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Abstract

Previous studies on neural linguistic steganog-
raphy, except Ueoka et al. (2021), overlook the
fact that the sender must detokenize cover texts
to avoid arousing the eavesdropper’s suspicion.
In this paper, we demonstrate that segmentation
ambiguity indeed causes occasional decoding
failures at the receiver’s side. With the near-
ubiquity of subwords, this problem now affects
any language. We propose simple tricks to over-
come this problem, which are even applicable
to languages without explicit word boundaries.

1 Introduction

Lying at the intersection of information secu-
rity and natural language processing, linguistic
steganography is the practice of hiding informa-
tion in cover texts (Simmons, 1984; Anderson and
Petitcolas, 1998; Bennett, 2004). Formally, the
sender Alice encodes a secret message, usually in
the form of a bit sequence, into a cover text, while
the receiver Bob decodes the message. The most
important requirement is security: The cover text
must be so natural that even if transmitted in a pub-
lic channel, it does not arouse the suspicion of the
eavesdropper Eve. In fact, steganography engages
in an arms race with steganalysis, the practice of
detecting the presence of secret messages (Fridrich,
2009). With the security requirement fulfilled, we
also want to increase payload capacity, the size of
the secret message relative to the size of the cover
text (Chang and Clark, 2014).

Compared with dominant cover media in
steganography, such as images, videos, and au-
dio (Fridrich, 2009), texts are characterized by a
low degree of redundancy. This makes it particu-
larly challenging to enumerate natural variations
of text into which bit chunks are encoded (Chang
and Clark, 2014). Nevertheless, this difficulty is
surmounted to some degree by powerful neural
language models (LMs) for their ability to sug-
gest probable next tokens in a context-aware man-

ner (Fang et al., 2017), and the research focus has
shifted towards increasing payload capacity (Dai
and Cai, 2019; Ziegler et al., 2019; Shen et al.,
2020; Zhang et al., 2021).

Previous studies, however, overlook the fact that
Alice must detokenize texts before sending them
to a public channel; Otherwise they arouse Eve’s
suspicion. Ueoka et al. (2021) were the first to
point out that Bob may fail to recover the original
tokens from detokenized texts, leading to decoding
failures. While segmentation ambiguity has been
a vexing problem for scriptio continua, or writ-
ing systems without explicit word boundaries (e.g.,
Chinese and Japanese), the near-ubiquitous use of
subwords implies that it now affects any language.
For example, suppose that Alice generates the En-
glish sequence “un ##us ##able”. Detokenized into
“unusable”, it is unfortunately re-tokenized into “un
##usable” by Bob (Figure 1 (top)).

While recent proposals are flawed, the fact that
the problem went unnoticed till Ueoka et al. (2021)
suggests that the errors occur only infrequently.
This leads us to the following question: How often
do decoding failures occur? We expect that they
affect morphologically rich languages and scriptio
continua more severely than English. We report our
experimental results using Russian and Japanese in
addition to English.

Although Ueoka et al. (2021) proposed a simple
solution for their edit-based method, it is not ap-
plicable to LM-based (generation-based) methods.
This motivates us to address the second question:
How can generation-based methods overcome seg-
mentation ambiguity?

In this paper, we propose a combination of sim-
ple tricks to ensure that Bob recovers the same
tokens as Alice (Figure 1 (bottom)). The pro-
posed method can be applied not only to subword-
based LMs but also to scriptio continua, as we
demonstrate for Japanese. Our code is available at
https://github.com/jumon/himitsu.

https://github.com/jumon/himitsu
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Figure 1: Overview of neural linguistic steganography based on an ambiguity-unaware method (top) and the
proposed method (bottom). Starting with some introductory context (prompt), the sender Alice iteratively uses a
language model (LM) to propose probable next tokens, assigns bit chunks to them, and selects a token corresponding
to the secret message. The receiver Bob tries to decode the secret message but may fail with the ambiguity-unaware
method because the original tokens are not always recovered from the detokenized cover text. The proposed method
guarantees correct decoding by performing stepwise tokenization at Bob’s side and by resolving ambiguities.

2 Related Work

2.1 Finite Word-level Vocabularies
Before the widespread adoption of subwords,
which coincided with the invention of the Trans-
former architecture (Vaswani et al., 2017), re-
current neural network-based (RNN-based) LMs
were accompanied by a finite word-level vocabu-
lary (Bengio et al., 2003). Vocabulary selection
was usually based on frequencies in the training
data, and low-frequency words were replaced with
the special token UNK. Applying this technique to
linguistic steganography (Zhang et al., 2021) is im-
practical because UNK is a clear signal of automatic
generation and hence is subject to steganalysis.

Oddly enough, previous studies exploring RNN
LMs for linguistic steganography (Fang et al., 2017;
Yang et al., 2018, 2019, 2020; Kang et al., 2020;
Yang et al., 2021; Li et al., 2021; Zhou et al., 2021)
make no mention of or obscure the vocabulary se-
lection step. At any rate, a finite word-level vocabu-
lary should be seen as a security vulnerability. The
complete absence of rare words can be exploited
by steganalysis.

2.2 Subwords in Linguistic Steganography
In their experiments, Dai and Cai (2019), Ziegler
et al. (2019), and Shen et al. (2020) built their
steganographic models on top of GPT-2 (Radford
et al., 2019), which used subwords. Dai and Cai
(2019) and Shen et al. (2020) make explicit claims

about the applicability of their methods to subword-
level LMs. As we discussed in Section 1, however,
they do not guarantee 100% recovery of the original
subword tokens at Bob’s side if Alice detokenizes
subwords in order not to arouse Eve’s suspicion.

Ueoka et al. (2021) point out that segmentation
ambiguity may lead to decoding failures in lin-
guistic steganography. Their solution is to simply
skip subwords. This is possible because they edit
human-generated texts by masking a small portion
of tokens (Devlin et al., 2019), meaning that the
resultant texts still contain rare words as before.
If a similar technique is applied to a generation-
based method, it falls back into the same problem
as LMs with finite word-level vocabularies: the
complete absence of rare words. Note that Ueoka
et al. (2021) do not overcome segmentation ambi-
guity stemming from scriptio continua as we do
for generation-based steganography in this paper.

Unfortunately, publications that postdate Ueoka
et al. (2021) remain silent on segmentation ambigu-
ity. Yang et al. (2022) do not detokenize cover texts
at all. Yi et al. (2022), Zheng and Wu (2022), and
Cao et al. (2022) make no single mention of sub-
words even though they used subword-baed models
in their experiments. A faithful implementation of
their methods would lead to decoding failures if
detokenization is applied. For example, Yi et al.
(2022) generate a cover text by interleaving a text-
based secret message with dummy words. While
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Bob is supposed to be informed of word positions
of a secret message in the cover text, subwords do
distort word-level positions.

We urge the community to take detokenization
and retokenization as necessary steps for linguistic
steganography. Clarification on the use of sub-
words is also needed.

3 Segmentation Ambiguity

The basic idea underlying generation-based neural
linguistic steganography is to let a powerful neu-
ral LM, like GPT-2, enumerate natural variations
of text into which bit chunks are encoded (Fig-
ure 1 (top)). We assume that Alice and Bob share
the LM and an encoding strategy in advance. Fol-
lowing Ziegler et al. (2019), we also assume that
Alice uses some introductory context (prompt) in a
way such that Bob can use the same prompt during
decoding. This helps diversify cover texts.

Now we consider an ambiguity-unaware method
of generation-based steganography. For simplicity,
we use block encoding (Fang et al., 2017) as the
encoding strategy. At Alice’s side, the LM is given
a prompt and proposes probable next tokens at each
time step. Alice sorts tokens in descending order
of probability and performs a two-step filtering to
select the top 2n tokens. She first selects c tokens
with probabilities greater than or equal to p and
then chooses n such that it is the largest integer
that satisfies 2n ≤ c. Each of the tokens is given
a unique bit chunk of length n, and Alice chooses
the one that corresponds to the next n bits of the
secret message. Alice repeats this until she finishes
encoding the message. In the end, she detokenizes
the text and sends it to Bob via a public channel.

Receiving the cover text, Bob first tokenizes it
and then feeds the resultant tokens to the LM. He
associates tokens with bit chunks in the same way
as Alice. He decodes the secret message by repeat-
edly selecting a bit chunk corresponding to the next
input token.

Unfortunately, this method is flawed because
detokenization triggers segmentation ambiguity.
Even if Alice generates the tokens “un ##us
##able”, Bob obtains “un ##usable”, which re-
sults in a wrong secret message. One might be
tempted to use an error correcting code for the se-
cret message, but it is of little help because one
segmentation error affects all subsequent tokens.

4 Proposed Method

Figure 1 (bottom) shows an overview of the pro-
posed method. To overcome the segmentation am-
biguity problem in generation-based neural linguis-
tic steganography, we combine two simple tricks:
stepwise tokenization and token disambiguation.

Stepwise tokenization The first trick is to resist
the temptation to use an off-the-shelf tokenizer at
Bob’s side. Bob is to imitate Alice’s autoregressive
generation process instead. At each time step, Bob
selects a token that is a prefix of the remaining part
of the detokenized cover text. For example, sup-
pose that Bob receives the cover text “unusable”.
He first selects “un”, which is a prefix of “unus-
able”. Given the remaining part of the cover text,
“##usable”, he next selects a prefix of it. He repeats
this until he finishes reading the cover text.

Token disambiguation Stepwise tokenization
alone does not resolve segmentation ambiguity.
At the second step of the aforementioned exam-
ple, Bob faces an indeterminacy problem, as both
“##us” and “##usable” are prefixes of “##usable”.
We resolve ambiguity by introducing a simple trick
at the filtering step of both sides: If there are two
candidate tokens w1 and w2 such that w1 is a prefix
of w2, w1 is removed from the candidate list. For
the example above, Alice drops “##us” because it
is a prefix of another candidate “##usable”. Bob
follows the same procedure as Alice to ensure that
he can uniquely and correctly identify tokens.

5 Experiments

We compared the proposed method with the above-
mentioned ambiguity-unaware method. For each
method, we generated 10,000 cover texts follow-
ing different prompts. Our primary focus was on
decoding error rates, or the percentages of decod-
ing failures among the 10,000 trials. A trial was
deemed a failure if Bob re-tokenized the cover text
differently from Alice. The proposed method is
guaranteed to have a 0% decoding error rate, and
we intended to experimentally confirm this. We
also evaluated these methods in terms of payload
capacity and security.

5.1 Datasets and Models

Datasets We chose three languages, Japanese,
Russian, and English, for which GPT-2 models
were available. For each language, 10,000 lines
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Japanese Russian English
Error Rate Bits/Token Error Rate Bits/Token Error Rate Bits/Token

Method (%)↓ ↑ (%)↓ ↑ (%)↓ ↑
Ambiguity-unaware 6.25 2.47 3.89 2.52 1.18 2.70
Proposed 0.00 2.28 0.00 2.41 0.00 2.59

Table 1: Decoding error rates and payload capacity (bits/token) in three different languages.

Japanese
Alice ... |を |成功 |させる | ...
Bob ... |を成功させ |る | ...
Russian
Alice ... | переи | ##да | ##валось | ...
Bob ... | переи | ##дав | ##алось | ...
English
Alice ... | med | ##iation | ...
Bob ... | mediation | ...

Table 2: Examples of cover texts for which the
ambiguity-unaware method caused decoding failures. A
vertical bar marks a token boundary.

of text were extracted from the CC-100 web cor-
pus (Wenzek et al., 2020) and used as prompts of
the LM. The length of a prompt was 30 characters
for Japanese and 10 words for Russian and English.
We used 64 random bits as a secret message.

Models We used medium-sized GPT-2 mod-
els taken from Hugging Face’s transformers
package1 (Wolf et al., 2020). While the Japanese
model used SentencePiece (Kudo and Richardson,
2018) for its vocabulary, the Russian and English
models used a byte-level version of BPE (Radford
et al., 2019). Accordingly, the prefixes in the pro-
posed method were determined at the byte level.
The probability threshold, p, was set to 0.01.

5.2 Automatic Detection (Steganalysis)

To measure the security of each method, we trained
a discriminator to distinguish real texts from gen-
erated texts and evaluated the detection accuracy
(the lower, the better). Specifically, we fine-tuned a
BERT model on the binary classification task. As a
simple baseline, we also evaluated texts randomly
generated by GPT-2, without encoding any secret
message. See Appendix A for details.

1Publicly available at https://huggingface.co/
(Japanese: rinna/japanese-gpt2-medium, Russian: sberbank-
ai/rugpt3medium_based_on_gpt2, and English: gpt2-
medium). Each model had about 350M parameters.

Accuracy (%)↓
Method ja ru en
Ambiguity-unaware 86.6 85.4 88.2
Proposed 88.6 86.5 91.5
(GPT-2 Random) 79.0 77.8 82.8

Table 3: Results of automatic detection. The last row
shows a baseline that did not encode any secret message.

5.3 Results

Table 1 compares the two methods in terms of de-
coding error rate and payload capacity. The er-
ror rates for the ambiguity-unaware method were
small but non-negligible. Note that in real situa-
tions, secret messages can be longer than 64 bits
and consequently can push the decoding error rate
upward. While not strictly comparable because
of differences in hyperparameters and datasets,
the three languages exhibit an interesting inclina-
tion: Japanese, the language without explicit word
boundary markers, was the most susceptible to seg-
mentation ambiguity, which was followed firstly by
morphologically rich Russian and lastly by analytic
English. Some examples of segmentation ambigu-
ity of the ambiguity-unaware method are shown in
Table 2 (see Appendix B for more examples).

The proposed method featured 100% correct de-
coding. It was at the expense of payload capacity,
but no language showed more than a 10% drop.

Table 3 shows the result of automatic detection.
The proposed method was slightly more prone to
automatic detection than the ambiguity-unaware
method. We suspect that the token disambigua-
tion trick worsened the statistical deviation from
human-written texts. The drop in performance is,
however, not a prime cause of concern given that
even the GPT-2 random baseline was easily de-
tected. Switching to a more powerful LM would
mitigate the risk. Finally, Appendix C shows some
examples of generated texts.

https://huggingface.co/
https://huggingface.co/rinna/japanese-gpt2-medium
https://huggingface.co/sberbank-ai/rugpt3medium_based_on_gpt2
https://huggingface.co/sberbank-ai/rugpt3medium_based_on_gpt2
https://huggingface.co/gpt2-medium
https://huggingface.co/gpt2-medium


113

6 Discussion

Although recent studies on generation-based neu-
ral linguistic steganography (Dai and Cai, 2019;
Ziegler et al., 2019; Shen et al., 2020; Zhang et al.,
2021) exploit the entire vocabulary distributions
proposed by an LM, we turn back to naïve block
encoding (Fang et al., 2017), which only uses the
most probable 2n tokens. In fact, our solution in its
current form is not compatible with the use of the
entire vocabulary because with p = 0, the token
disambiguation trick always drops a fixed portion
of the vocabulary. The present study should be seen
as a proof-of-concept demonstration focusing on
segmentation ambiguity. We hope that it sets out a
future research direction.

7 Conclusions

Linguistic steganography is an interdisciplinary
research area that combines information security
and natural language processing (NLP). In this pa-
per, we investigated its unexpected connection to
the decades-old NLP task of word segmentation.
Specifically, we shed light on segmentation ambigu-
ity in generation-based neural linguistic steganog-
raphy. Previously proposed methods are flawed if
combined with a subword-level LM.

We proposed a combination of simple tricks to
guarantee the recovery of the original tokens and
thus the correct decoding of a secret message. Our
solution is language-agnostic and is applicable even
if no word boundaries are marked.

With powerful neural LMs, linguistic steganog-
raphy is approaching the level of practical utility.
Now is the time to face up to the fact that without
detokenization, linguistic steganography is useless.

Ethical Considerations

Linguistic steganography conceals a secret mes-
sage into a text, without a sign that secret com-
munication is taking place. With the advance in
neural language models, it is becoming possible to
generate more natural texts while encoding a good
amount of secret data. The proposed method is
language-agnostic and guarantees the correct de-
coding of a secret message, thus making a step
toward real-life applications. Intended applications
of steganography are embedding copyright infor-
mation, countering censorship, and just for fun,
among others. However, it can also be used to
transfer malicious contents, which makes steganog-
raphy a dual-use technology. Therefore, along with

steganography, steganalysis, the study of detecting
the presence of hidden messages, would also be an
encouraging research direction to safeguard against
malicious use.
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A Details of Automatic Detection

The 10,000 texts generated by each method were
split in an 8:1:1 ratio to create the training, de-
velopment, and test sets. For the GPT-2 ran-
dom baseline, we fed the same prompts to GPT-
2 and performed random sampling according to
the probabilities of the next tokens. The real
texts and the texts generated by the GPT-2 ran-
dom baseline were truncated so that they had com-
parable lengths with texts generated by stegano-
graphic methods. As a discriminator for each lan-
guage, we used a base-sized BERT model taken
from Hugging Face’s transformers package
(Japanese: cl-tohoku/bert-base-japanese-whole-
word-masking, Russian: DeepPavlov/rubert-base-
cased, and English: bert-base-cased). The numbers
of parameters of the Japanese, Russian, and En-
glish BERT models were about 111M, 178M, and
108M, respectively.

To fine-tune a BERT model, we used gen-
erated texts following the prompts as inputs.
Adam (Kingma and Ba, 2015) was used as the
optimizer with a learning rate of 10−5. The batch
size was set to 32. We did not conduct any hyper-
parameter search and we report the experimental
results of single runs. We trained each model for
10 epochs and used the checkpoint with the best
validation accuracy as the final model. Throughout
training, we used a single Quadro P6000 GPU. It
took about 15 minutes to train a model.

B Examples of segmentation ambiguity

Table A.1 shows more examples of cover texts for
which the ambiguity-unaware method caused de-
coding failures.

C Examples of texts generated by our
proposed method

Table A.2 shows examples of texts generated by
the proposed method following prompts. Each gen-
erated text carries a 64-bit random secret message.

https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking
https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking
https://huggingface.co/DeepPavlov/rubert-base-cased
https://huggingface.co/DeepPavlov/rubert-base-cased
https://huggingface.co/bert-base-cased


116

Japanese
Alice ... |新しい |カ |ラム |を |作成した |ら |どう |します |か | ? | ...
Bob ... |新しい |カ |ラム |を作成し |たら |どう |します |か | ? | ...
Alice ... |各 |会場 |で |撮影した |写真を | 1 |枚の |アルバム |にして |配布 |される | ...
Bob ... |各 |会場 |で |撮影した |写真を | 1 |枚のアルバム |にして |配布 |される | ...
Russian
Alice ... | Он | достаточно | лак | ##о | ##нич | ##ен | и | в | тоже | время | очень | ...
Bob ... | Он | достаточно | лак | ##они | ##чен | и | в | тоже | время | очень | ...
Alice ... | при | любом | исходе | дела | он | стремится | получить | максим | ##альную | ...
Bob ... | при | любом | исходе | дела | он | стремится | получить | максимальную | ...
English
Alice ... | decreased | more | in | dry | land | environments | compared | to | wet | ##lands | ...
Bob ... | decreased | more | in | dry | land | environments | compared | to | wetlands | ...
Alice ... | while | C | ##CA | ##A | works | directly | with | local | schools | ...
Bob ... | while | CC | ##AA | works | directly | with | local | schools | ...

Table A.1: More examples of cover texts for which the ambiguity-unaware method caused decoding failures. A
vertical bar marks a token boundary, and tokens colored red indicate where tokenization differs.

Japanese
Prompt お店ではたくさんの商品が所狭しと並んでいます。それだけ置いて

Generated text おいて欲しい商品だからでしょう。そんな風に商品が置いてあります

ので、商品を購入するにはお目当てのお店に行くことになるのが通常

Prompt 私の場合は、仕事の帰宅時間がとても不規則だったので睡眠時間が

Generated text 不規則な状態でしたが、今となってはその理由も分かる気もします(;’∀’)」
これは私も同じ経験なのですが、「おやすみ

Russian
Prompt Обоих не было в игре, но ответят, как зайдут. Других
Generated text тоже. Но, судя по всему, у вас с собой будет оружие и запасные

патроны к ним. Это я уже от себя
Prompt Это меня еще больше встревожило. Несколько часов я провел без
Generated text сна. Но ничего. Я еще буду в порядке, когда у нас появятся свои

дома. . . Но тут зазвонил мобильный
English
Prompt She hugged me then, burying her face into my chest.
Generated text It hurt me too much and I was getting hot and sweaty, and I had a terrible stomach

bug. It didn
Prompt I have read many articles on the subject and have
Generated text tried not to comment on this as it has become the focus of an intense debate amongst

fans in my time with this

Table A.2: Examples of texts generated by the proposed method following prompts. Each generated text carries
a 64-bit random secret message. Following Ziegler et al. (2019), we stop generation when the proposed method
finishes embedding the message.


