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Abstract

This paper describes the HEL-LJU submis-
sions to the MultiLexNorm shared task on
multilingual lexical normalization. Our sys-
tem is based on a BERT token classifica-
tion preprocessing step, where for each to-
ken the type of the necessary transforma-
tion is predicted (none, uppercase, lowercase,
capitalize, modify), and a character-level sta-
tistical machine translation step where the
text is translated from original to normalized
given the BERT-predicted transformation con-
straints. For some languages, depending on
the results on development data, the training
data was extended by back-translating Open-
Subtitles data. In the final ordering of the ten
participating teams, the HEL-LJU team has
taken the second place, scoring better than the
previous state-of-the-art.

1 Introduction

In this paper, we describe the HEL-LJU submission
to the MultiLexNorm shared task on multilingual
lexical normalization. Lexical normalization is a
task of transforming non-standard input tokens into
output tokens that follow a specific linguistic stan-
dard. In this shared task, lexical normalization is
defined even narrower as “the task of transforming
an utterance into its standard form, word by word,
where one-to-many (1-n) and many-to-one (n-1)
replacements are included”, disregarding thereby
word deletions and insertions (van der Goot et al.,
2021). The main motivation behind lexical nor-
malization is to minimize the variability of the lin-
guistic signal, either for computational usage or
human consumption. Accordingly, the shared task
submissions are evaluated both intrinsically and
extrinsically (on a dependency parsing task).

The need for lexical normalization for computa-
tional usage is diminishing these days, given the
end-to-end methodology that is becoming more
and more popular, where the systems are robust

enough to accept non-standard input without any
explicit normalization. However, for human con-
sumption the need for lexical normalization is still
very much present.

The three types of data that still frequently re-
quire normalization are user-generated content (i.e.,
“Internet language” (Ljubešić et al., 2014)), histor-
ical data (e.g., 18th century Slovenian (Scherrer
and Erjavec, 2016), which is frequently not under-
stood even by native speakers of Slovenian) and
dialectal data (very frequently not understood by
non-native speakers of a language, or even by the
speaker of the same language, as is the case with
Swiss dialects of German (Scherrer and Ljubešić,
2016)).

2 Related work

Over the last decade, character-level statistical ma-
chine translation (CSMT) has shown very strong
results on varying types of non-standard data, such
as user-generated content (Ljubešić et al., 2014),
historical data (Tjong Kim Sang et al., 2017) and
dialectal data (Scherrer and Ljubešić, 2016). Even
more, the CSMT approach has shown to behave
very similarly in a controlled comparison on var-
ious types of non-standard data, such as with
Slovenian user-generated content and historical
texts (Ljubešic et al., 2016). It has also shown
to be the preferred way of adapting language tech-
nologies to non-standard data if the availability of
human supervision is low (Zupan et al., 2019).

While neural approaches have almost entirely
replaced statistical ones in “standard” translation
settings (translating between distinct languages),
recent studies have shown that SMT-based ap-
proaches remain competitive for normalization
tasks (Tang et al., 2018; Bollmann, 2019).

Normalization systems not based on translation
architectures have also been proposed. For exam-
ple, MoNoise (van der Goot, 2019) generates a list
of normalization candidates for each token and then
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Code Language Words Sents Change Dataset

DA Danish 16,448 719 9.25% (Plank et al., 2020)
DE German 15,006 1,628 17.96% (Sidarenka et al., 2013)
EN English 35,216 2,360 6.90% (Baldwin et al., 2015)
ES Spanish 7,189 568 7.69% (Alegria et al., 2013)
HR Croatian 54,416 4,760 8.89% (Ljubešić et al., 2017a)
ID-EN Indonesian-English 13,949 495 12.16% (Barik et al., 2019)
IT Italian 12,645 593 7.32% (van der Goot et al., 2020)
NL Dutch 12,381 907 28.29% (Schuur, 2020)
SL Slovenian 44,944 4,670 15.62% (Erjavec et al., 2017)
SR Serbian 56,823 4,138 7.65% (Ljubešić et al., 2017b)
TR Turkish 6,443 570 37.02% (Çolakoğlu et al., 2019)
TR-DE Turkish-German 12,773 800 24.14% (van der Goot and Çetinoğlu, 2021)

Table 1: Some statistics on the train-splits of all datasets within the MultiLexNorm benchmark. The ‘change’
column indicates the percentage of words that are normalized.

ranks them using a variety of features derived from
the original text and the proposed normalization
candidates.

3 Data

The data in the MultiLexNorm shared task all come
from the user-generated-content domain, and com-
prise mostly of Twitter data. An overview of the
12 datasets is given in Table 1. The sizes of the
datasets range between 6 and 56 thousand tokens,
with the percentage of changed tokens varying be-
tween 7 and 37 percent.

For some of the languages, the data was split into
a training and a development set by the organizers.
For the other languages, we split the data randomly
(90% training, 10% development) and kept the split
constant across our experiments.

4 Character-level MT architectures for
normalization

Following our earlier experience, we cast normal-
ization as a character-level machine translation
problem. In order to enable contextual dependen-
cies, we train and test on entire tweets. We pre-
processed the data by replacing URLs by a place-
holder and token boundaries by a reserved charac-
ter. These changes were reverted during postpro-
cessing.

We evaluated an SMT model1, an RNN-based
1The translation model is monotonous, i.e. without any

distortion component. The language model is a character 10-
gram model trained with KenLM on the provided training
data. The model weights are tuned on the development set
with MERT (minimum error rate training) using character

CSMT C-RNN C-TRF

Lg.-specific 92.1% 85.0% 66.7%
Lg.-independent 90.4% 86.4% 89.4%

Table 2: Average normalization accuracies over the
validation sets of the 12 languages for different
model architectures. Language-specific and language-
independent (all training data merged) experiments are
reported.

NMT model2, and a Transformer-based NMT
model3. The SMT models are based on Moses
(Koehn et al., 2007), the NMT models are based on
OpenNMT-py (Klein et al., 2017).

The results are reported in Table 2 (top row)
as averages over the 12 languages of the shared
task (detailed numbers are given in Table 8 in the
appendix). They show a clear advantage for the
statistical paradigm (CSMT) over the neural ones
(C-RNN and C-TRF). The Transformer-based mod-
els were extremely inconsistent across languages,
with accuracies below 50% for four languages (DA,
ID-EN, NL, TR).4

error rate as a metric.
2The model consists of a bidirectional encoder and a uni-

directional decoder, two hidden layers, dimensionality 512
across all layers, and dropout set to 0.1. Maximum sequence
length is defined at 1000. We train for a maximum of 50,000
steps with early stopping.

3The model consists of 6 Transformer layers with 8 heads
each. All dimensionalities are set to 512. Dropout and label
smoothing are both set to 0.1. Maximum sequence length is
defined at 1000. We train for a maximum of 50,000 steps with
early stopping.

4We also created CSMT models that were trained and
tested on single tokens and thus did not have access to the
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DA DE EN ES HR ID-EN IT NL SL SR TR TR-DE Avg

No constr. 95.47 88.70 96.80 95.23 95.48 94.82 94.26 80.87 93.52 97.02 76.65 86.26 91.26
BERT 95.23 91.05 97.03 95.30 96.05 94.78 94.85 82.22 93.93 97.44 80.34 87.14 92.11
Oracle 97.03 94.05 97.38 95.89 96.26 95.55 97.64 84.96 94.58 97.62 83.69 92.03 93.89

Table 3: Normalization accuracies with unconstrained and constrained CSMT models.

In order to gauge the potential impact of addi-
tional training data, we trained a single language-
independent model on the concatenation of all
twelve training sets (see bottom row of Table 2
as well as Table 8 in the appendix). For CSMT,
this led to lower scores compared to the language-
specific models for all twelve languages, whereas
the neural models benefitted from the additional
data. The scores increased for 9 out of 12 languages
with the C-RNN architecture, and for 11 out of 12
languages with the C-TRF architecture, confirming
again that NMT models are more data hungry than
SMT models.

5 Adding constraints to the
normalization process

Table 1 shows that for most of the languages in
the task, less than 20% of tokens actually need to
be changed. Only three languages in the set re-
quire the modification of more than 20% of tokens.
Moreover, depending on the language, a substantial
proportion of modifications are restricted to casing
changes. Hence, the risk of over-normalization, i.e.,
predicting a spelling change where it is not needed,
is significant.

In order to reduce this risk, we propose a se-
quence labeling task that annotates each token of a
tweet with one of five transformation types: none,
capitalize, uppercase, lowercase, modify. The train-
ing data for this task can be directly derived from
the MultiLexNorm training data. We then feed
these predictions as constraints to the CSMT sys-
tem, such that only the tokens marked as modify are
normalized by CSMT. For the remaining categories
(capitalize, uppercase, lowercase), we transform
the tokens via rules and mark them as not to be
modified by the CSMT system.

The sequence labeling models are based on
pre-trained language-specific BERT or ELECTRA
models, which are fine-tuned on the task using de-
rived training data.5

sentential context. As expected, they were consistently outper-
formed by the models using entire tweets.

5We use the NER model class of the simpletransformers li-

Table 3 reports the normalization accuracies of
three setups: a CSMT model without any con-
straints, a CSMT model with constraints predicted
by the BERT classifier, and a CSMT model with
input constrained by an oracle (the constraints are
inferred from the gold annotations of the develop-
ment sets). The constraints have a positive effect on
all languages but Danish and Indonesian–English.6

In general, the accuracies of the BERT constraints
lie about halfway between the unconstrained and
the oracle ones.

6 Including synthetic training data from
back-translation

The results of the language-independent models of
Section 4 suggest that the provided training data is
of insufficient size to train reliable translation mod-
els, especially neural ones. A well-known strat-
egy to augment the training data in MT is back-
translation, where target language data is translated
to the source language by an auxiliary model (Sen-
nrich et al., 2016). The resulting parallel data (a
standard target side, and a noisy source side) is then
included in the training data of the main model.

In the normalization setting, this amounts to find-
ing “clean” data and running it through a model
that produces a noisy version of it. To this end, we
used filtered subsets of the monolingual OpenSub-
titles corpora from OPUS7 (Tiedemann, 2012) as
input data for producing back-translations.

We filtered the OPUS data using the OpusFilter
package (Aulamo et al., 2020) and the following
filters:

• The length of the line lies between 5 and 25
words (this corresponds to the majority of
tweets in the training corpora).

brary (https://simpletransformers.ai/) and fine-
tune the models for 10 epochs. The list of pre-trained models
is given in Table 7 in the appendix.

6The token classification accuracies, i.e. the performance
of the BERT classifier before the CSMT normalization step,
are provided in Table 9 in the appendix. Classification accu-
racy seems to be a poor predictor of normalization accuracy
though, as illustrated e.g. by the above-average performance
of the Danish and Indonesian–English BERT models.

7https://opus.nlpl.eu/

https://simpletransformers.ai/
https://opus.nlpl.eu/
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DA DE EN ES HR ID-EN IT NL SL SR TR TR-DE Avg

Train+Dev 718 2,201 2,950 567 6,348 660 592 1,215 6,227 5,517 569 799 2,364
Full BT 103,559 55,453 88,742 115,713 16,332 85,785 89,295 52,413 58,848 84,162 127,150 75,848 79,442
Sampled BT 11,760 32,560 47,200 8,920 9,900 9,060 18,140 82,760 9,380 12,340 26,433

Table 4: Training instances (tweets/sentences).

DA DE EN ES HR ID-EN IT NL SL SR TR TR-DE Avg

No LM/BT 95.47 88.70 96.80 95.23 95.48 94.82 94.26 80.87 93.52 97.02 76.65 86.26 91.26

Full LM 96.08 90.58 96.70 95.56 95.74 95.13 94.65 82.47 94.21 97.41 79.91 86.94 92.12
Full LM+BT 96.01 89.59 96.74 94.50 95.68 94.74 93.14 81.78 93.93 97.28 79.57 86.80 91.65

Sampled LM 95.88 90.47 96.75 95.43 94.93 94.36 82.09 97.41 78.45 86.56 91.86
Sampled LM+BT 95.84 89.96 96.70 94.64 94.93 93.80 81.78 97.25 79.23 86.70 91.70

Table 5: Normalization accuracies of unconstrained CSMT models. The LM models include an additional language
model trained on the target side of the back-translated data, whereas the LM+BT models additionally include the
back-translations for phrase table extraction. Column-wise best results in bold, training setups chosen for the final
submissions in italics.

• The line does not contain HTML tags.

• The line only contains Latin script.

• The line is identified as the target language by
the langid language identifier.8

• The line does not contain lower case letters
immediately followed by upper case letters
(this is an indication of OCR errors or other
misspellings).

• The line has a cross-entropy < 20 when eval-
uated with a language model trained on the
training data.9

• When normalized with a “forward-translation”
CSMT model trained on the training data, the
output is identical to the input. This filter
is intended to catch typos and non-standard
language in the original data, which we want
to avoid on the target side.

The resulting dataset is then “unnormalized” us-
ing a backward CSMT model trained on the pro-
vided training data in the opposite direction, with a
beam of 200. Lines whose translation candidates
are all identical to the input are rejected. We run the
CSMT model for 72 hours per language. Depend-
ing on the initial data size, the filters and the speed
of the CSMT model, this results in 16k to 127k
additional sentences per language (see Table 4).

8This step is skipped for Serbian because the correspond-
ing langid model only matches content in Cyrillic script,
whereas the shared task data is entirely in Latin script.

9Language model training is also performed within Opus-
Filter using the default parameters.

The resulting back-translations massively out-
number the original training data for most lan-
guages, which may affect the final model nega-
tively. Therefore, we also provide random samples
of back-translations that contain at most 20 times
as many sentence pairs as the given training data
(see bottom row of Table 4).10

There are two ways of including additional data
in an SMT pipeline:

LM Including a second language model trained
only on the (non-synthetic) target sides of the
back-translated data.

BT Concatenating the original training data with
the back-translated data for phrase table ex-
traction.

In addition to the model trained only on the pro-
vided data, we therefore obtain four CSMT models,
two with the full augmented data and two with the
subsampled augmented data. Table 5 shows the
results.11

We also train C-RNN and C-TRF models with
the full set of back-translations, distinguishing the
data sources by adding labels on the source side
of each sentence. The back-translations increase
the results for most languages in all three model

10We do not provide sampled data for Croatian and Slovene
since the total amount of obtained back-translations is lower
than the sampling threshold. We did not have the resources to
evaluate different sampling thresholds.

11Note that the results reported here are without constraints.
Also note that the LM models were trained as contrastive
experiments after the submission deadline and were therefore
not considered for the submissions.
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DA DE EN ES HR ID-EN IT NL SL SR TR TR-DE Avg

Best 68.67 66.22 75.60 59.25 67.74 67.18 47.52 63.58 80.07 74.59 68.58 68.62 67.30
HEL-LJU 2 56.65 59.80 62.05 35.55 56.24 55.33 35.64 45.88 66.97 66.44 51.18 51.18 53.58
HEL-LJU 1 56.65 58.00 60.76 33.68 51.83 53.26 35.64 43.99 66.02 60.26 49.49 51.97 51.80

Table 6: Error reduction rates on the test set. We show the two HEL-LJU submissions and the overall best-
performing one.

architectures, but the neural models do not catch
up sufficiently to become competitive with the sta-
tistical models. The detailed results of the neural
models can be found in Table 10 in the Appendix.

For CSMT, it can be seen that the Full LM strat-
egy works best overall, but the differences to other
setups are small. Since only the LM+BT models
were available at submission time, we chose the
best-performing setup per language among those:
the Full LM+BT setup for seven languages, the
Sampled LM+BT setup for two languages and the
No LM/BT setup for three languages.

7 Submissions

The experiments reported in the previous sections
have shown us that for our data and our setup:

• neural character-level MT approaches are not
competitive with statistical ones,

• decoding constraints learned with BERT in-
crease normalization accuracies for most lan-
guages,

• data augmentation strategies are successful,
although the impact of back-translations is
negligible in CSMT settings.

For our first submission, we choose the CSMT
model setup that has led to the best development
accuracy for each language (i.e., the setups high-
lighted in italics in Table 5) and combine it with
the BERT-based constraints.

For the second submission, we re-create the
phrase table and the language model by includ-
ing the previously held-out development set. We
copy the model weights obtained by MERT from
the first submission. Note that for those languages
where the full back-translations are used, the added
development instances amount to a tiny fraction of
the overall data. In this case, we expect the results
for the two submissions to be very similar.

The results of the intrinsic evaluation are sum-
marized in Table 6. Our submitted systems are
ranked 3rd and 4th (out of 18), and we were the

second-best team (out of 9). The gap between the
best submission and ours is considerable though.

The same ranking is seen in the extrinsic evalu-
ation, although it only concerns German, English
and Italian. One should note however that the LAS
scores of all systems are very close, showing again
that normalization does not provide a substantial
advantage for recent downstream-task systems.

8 Conclusion

In this paper we have described our submission
to the MultiLexNorm shared task on multilingual
lexical normalization. We compare character-level
SMT, RNN and Transformer models, showing that
in our case, where training data is very limited,
SMT still outperforms the two neural options. In-
creasing the amount of training data by merging
data from all languages, or by means of back-
translation of OpenSubtitles data, does help the
neural approaches, but they still do not perform bet-
ter than SMT. We further investigate the possibility
of predicting via BERT-like models if and how a
token should be modified, and show that giving
this information to the SMT process improves the
final results. Maybe the path to Mount Sinai passes
through Sesame Street, after all. . .
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Lang. Type and model identifier

DA B Maltehb/danish-bert-botxo
DE B dbmdz/bert-base-german-cased
EN B bert-large-cased
ES B dccuchile/bert-base-spanish-

wwm-cased
HR E classla/bcms-bertic
ID-EN B bert-large-cased
IT E dbmdz/electra-base-italian-xxl-

cased-discriminator
NL B GroNLP/bert-base-dutch-cased
SL B EMBEDDIA/crosloengual-bert
SR E classla/bcms-bertic
TR B dbmdz/bert-base-turkish-cased
TR-DE B dbmdz/bert-base-turkish-cased

Table 7: Pre-trained models used for the token classifi-
cation task (B = BERT, E = ELECTRA).
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DA DE EN ES HR ID-EN IT NL SL SR TR TR-DE Avg

CSMT L-spec 97.88 95.70 96.76 94.89 95.69 94.76 94.33 82.12 93.65 97.13 77.56 84.40 92.1
CSMT L-ind 96.15 92.63 95.72 93.36 95.26 92.56 92.39 79.32 92.61 97.03 75.24 82.63 90.4

C-RNN L-spec 92.39 91.44 94.09 81.68 92.72 76.29 88.61 73.84 90.96 94.22 67.46 76.33 85.0
C-RNN L-ind 81.70 94.07 95.05 91.76 93.31 79.52 92.39 73.76 87.98 95.68 72.18 79.68 86.4

C-TRF L-spec 41.67 90.73 74.48 75.11 92.70 32.42 89.04 28.89 91.64 93.29 28.50 61.95 66.7
C-TRF L-ind 96.63 93.85 95.24 92.29 94.40 92.18 93.51 77.32 91.59 95.44 71.50 78.93 89.4

Table 8: Detailed results of the initial character-level MT experiments. L-spec refers to language-specific models,
L-ind to language-independent ones. Note that these experiments use a different train/test split from those reported
in Tables 3–6.

DA DE EN ES HR ID-EN IT NL SL SR TR TR-DE Avg

BERT 95.57 93.99 97.74 96.75 98.02 96.28 95.28 89.05 96.70 98.69 91.33 90.70 95.01

Table 9: Token classification accuracies.

DE EN ES HR ID-EN IT NL SL SR TR TR-DE Avg

CSMT No BT 88.70 96.80 95.23 95.48 94.82 94.26 80.87 93.52 97.02 76.65 86.26 90.87
CSMT Full BT 89.59 96.74 94.50 95.68 94.74 93.14 81.78 93.93 97.28 79.57 86.80 91.25

C-RNN No BT 84.34 95.22 82.65 93.02 82.70 92.36 76.60 89.92 94.67 68.50 78.28 85.30
C-RNN Full BT 88.11 94.32 90.73 92.87 47.06 91.63 69.89 90.61 96.54 65.92 79.17 82.44

C-TRF Full BT 88.56 82.88 75.56 88.14 57.52 73.43 76.29 77.36 82.54 61.55 67.56 75.58

Table 10: Detailed results of the impact of back-translation on different MT architectures. Danish is excluded
because those models were trained on a different version of the training data. The average scores of the neural
models are negatively influenced by the failing ID-EN models.


