Unsupervised Single Document Abstractive Summarization
using Semantic Units

Jhen-Yi Wu and Ying-Jia Lin and Hung-Yu Kao
Intelligent Knowledge Management Lab
Department of Computer Science and Information Engineering
National Cheng Kung University
Tainan, Taiwan
jhenyiwu.d@gmail.com,yingjia.lin.public@gmail.com,
hykao@mail.ncku.edu.tw

Abstract

In this work, we study the importance of
content frequency on abstractive summariza-
tion, where we define the content as "semantic
units." We propose a two-stage training frame-
work to let the model automatically learn the
frequency of each semantic unit in the source
text. Our model is trained in an unsupervised
manner since the frequency information can be
inferred from source text only. During infer-
ence, our model identifies sentences with high-
frequency semantic units and utilizes frequency
information to generate summaries from the
filtered sentences. Our model performance
on the CNN/Daily Mail summarization task
outperforms the other unsupervised methods
under the same settings. Furthermore, we
achieve competitive ROUGE scores with far
fewer model parameters compared to several
large-scale pre-trained models. Our model can
be trained under low-resource language settings
and thus can serve as a potential solution for
real-world applications where pre-trained mod-
els are not applicable.

1 Introduction

Summarization is a task involving compressing a
longer text into a shorter version while preserving
the salient information in the original text. When
given article-summary pairs, supervised models are
able to learn corresponding implicit relationships,
for example, where to focus or what to preserve.
However, a lack of sufficient training pairs is a
common issue in real-world applications. Creat-
ing such high-quality training pairs can be costly.
Although large pre-trained models for language
generation or summarization may require less data
for fine-tuning, they are often trained on English
corpus only (e.g., Raffel et al., 2020; Song et al.,
2019; Lewis et al., 2020; Zhang et al., 2020) and
thus are not suitable for low-resource languages.
Therefore, we seek the possibility of unsupervised
summarization methods.

Our idea is to utilize the frequency of contents
in the source text. Intuitively, we expect some spe-
cific contents to be included in a summary if they
frequently occur in the source article. A similar
concept of "content units" was first proposed by
Nenkova and Passonneau (2004). They manually
labeled the text by identifying similar text segments
to form a content unit, where the contributing text
segments of a content unit should have similar se-
mantic meanings. In their results (Nenkova and
Vanderwende, 2005), of the top 5 most frequent
content units in the source documents, 96% appear
in a human summary, and high percentages of 92
and 85 are observed for the top 8 and top 12 most
frequent content units across 11 input sets. Their
observation shows that content unit frequency can
provide huge hints as to whether a specific unit
of content will be selected as a part of a human-
written summary and therefore supports our idea.
We also provide our statistical results on the recent
summarization dataset CNN/Daily Mail (See et al.,
2017) in Appendix A.2.

Instead of manually labeling content units like
Nenkova and Passonneau (2004), we divide and
enumerate all text spans with a fixed-size sliding
window. Here, we refer to the divided text spans as
"semantic units" (SUs), as we expect each seman-
tic unit to contain brief semantic concepts in itself.
We then argue that a refined summary should at
least contain the semantic units frequently occur-
ring in the original articles since the high-frequency
semantic units should be the topic or contain key
descriptions. In addition, frequency information
alone should be possible to retrieve from source
documents only. In this work, we propose a model
that automatically learns semantic unit frequency.
The learned frequency information is then used to
discriminate salient parts in source documents for
abstractive summarization.

In our proposed method, which is shown in
Figure 1, the training process is divided into two

954

Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 954-966
November 20-23, 2022. ©2022 Association for Computational Linguistics

Two-stage Training

SU Embeddings with

Source Text Hard Masks
E] Masked Semantic Units Prediction
An estimated 600 people [|
were at a Texas park Sunday . — | Decoder [—»> at a Texas park Sunday
when fireworks went off.]
T L]
SU Embeddings with
HIEEE AT Soft Masks Reconstruction from Semantic Units
v
Semantic Unit Embeddings An estimated 600 people
- » i ——>| Decoder [—>| were ata Texas park Sunday
An estimated 600 people were] when fireworks went off.
estimated 600 people were at
600 people were at a Inference
L Attention Weight-based
| park Sunday when fireworks went | Masked SU Embeddings Summary
| Sunday when fireworks went off | |
| when fireworks went off. | 0 600 people were at a Texas
: —| Decoder [—*| park Sunday when fireworks
9 went off.

Figure 1: Our training and inference stages. The semantic unit embeddings with darker colors indicate that greater

attention mask values are applied.

stages. In the first training stage, our model learns
to predict the masked tokens based on the partially
masked semantic units. This stage mimics the
masked language modeling objectives used in the
pre-trained language models (Devlin et al., 2019;
Song et al., 2019; Lewis et al., 2020). In the second
training stage, the training goal of the model is to
generate fluent text based on the given semantic
units. We train the model to reconstruct the original
articles in this stage; thus, no human-written sum-
maries are used during training. In the inference
stage, semantic unit frequency is obtained using
the attention mechanism, which helps the model
decide how much to focus on the semantic units
when generating text. We first let the model gener-
ate text based on all semantic units in a given article
and record the attention weights for each semantic
unit. The recorded attention weights are used to
assign weights to the semantic units. The weights
are considered the semantic unit frequency since
they represent how much the model has focused on
each semantic unit when reconstructing the origi-
nal article. The weighted semantic units are used to
filter the sentences in the source text, and the corre-
sponding weighted semantic units are provided to
the decoder to generate a sequence. The generated
sequence is considered the final summary.

Here, we list our contributions: First, our experi-
ments prove that our proposed model discriminates

semantic units by frequency and generates sum-
maries from them. Second, our model parameters
are far fewer than many other pre-trained mod-
els, but we can still achieve competitive ROUGE
scores. Finally, no single summary is used in
our training and inference process; therefore, our
proposed method is suitable for real-world ap-
plications where human-written summaries are
rarely accessible. Our code is publicly available at
https://github.com/IKMLab/UASSU.

2 Related Work

Sentence compression. Sentence compression can
be seen as a small-scale text summarization task.
Most earlier work focused on removal of unneces-
sary words (Knight and Marcu, 2002; Dorr et al.,
2003). Since neural network-based approaches
have been proposed, recent works utilize sequence-
to-sequence models to solve this task (Févry and
Phang, 2018; Baziotis et al., 2019; Zhou and Rush,
2019). In these approaches, the goals of compress-
ing or contextual matching may not be suitable for
long text summarization, where the summaries are
not expected to be contextually similar to the entire
content of the original articles, and compression is
not adequate to remove detailed descriptions in a
long text. This tendency is also shown in Févry and
Phang’s (2018) experiments, where they discov-
ered that the length of input sentences also affects

955

https://github.com/IKMLab/UASSU

model performance, suggesting that directly apply-
ing sentence compression methods on longer text
summarization tasks is challenging.

Text summarization. Studies on longer text inputs
and more general cases for summarization have
since been discovered. Dohare et al. (2018) pro-
vided an Abstract Meaning Representation-based
(AMR) solution, but it requires an extra AMR-to-
text model, where the corresponding training data
is unlikely to be accessible for low-resource lan-
guages. Laban et al. (2020) utilized a reinforce-
ment learning-based model to generate summaries
that can be used to better recover the keywords in
source documents. They fine-tuned two large-scale
pre-trained models, BERT (Devlin et al., 2019)
and GPT-2 (Radford et al., 2019), for modeling
coverage and fluency of the generated summaries,
respectively. Wang and Lee (2018) proposed a
novel framework that used generative adversarial
networks (GAN) to achieve unsupervised abstrac-
tive summarization. Their approach was based on
the idea that, given an input document, the gen-
erator should try to generate shorter text that is
readable by human and provides sufficient infor-
mation that can be used by the reconstructor to
reconstruct the original document. They utilized
the discriminator in the GAN structure to deter-
mine if the generated text is human-readable or
machine-generated. Their solution requires no ad-
ditional data or any pre-trained models. It therefore
suits our defined setting the most, where the solu-
tions should not be constrained to large pre-training
corpora or paired data. Other text summarization
approaches differ in terms of the target domains,
for example, review summarization (Isonuma et al.,
2019), meeting speech summarization (Shang et al.,
2018), and five-sentence story summarization (Liu
et al., 2019), or focuses on multi-document set-
tings (Chu and Liu, 2019; BraZinskas et al., 2020).
These approaches often utilize specific techniques
or assumptions for various targeted domains.

Zero-shot pre-training. Recent works have uti-
lized large-scale pre-trained models to achieve zero-
shot abstractive summarization (Zhu et al., 2019;
Yang et al., 2020; Fabbri et al., 2021). For example,
in Yang et al.’s (2020) work, they leveraged the
so-called "lead bias" characteristic to create a large
amount of paired data from news data collected
online. Lead bias is a well-known characteristic in
recent summarization datasets. It means that ex-
tracting the first few sentences alone as summaries

can yield fair performance in terms of the ROUGE
scores and can even outperform many sophisti-
cated summarization models. Yang et al. (2020) di-
rectly utilized this characteristic to generate pseudo
summaries and used them to pre-train their model.
In the fine-tuning process, they used a denoising
autoencoder and theme modeling to enhance the
model performance. On the other hand, Fabbri
et al. (2021) created pseudo article-summary paired
data from Wikipedia as the fine-tuning data for pre-
trained language generation models. Then they
grouped the pseudo paired data by abstractiveness.
For each target dataset, they used the paired data
of corresponding abstractiveness for fine-tuning.
They proved that improvements could be made in
zero-shot domain transfer and few-shot settings
through Wikipedia data fine-tuning. However, lead
bias may not be observed in all kinds of datasets
in different domains or languages, suggesting that
more general solutions should be discovered.

As novel approaches are proposed, one can see
that the trend also implies that current methods
favor using large-scale pre-trained models, which
obviously ignore the needs under specific scenarios
where training data is difficult to obtain. In contrast,
our proposed approach provides a training regime
that does not require any pre-trained models or
massive amounts of paired data.

3 Method

We briefly introduce the model structure and se-
mantic unit construction in Section 3.1. Next, in
Section 3.2, we divide our training strategy into
two stages and describe them separately. Finally,
we explain how we leverage the learned frequency
information for unsupervised text summarization in
Section 3.3. The overview of training and inference
stages is also shown in Figure 2.

3.1 Semantic unit construction

We use standard Transformer encoder-decoder
(Vaswani et al., 2017) as our model architecture.
Each document is taken as an input sequence, and
each sequence is then tokenized into a list of tokens,
w = {wp, w1, ..., Wp—1 }, Wwhere n is the length of
the input sequence. The Transformer encoder en-
codes the input sequence, w, into token embed-
dings, h, with an embedding size dj. The semantic
units are constructed with the following steps: We
first divide h with a sliding window (size ¢ and
stride s). In our experiments, the value of s is set to

956

(a)

=

Tokens of
masked SUs
Document » Encoder —> > —» Decoder —» or
| SU
Token embeds .\—A " embeds Reconstructed
ggregation

document

(b)

J
Document (» Encoder —» I|!E'

Token embeds

I | | || Reconstructed
> suU —» Decoder |— document
embeds
‘ Apply l Extract
Filter

v

Generated

—» Decoder |—p
summary

SU | |
embeds

Figure 2: Our model overview. (a) The two-stage training process. (b) The inference process.

1 to enumerate all possible semantic units. Then we
average' the token embeddings within each win-
dow to construct a semantic unit embedding. We
denote the obtained semantic unit embeddings as z
with an embedding size d,. Here d, is equal to dp,.

3.2 Two-stage training
3.21

This section describes the first training stage, which
helps our model learn to focus on the context in
the source documents. To achieve this goal, we
adjust the learning objectives used in various self-
supervised models (Devlin et al., 2019; Song et al.,
2019; Lewis et al., 2020) and customize the masked
language modeling for our model to predict the
masked semantic units. Instead of directly masking
out the input tokens, which is how the previous
studies did (Devlin et al., 2019; Song et al., 2019;
Lewis et al., 2020), the masking unit here is a se-
mantic unit embedding. We apply attention masks
with the value 8 and the masking rate pmyasx to the
semantic unit embeddings z. We refer to the at-
tention masks as hard masks in this stage because
5 is a larger value compared to the next stage of
training; therefore, the model cannot attend to the
masked semantic units. The surrounding semantic
units can hold information retained from shared
tokens in the targeted semantic unit. Therefore,
we ensure the surrounding semantic unit embed-
dings which share the tokens of the masked one are
also masked. We denote m C {0,1,...,n — 1}
as the corresponding token indexes of the masked

Masked semantic units prediction

"We provide experiments for different aggregation meth-
ods and window sizes in Appendix A.3.

semantic units. To let our model focus on recov-
ering masked semantic units only, we set the loss
weight « close to 1 for each token of index ¢ € m,
which is shown in Equation 1. Therefore, the loss
for the unmasked tokens in our objective function
(Equation 2) is relatively small compared to that
of the masked ones, implying that the unmasked
tokens do not have to be predicted correctly.

. a if 7 € m, (1
werght; p<i<n =
ghit; o<i<n (1 —a) otherwise.
P .
loss; = — log(exp(Plwi)))xweight;

Zj€|Vocab\ exp(P(wj))
2

3.2.2 Reconstruction from Semantic Units

An abstractive summarization model should pro-
duce fluent text sequences as final outputs. There-
fore, in this stage, our training goal is to let our
model generate a fluent paragraph by learning to
reconstruct the original input documents. This is
achieved by adjusting the following parameters:

* The value [of attention masks is decreased,
as these will be calculated based on the
learned frequency to represent weights for
each semantic unit in the inference stage.

* The loss weight « is decreased, as we do
not require the model to reconstruct the ex-
act tokens for the masked positions since the
masked semantic units should be less impor-
tant.

957

* The length of input sequences n is decreased
for faster training speed, and the number of
input semantic units for the decoder will also
be reduced due to the sentence filtering during
inference.

* The masking rate py,sk is increased because a
relatively small portion of the semantic units
in the source should be focused on when sum-
marizing.

3.3 Utilize learned frequency during inference

In the inference stage, we hope to let the model
recognize semantic unit frequency and generate
a condensed version of the source text based on
them. To achieve this goal, we designed a proce-
dure where we run the decoder in two rounds to
extract the learned frequency and generate a sum-
mary based on the information. We describe the
two rounds of decoding in this section and show
them in Figure 2 (b).

First, we input a complete source document to
the encoder and obtain semantic unit embeddings.
In the first round of decoding, we provide all seman-
tic unit embeddings to the decoder, and the decoder
should reconstruct the source document as shown
in the upper part of Figure 2 (b). We record the
attention distribution in the second attention sub-
layer of the Transformer decoder (Vaswani et al.,
2017) for each semantic unit embedding over all
the decoding steps during reconstruction. The sum-
mation of each semantic unit’s attention weights is
considered the learned frequency information. If
the model focuses more on a specific semantic unit
when reconstructing the source text, that should
mean the semantic unit is related to multiple parts
in the original article. Therefore we expect the
semantic units frequently mentioned in a source ar-
ticle to have a higher sum of attention weights than
those appearing only a few times. Then we per-
form sentence filtering in each article based on the
attention weights of the semantic units within each
sentence. We select the sentences with the highest
averaged attention scores of contained semantic
units until the number of tokens in the selected sen-
tences exceeds the value ¢. Finally, the semantic
unit embeddings corresponding to the selected sen-
tences are used to generate summaries in the next
round of decoding.

The lower part of Figure 2 (b) shows the pro-
cess for generating summaries. Before the second
round of decoding, to let the model discriminate

semantic unit frequency, we apply a value 5 for
attention masks to the semantic units. The atten-
tion masks are computed based on the attention
weights, and the masks are applied to the corre-
sponding semantic units. Empirically, the value (3
of the attention mask for each semantic unit is com-
puted by dividing the corresponding summation of
attention weights by a constant A (A = 100). With
the conversion, 3 for the semantic units with high
attention weights should be large, and S should
be a small value for the semantic units with low
attention weights. Therefore, the masks serve as
the weights on the semantic unit inputs, provid-
ing frequency information of each semantic unit
to the decoder. The generated sequence based on
the given weighted semantic units is considered the
final summary.

4 Experiments

4.1 Settings

For our model structure, we use two layers each for
the Transformer encoder and decoder. More Trans-
former layers are also applicable, and we leave the
experiment in our future work. For both the en-
coder and decoder, we set 768 as the embedding
size, 1024 as the feedforward embedding size, 8
heads for multi-head attention layers, and 0.1 for
the dropout rate. For semantic unit construction,
we set the sliding window size c at 5, and the stride
sissetas 1. We use top-k sampling as the decoding
strategy, where k is set at 5, for more abstractive
summaries (Holtzman et al., 2020) and faster de-
coding speed than beam search. The minimum
number of the tokens in the selected sentences in
the inference stage, ¢, is set as 200. The desired
length [for the generated summaries is set as 50 for
CNN/Daily Mail, and the sentences that exceed [
will be truncated. The other training configurations
are listed as follows: le-4 for the learning rate, 3
for the maximum gradient clipping norm, and 4 for
the batch size. Training took 6 to 8 hours per epoch
on a GTX 1080 GPU. A pre-trained BERT-base-
uncased tokenizer (Devlin et al., 2019) is used for
tokenization. In each subsequent experiment, the
models compared were all under the same settings
and were trained with an equal number of steps.

4.2 Training strategies

During the two-stage training (Section 3.2), we
trained our model for 16 and 12 epochs in the first
and second stages. The second stage was further

958

Models Rl | R2 | RL # of Data # of Model
Parameters
Lead-3 Baseline (See et al., 2017) 40.34 | 17.70 | 36.57 - -
Large scale pre-training or using pre-trained models
Summary Loop 45 (Laban et al., 2020) 37.70 | 14.80 | 34.70 | CNN/DM 280k articles 344M
Pegasus - Zero-shot (Zhu et al., 2019) 32.90 | 13.28 | 29.38 | HugeNews (CNN/DM is included), 568M
3.8 TB data
BART-large - Zero-shot (Zhu et al., 2019) 32.83 | 13.30 | 29.64 | Wikipedia+BookCorpus, 160 GB data 370M
TS5 - Zero-shot (Zhu et al., 2019) 39.68 | 17.24 | 36.28 | C4, 750 GB data 11B
Lead Bias Pre-training or Fine-tuning
TED (Yang et al., 2020) 38.73 | 16.84 | 35.40 | 21.4 M news 370M
WikiTransfer (Fabbri et al., 2021) 39.11 | 17.25 | 35.73 | 60k Wikipedia articles, fine-tune on 370M
BART-large
Bart-large-LB (Zhu et al., 2019) 40.52 | 17.63 | 36.76 | 21.4 M news, fine-tune on BART-large 370M
No paired data & No pre-training

Unsupervised GAN - WGAN (Wang and Lee, 2018) | 35.14 | 9.43 | 21.04 | CNN/DM 280k articles
Unsupervised GAN - Adversarial 35.51 | 9.38 | 20.98 | CNN/DM 280k articles
REINFORCE (Wang and Lee, 2018)
Unsupervised GAN - Adversarial REINFORCE* 31.15 | 9.26 | 27.40 | CNN/DM 280k articles 27TM
Ours 37.54 | 14.49 | 33.52 | CNN/DM 280k articles 41M

* Reimplemented by ourselves using the code provided by (Wang and Lee, 2018).

Table 1: Our ROUGE F; scores on the CNN/Daily Mail test set and their counterparts. R1, R2 and RL are the
ROUGE-1, ROUGE-2 and ROUGE-L F} scores, respectively.

divided into 3 phases in practice, where our model
was trained for 4 epochs in each phase during the
second stage. As a result, there are 4 phases for
the entire training, including the one in the first-
stage training. For each phase, we truncated the
article from 500, 400, 300, to 200 tokens for the
input sequence length n, decreased the value of
attention masks 8 from 1e+10, 1e+5, le+2, to le-
1, decreased the loss weight o from 0.995, 0.95,
0.8 to 0.75, and increased the masking rate pmask
from 0.15 in the first phase and 0.30 for the follow-
ing phases. Ablation studies about the two-stage
training strategy and the inference workflow are
provided in Appendix A.4 and A.5.

5 Results
5.1 ROUGE scores

For evaluating the proposed method, we use the
non-anonymized version of CNN/Daily Mail (See
etal.,2017; Hermann et al., 2015), where all named
entities are retained in the source articles. Our
results on CNN/Daily Mail are presented in Table 1.

For the comparison with the methods under the
same unsupervised setting without massive pre-
training, our model’s scores exceed the ones in
Wang and Lee’s work by +2.03 ROUGE-1, +5.11
ROUGE-2, and +12.54 ROUGE-L points. Our
ROUGE? scores are also much better than that of
our reimplemented version of their model (Wang

Zhttps://github.com/bheinzerling/pyrouge

and Lee, 2018) (+6.39 ROUGE-1, +5.23 ROUGE-
2, and +6.12 ROUGE-L points). In short, our
model achieves the best results on unsupervised
abstractive summarization when no paired data or
pre-trained models are available. We also provide
human evaluation results on Wang and Lee’s work
and ours in Appendix A.1.

In comparison to the zero-shot pre-training mod-
els, Pegasus (Zhang et al., 2020) and BART-large
(Lewis et al., 2020), which were respectively pre-
trained on 3.8 TB data and 160 GB data, our model
trained with only CNN/Daily Mail 280k articles
still exceeds their best scores by +4.64 ROUGE-1,
+1.19 ROUGE-2, and +3.88 ROUGE-L. We ob-
serve a larger performance gap between our model
and T5 (Raffel et al., 2020), which is an overwhelm-
ingly large-scale model. However, there is a large
difference in the number of parameters used in our
model and TS5. We use only 41M parameters which
is much smaller than the 11B parameters of T5.
Our model performance is comparable to Summary
Loop 45’s (Laban et al., 2020), which utilizes large-
scale pre-trained models for their summarization
system.

The models trained with pseudo paired data like
TED (Yang et al., 2020), WikiTransfer (Fabbri
et al., 2021), and BART-large-LB (Zhu et al., 2019)
achieve inarguably better results than the scores
of our model. However, considering the total data
usage and model sizes, our method is more appli-
cable for obtaining quicker and equivalent results

959

than those requiring massive pre-training. We will
also discuss the situation where collecting training
data with the lead bias characteristic is infeasible
in our following experiments.

5.2 Can our model learn frequency through
attention mechanism?

In this experiment, we first collect high-frequency
semantic units as ground truths using a pre-
trained Sentence-BERT (Reimers and Gurevych,
2019). The Sentence-BERT model (Reimers and
Gurevych, 2019) encodes the source text spans di-
vided by a sliding window, and we obtain the cor-
responding semantic unit embeddings. Then, we
compute the frequency of semantic units by cal-
culating the cosine similarity between each two
semantic unit embeddings. If the similarity score is

Values
©
Ne)

T

|

<
[0¢)
T
|

07 | | | | |
5 10 20 30 40

%

High-freq SUs vs. High-attn SUs
High-freq SUs in summary vs. High-attn SUs

(a) Recall between top N % high-frequency semantic units
(gold) and top N % high-attention semantic units (prediction).
The similarity threshold is set as 0.5.

1= \ T
0.75 :
0.5 .
0.25 - .

O | | | | |
05 06 07 08 09

Similarity thresholds

Values

High-freq SUs vs. High-attn SUs
High-freq SUs in summary vs. High-attn SUs

(b) Recall between top 40% high-frequency semantic units
(gold) and top 40% high-attention semantic units (prediction)
under different similarity thresholds.

Figure 3: Comparison of high-attention semantic units
and high-frequency semantic units. Green line: compar-
ison between high-frequency semantic units in source
articles and high-attention semantic units in source arti-
cles; Orange line: comparison between high-frequency
semantic units in summaries and high-attention seman-
tic units in source articles.

above a defined threshold, the two semantic units
are considered semantically similar, and we add
the frequency of the semantic units by one.

We use recall to compare the overlapping rate
between the top N % high-attention semantic units
captured by our model and the top N % high-
frequency semantic units decided by Sentence-
BERT embeddings. The former is obtained by
selecting the semantic units with top N % high-
est attention weights as mentioned in Section 3.3
and is considered our model predictions. The lat-
ter is referred to as ground truths. Figure 3a (the
green line) shows that we can capture most of the
high-frequency semantic units using the attention
mechanism in our proposed method. Even when
only the top 5% high-frequency semantic units are
considered, we still successfully capture approxi-
mately 85% of the correct high-frequency semantic
units.

We then inspect the performance under different
similarity thresholds to see if two semantic units are
also semantically similar given stricter conditions.
In Figure 3b, the scores drop when the threshold is
higher because semantic units are less likely to be
matched. Nevertheless, the recall is 50% when the
similarity threshold is 0.9, which means our model
can retrieve approximately half of the correct high-
frequency semantic units under harsh measurement
conditions.

We also investigate the overlapping rate be-
tween the high-attention semantic units retrieved by
our model and the high-frequency semantic units
that also appear in the gold summaries. We use
Sentence-BERT embeddings, as mentioned in this
section before, to obtain the high-frequency seman-
tic units in the gold summaries and show the results
in Figure 3a (orange line). We find the trend is sim-
ilar to that of comparing high-attention semantic
units and the high-frequency semantic units pre-
sented only in the source articles (green line in
Figure 3a). In Figure 3b, the recall remains high
even if a higher similarity threshold is set. The
results suggest that our model can capture most of
the salient high-frequency semantic units that are
also included in the gold summaries.

5.3 Generate summaries with high-frequency
semantic units

This section investigates if we can use seman-
tic units alone to generate extractive summaries.
Here, we introduce two baseline methods for per-

960

Settings R1 R2 RL
Extracting tokens from high-frequency SUs as summaries (baseline) 2403 | 6.74 | 20.94
Extracting sentences with high-frequency SUs as summaries (baseline) 32.53 | 11.32 | 29.24
Extracting SUs in the sentences with high-attention SUs to decode (current) | 37.54 | 14.49 | 33.52
Extracting SUs in the sentences with high-ROUGE SUs to decode (optimal) | 41.12 | 18.13 | 37.08

Table 2: ROUGE F; scores on the CNN/Daily Mail dataset with different semantic unit selection methods when

decoding twice.

formance comparisons. In Table 2, the first base-
line simply extracts the corresponding tokens in
the high-frequency semantic units computed by
Sentence-BERT (Reimers and Gurevych, 2019)
embeddings as the summaries. The second base-
line further calculates the sentence score for each
sentence by averaging the frequency of the se-
mantic units in a sentence, where the frequency
is also computed using Sentence-BERT embed-
dings. The sentences with the highest scores are
concatenated into a summary of a maximum se-
quence length /. Thus, the second baseline can be
viewed as extractive summarization using sentence-
level frequency information. According to Table 2,
our proposed abstractive method can obtain higher
ROUGE scores than the two baselines, implying
our method can effectively leverage semantic units
for the summarization task.

5.4 Optimal performance with high-ROUGE
semantic units

The last row of Table 2 presents the upper bound
of our model performance. We directly take the
semantic units included in the source sentences that
maximize the ROUGE-2 score with respect to the
gold summary, and the selected semantic units are
the inputs for the second round of decoding. The
results show that our model can generate better
summaries if it puts more attention on the salient
parts that are more likely to appear in the human-
written summaries. In short, semantic unit selection
is crucial for our model because it significantly
affects the final performance.

5.5 Low-resource language

In Table 3, we present the performance of our
model trained on the MLSUM (Scialom et al.,
2020) dataset, which contains news articles in Rus-
sian, to check our model performance on data
in low-resource language. It is noted that the
MLSUM-RU news summaries have a higher level
of abstractiveness than that of CNN/Daily Mail. In
addition, the articles in the MLSUM-RU dataset

961

Model MLSUM-RU (len 15) (26k)
Lead-3 5.94
Pointer-generator 5.71
Multilingual-BERT 9.48
Ours 6.87

Table 3: ROUGE-L F; scores on the MLSUM Russian
dataset. The desired length 15 for the summaries and
the data size 26k are also appended in the table.

have no lead bias characteristic, and the amount
of data is far less than that of CNN/Daily Mail.
The result shows that our model achieves a higher
ROUGE-L? than that of the supervised pointer-
generator network (See et al., 2017) and the lead-
3 extractive baseline in the low-resource setting.
The multilingual-BERT with 340M parameters, the
largest model among the three, is pre-trained in a
supervised manner and yields the best performance,
as expected. The result also highlights that the sce-
nario where there is difficulty collecting enough
data for pre-training or collecting data using the
lead bias characteristic does exist. Further experi-
ments with different dataset sizes and transfer learn-
ing are also provided in Appendix A.6 and A.7.

6 Conclusion

In this work, we propose an unsupervised abstrac-
tive summarization model using semantic units.
The frequency of semantic units helps determine
whether a specific content is more likely to be
included in a human-generated summary. Our
model learns to discriminate semantic units from
the source articles by frequency through the pro-
posed two-stage training and the inference work-
flow. The proposed model can achieve competitive
ROUGE scores without paired data or pre-trained
models compared to the large-scale pre-training
methods and the methods under the same unsuper-

3Here we aggregate tokens within a sliding window by
adding the beginning and the last token embeddings for con-
structing semantic unit embeddings. The ROUGE-L score
with the averaging method (Avg.) is 6.08 for MLSUM-RU.
See Appendix A.3 for more details.

vised settings. Our method is a potential solution
for real-world scenarios where directly applying
pre-trained models or collecting data with the lead
bias characteristic is infeasible.

7 Acknowledgements

We would like to thank the reviewers for their in-
sightful comments. We also thank Chien-Liang
Liu and Szu-Tung Lin for reviewing our code. This
work was funded in part by Qualcomm through a
Taiwan University Research Collaboration Project
NAT-487842 and in part by the Ministry of Sci-
ence and Technology, Taiwan, under grant MOST
111-2221-E-006-001.

References

Christos Baziotis, lon Androutsopoulos, Ioannis Kon-
stas, and Alexandros Potamianos. 2019. SEQ"3:
Differentiable sequence-to-sequence-to-sequence au-
toencoder for unsupervised abstractive sentence com-
pression. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
673-681, Minneapolis, Minnesota. Association for
Computational Linguistics.

Arthur Brazinskas, Mirella Lapata, and Ivan Titov. 2020.
Unsupervised opinion summarization as copycat-
review generation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5151-5169, Online. Association for
Computational Linguistics.

Eric Chu and Peter Liu. 2019. Meansum: a neural
model for unsupervised multi-document abstractive
summarization. In International Conference on Ma-
chine Learning, pages 1223—-1232. PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Shibhansh Dohare, Vivek Gupta, and Harish Karnick.
2018. Unsupervised semantic abstractive summariza-
tion. In Proceedings of ACL 2018, Student Research
Workshop, pages 74-83, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Bonnie Dorr, David Zajic, and Richard Schwartz. 2003.
Hedge trimmer: A parse-and-trim approach to head-
line generation. In Proceedings of the HLT-NAACL
03 Text Summarization Workshop, pages 1-8.

Alexander Fabbri, Simeng Han, Haoyuan Li, Haoran
Li, Marjan Ghazvininejad, Shafiq Joty, Dragomir
Radev, and Yashar Mehdad. 2021. Improving zero
and few-shot abstractive summarization with inter-
mediate fine-tuning and data augmentation. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
704-717, Online. Association for Computational Lin-
guistics.

Thibault Févry and Jason Phang. 2018. Unsupervised
sentence compression using denoising auto-encoders.
In Proceedings of the 22nd Conference on Computa-
tional Natural Language Learning, pages 413422,
Brussels, Belgium. Association for Computational
Linguistics.

Karl Moritz Hermann, Tomds Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems, volume 28, pages 1693—1701.
Curran Associates, Inc.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Masaru Isonuma, Junichiro Mori, and Ichiro Sakata.
2019. Unsupervised neural single-document sum-
marization of reviews via learning latent discourse
structure and its ranking. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2142-2152, Florence, Italy. Asso-
ciation for Computational Linguistics.

Kevin Knight and Daniel Marcu. 2002. Summariza-
tion beyond sentence extraction: A probabilistic ap-
proach to sentence compression. Artificial Intelli-
gence, 139(1):91-107.

Philippe Laban, Andrew Hsi, John Canny, and Marti A.
Hearst. 2020. The summary loop: Learning to write
abstractive summaries without examples. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5135-5150, On-
line. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Peter J. Liu, Yu-An Chung, and Jie Ren. 2019.
Summae: Zero-shot abstractive text summariza-
tion using length-agnostic auto-encoders. ArXiv,
abs/1910.00998.

962

https://doi.org/10.18653/v1/N19-1071
https://doi.org/10.18653/v1/N19-1071
https://doi.org/10.18653/v1/N19-1071
https://doi.org/10.18653/v1/N19-1071
https://doi.org/10.18653/v1/2020.acl-main.461
https://doi.org/10.18653/v1/2020.acl-main.461
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-3011
https://doi.org/10.18653/v1/P18-3011
https://aclanthology.org/W03-0501
https://aclanthology.org/W03-0501
https://doi.org/10.18653/v1/2021.naacl-main.57
https://doi.org/10.18653/v1/2021.naacl-main.57
https://doi.org/10.18653/v1/2021.naacl-main.57
https://doi.org/10.18653/v1/K18-1040
https://doi.org/10.18653/v1/K18-1040
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/P19-1206
https://doi.org/10.18653/v1/P19-1206
https://doi.org/10.18653/v1/P19-1206
https://doi.org/10.18653/v1/2020.acl-main.460
https://doi.org/10.18653/v1/2020.acl-main.460
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703

Ani Nenkova and Rebecca Passonneau. 2004. Evaluat-
ing content selection in summarization: The pyramid
method. In Proceedings of the Human Language
Technology Conference of the North American Chap-
ter of the Association for Computational Linguistics:
HLT-NAACL 2004, pages 145-152, Boston, Mas-
sachusetts, USA. Association for Computational Lin-
guistics.

Ani Nenkova and Lucy Vanderwende. 2005. The im-
pact of frequency on summarization. Microsoft Re-
search, Redmond, Washington, Tech. Rep. MSR-TR-
2005, 101.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research,21:1—
67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier,
Benjamin Piwowarski, and Jacopo Staiano. 2020.
MLSUM: The multilingual summarization corpus.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8051-8067, Online. Association for Computa-
tional Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073—
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Guokan Shang, Wensi Ding, Zekun Zhang, Antoine Tix-
ier, Polykarpos Meladianos, Michalis Vazirgiannis,
and Jean-Pierre Lorré. 2018. Unsupervised abstrac-
tive meeting summarization with multi-sentence com-
pression and budgeted submodular maximization. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 664—674, Melbourne, Australia.
Association for Computational Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan
Liu. 2019. Mass: Masked sequence to sequence pre-
training for language generation. In International
Conference on Machine Learning, pages 5926-5936.
PMLR.

963

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-

ing Systems, 30:5998-6008.

Yaushian Wang and Hung-Yi Lee. 2018. Learning to
encode text as human-readable summaries using gen-
erative adversarial networks. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 41874195, Brussels,
Belgium. Association for Computational Linguistics.

Ziyi Yang, Chenguang Zhu, Robert Gmyr, Michael
Zeng, Xuedong Huang, and Eric Darve. 2020. TED:
A pretrained unsupervised summarization model with
theme modeling and denoising. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 1865-1874, Online. Association for
Computational Linguistics.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages

11328-11339. PMLR.

Jiawei Zhou and Alexander Rush. 2019. Simple unsu-
pervised summarization by contextual matching. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5101—
5106, Florence, Italy. Association for Computational
Linguistics.

Chenguang Zhu, Ziyi Yang, Robert Gmyr, Michael
Zeng, and Xuedong Huang. 2019. Make lead bias in
your favor: Zero-shot abstractive news summariza-
tion. arXiv preprint arXiv:1912.11602.

https://aclanthology.org/N04-1019
https://aclanthology.org/N04-1019
https://aclanthology.org/N04-1019
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2020.emnlp-main.647
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P18-1062
https://doi.org/10.18653/v1/P18-1062
https://doi.org/10.18653/v1/P18-1062
https://doi.org/10.18653/v1/D18-1451
https://doi.org/10.18653/v1/D18-1451
https://doi.org/10.18653/v1/D18-1451
https://doi.org/10.18653/v1/2020.findings-emnlp.168
https://doi.org/10.18653/v1/2020.findings-emnlp.168
https://doi.org/10.18653/v1/2020.findings-emnlp.168
https://doi.org/10.18653/v1/P19-1503
https://doi.org/10.18653/v1/P19-1503

A Appendix

A.1 Human evaluation

We present the human evaluation results on the lin-
guistic qualities of the generated summaries using
our model and that of Wang and Lee (2018). We
follow the definitions and instructions for scoring
on DUC 2007. We asked three workers on Mechan-
ical Turk to score the five dimensions: grammatical-
ity, non-redundancy, referential clarity, focus, and
structure/coherence. We sampled 100 summaries
in total, including 50 summaries generated by our
model and the other 50 summaries generated by
Wang and Lee’s (2018). Table 4 shows that the
qualities of our generated summaries are slightly
better than those of Wang and Lee (2018) in most
dimensions except for non-redundancy. This is
probably because our model cannot differentiate
similar content since our model only learns to dis-
criminate semantic unit frequency.

A.2 Frequent content statistics

125000
©® Semantic units in both source and target text

100000

75000

50000

25000

Number of articles

0

0 0.2 0.4 0.6 0.8 1
Ratio

Figure 4: The figure compares high-frequency seman-
tic units and semantic units in the summary of each
article in CNN/Daily Mail, which includes 287k article-
summary pairs in total. The x-axis represents the ratio
of high-frequency semantic units which also show up
in summaries. The y-axis is the number of articles in
the CNN/Daily Mail training set. The threshold of the
cosine similarity is set as 0.5.

Nenkova and Vanderwende (2005) proved that con-
tent unit frequency could help determine if a spe-
cific unit of content is more likely to appear in
a human-written summary. We thus investigate
if such a tendency also holds in recent summa-
rization dataset, CNN/Daily Mail (Figure 4). We
compute the frequency of the semantic units for
each source article in the CNN/Daily Mail dataset
as mentioned in Section 5.2; We can clearly ob-
serve that, in CNN/Daily Mail, about two third of
the source articles in which over half of the high-
frequency semantic units are included in a sum-

mary. It strongly supports our assumption that the
frequency of semantic units in the source text can
provide information that helps summarization.

A.3 Semantic unit construction

Since constructing semantic unit embeddings is
similar to making span representations, we exper-
iment with three span aggregation methods (Ta-
ble 5). The first (Sum) is to add the beginning and
last token embeddings within a semantic unit win-
dow. The second method (Cat.) is to concatenate
the beginning and the last embeddings within a se-
mantic unit. We note here that the second method
requires an extra linear layer to adapt the concate-
nated representations into the defined input size
of the decoder. The last method (Avg.) uses the
averaged embeddings within a semantic unit as
the final semantic unit embeddings. We adopt the
last method to construct the semantic unit embed-
dings in our final model, as it does not require extra
model parameters and yields the highest ROUGE
scores among the three.

We tested different sliding window sizes c of 5,
7, and 9 when constructing semantic units. This
range was determined considering two reasons: it
was hard to form a basic meaning (e.g., a subject,
an object, and a verb) with only three tokens where
the BERT subword-level tokenizer (Devlin et al.,
2019) was used in our experiments. Furthermore,
there are 10.42 tokens, on average, in a clause in
the CNN/Daily Mail training set. A larger sliding
window size results in slightly fewer semantic unit
embeddings for each article, and the number of se-
mantic units sharing the same tokens also increases.
The results are shown in Table 6. Among the three
settings, the model with a window size of 5 yielded
the highest ROUGE scores, and the performance
gradually dropped when the sliding window size
was larger. Therefore a sliding window size of 5
was adopted in our final model.

A.4 Effect of applying attention weights to
decode again

The results presented in Table 7 prove that decod-
ing twice leads to better performance than decod-
ing once with unweighted semantic units. Thus,
applying learned attention weights as masks for se-
mantic units should help the model focus on salient
information.

964

Grammaticality | Non-redundancy | Referential clarity | Focus | Structure and Coherence
Unsupervised GAN 2.6 33 34 34 29
Ours 3.0 3.0 3.8 39 34
Table 4: Linguistic quality human evaluation scores (scale 1-5, higher is better).
Settings | R1 R2 RL Settings R1 R2 RL

Sum 36.94 | 13.28 | 32.68 2-stages (current) | 37.01 | 13.27 | 32.80

Cat. 34.16 | 10.80 | 30.30 First stage only 28.96 | 5.30 | 25.64

Avg. 37.54 | 14.49 | 33.52 Second stage only | 36.54 | 14.00 | 32.70

Table 5: ROUGE F} scores on CNN/Daily Mail test
set with different aggregation methods for constructing
semantic units.

Settings R1 R2 RL
Window size 5 | 36.94 | 13.28 | 32.68
Window size 7 | 36.18 | 11.85 | 31.84
Window size 9 | 33.94 | 9.32 | 29.47

Table 6: ROUGE F scores on CNN/Daily Mail test
set with different sliding window sizes for constructing
semantic units. We use Sum as the aggregation method
for semantic unit embeddings.

A.5 Two-stage training

Our training process has two stages: masked se-
mantic units prediction and reconstruction from
semantic units, as introduced in Sections 3.2.1 and
3.2.2. We then attempt to determine experimentally
if the two-stage training strategy helps summariza-
tion. Among the three settings in Table 8, the model
with only the first-stage training obtains the worst
performance, which shows that training the model
to predict the words in the masked semantic units
is inadequate for summarization purposes. Fur-
thermore, training the model with the second stage
brings much higher ROUGE scores than the "first
stage only" setting. We infer that the reconstruction
stage significantly affects the performance. Note
that the number of training steps in Table 8 was
greater than the one we mentioned in Section 4.1
to make the number of training steps in all the
settings the same for the "first stage only" setting

Decoding times | R1 R2 RL
1 3426 | 11.71 | 30.27
2 36.94 | 13.28 | 32.68

Table 7: ROUGE F scores on the CNN/Daily Mail
test set with different decoding times using Sum as the
aggregation method for semantic unit embeddings.

Table 8: ROUGE F} scores on the CNN/Daily Mail
test set under various settings for the training stages.
We use Sum as the aggregation method for semantic
unit embeddings. Each setting is trained using the same
number of steps.

needs more training steps.

A.6 Transfer learning

Settings R1 R2 RL

Train on CNN/DM | 36.94 | 13.28 | 32.68
Train on XSum 35.31 | 11.85 | 31.29
Train on Wikipedia | 34.77 | 11.53 | 30.53

Table 9: ROUGE F} scores on the CNN/Daily Mail test
set (target domain) when trained under different sources.
We use Sum as the aggregation method for semantic
unit embeddings.

We trained our model on other sources and tested
it on the CNN/Daily Mail test set. The results are
shown in Table 9. Since XSum is also an English
news summarization dataset with a similar data size
scale compared with CNN/Daily Mail, the perfor-
mance difference was minimal, as expected. How-
ever, the performance was still comparable when
the model was trained on Wikipedia, which is in a
different domain from the news domain. This result
shows that our model is capable of summarizing
even if the source of the training data is different.

A.7 Data size

In the following experiment, we inspect our model
performance on various training data sizes that
range from 1k, 10k, and 100k to the complete 287k
articles in CNN/Daily Mail to simulate the low-
resource setting. The ROUGE scores are presented
in Table 10. We can observe that even with only
a third of the data, our model still yields compa-
rable performance compared to the model trained
with the complete data. Nevertheless, deep learn-

965

Ours Pointer-generator network
(See et al., 2017)
R1 R2 RL R1 R2 RL
Full data 36.94 13.28 32.68 39.53 17.28 36.38
100k 35.78 11.72 31.58 32.33 (-18.21%) | 10.80 (-37.50%) | 29.85 (-17.95%)
10k 26.69 4.47 (-66.34%) | 23.15 28.11 (-28.89%) | 7.40 (-57.18%) | 25.75 (-29.22%)
1k 17.20 (-53.44%) | 1.11 (-91.64%) | 15.13 (-53.70%) | 23.00 (-41.54%) | 2.79 (-83.85%) | 20.77 (-42.91%)

Table 10: ROUGE F} scores on different training data sizes for CNN/Daily Mail. The full data is 287k articles in

total.

ing models still require a certain number of train-
ing data to tune the million-scaled model param-
eters. The performance drops significantly when
the amount of data is decreased to one-tenth of the
original data size. We also compare the effects
of different training data sizes with a supervised
system, the pointer-generator network (See et al.,
2017). The results show that our model perfor-
mance and the pointer-generator network both de-
crease when the data size is small. However, our
model performance decreases less than the case
for the supervised system with 100k training ar-
ticles. Also, with only 10k training articles, our
performance is comparable to the supervised sys-
tem. However, when the amount of training data
is significantly small, for example, 1k articles, su-
pervised systems appear to yield better results than
unsupervised systems.

966

