (c) Digital camera1, (d) Digital camera2, (e) DVD player,
and (f) Mp3 player over different label count.


