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Abstract

Recent impressive improvements in NLP,
largely based on the success of contextual
neural language models, have been mostly
demonstrated on at most a couple dozen high-
resource languages. Building language mod-
els and, more generally, NLP systems for non-
standardized and low-resource languages re-
mains a challenging task. In this work, we fo-
cus on North-African colloquial dialectal Ara-
bic written using an extension of the Latin
script, called NArabizi, found mostly on so-
cial media and messaging communication. In
this low-resource scenario with data display-
ing a high level of variability, we compare the
downstream performance of a character-based
language model on part-of-speech tagging and
dependency parsing to that of monolingual and
multilingual models. We show that a character-
based model trained on only 99k sentences of
NArabizi and fined-tuned on a small treebank
of this language leads to performance close to
those obtained with the same architecture pre-
trained on large multilingual and monolingual
models. Confirming these results a on much
larger data set of noisy French user-generated
content, we argue that such character-based
language models can be an asset for NLP in
low-resource and high language variability set-
tings.

1 Introduction

Current state-of-the-art monolingual and multi-
lingual language models require large amounts of
data to be trained, showing limited performance on
low-resource languages (Howard and Ruder, 2018;
Devlin et al., 2019). They lead to state-of-the-art
results on most NLP tasks (Devlin et al., 2018;
Raffel et al., 2020). In order to achieve high perfor-
mance, these models rely on transfer learning archi-
tectures: the language models need to be trained on
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large amounts of data (pre-training) to be able to
transfer the acquired knowledge to a downstream
task via fine-tuning on a relatively small number
of examples, resulting in a significant performance
improvement with respect to previous approaches.
This dependency on large data sets for pre-training
is a severe issue for low-resource languages, de-
spite the emergence of large and successful multi-
lingual pre-trained language models (Muller et al.,
2021b). This is especially the case for languages
with unusual morphological and structural features,
which struggle to take advantage from similari-
ties with high-resource, well represented languages
such as Romance and Germanic languages.

In this work, we focus on one of such highly
challenging languages, namely North-African di-
alectal Arabic. Its Latin transcription (Arabizi) dis-
plays a high level of linguistic variability1, on top
of scarce and noisy resource availability, making it
a particularly challenging language for most NLP
systems relying on pre-trained multilingual mod-
els (Muller et al., 2020).2 To tackle the resource
scarcity issue regarding Arabic dialects, Antoun
et al. (2020) use BERT architecture (Devlin et al.,
2019) to train a model on Arabic text to compare
this approach to standard multilingual models. In-
deed, Martin et al. (2020) show that fine-tuning
a monolingual model leads to better results than
fine-tuning a multilingual one, meaning that when
fine-tuning is used there is no significant perfor-
mance improvement from cross-lingual transfer
during pre-training. However, such model is still
pre-trained on sentences written in a single lan-
guage and was not trained to handle the presence

1Language variability, or language variation, is a term
coming from socio-linguistics where, as stated by Nordquist
(2019), it refers to regional, social or contextual differences in
the ways that a particular language is used. These variations
in user-generated content can be characterized through their
prevalent idiosyncraisies when compared to canonical texts
(Seddah et al., 2012a; Sanguinetti et al., 2020).

2Following Seddah et al. (2020), we refer to the Arabizi
version of North-African Arabic dialects as NArabizi.
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of multiple languages in the same sentence (code-
switching), a frequent phenomenon in NArabizi.

However both monolingual and multilingual
model approaches bear the risk of being lim-
ited by a subword tokenization-based vocabu-
lary when facing out-of-domain training data lan-
guage, especially in high-variability noisy scenar-
ios (El Boukkouri et al., 2020; Clark et al., 2021),
even though Muller et al. (2020) demonstrated a
positive effect for NArabizi when using target lan-
guage data to fine-tune a multilingual language
model on its own objective function before pre-
training.

Following a different approach, we investigate
the use of a recently issued character-based lan-
guage model (El Boukkouri et al., 2020) that was
shown to display a remarkable robustness to lexi-
cal variation and noise when facing a new distant
domain, namely biomedical. The pipeline we de-
veloped is simple and consists in fine-tuning this
character-based model for several tasks in a noisy
low-resource language scenario. We show that a
character-based model trained on only 99k sen-
tences of NArabizi and fined-tuned on a small tree-
bank of the language leads to performance close
to that obtained with the same architecture pre-
trained on large multilingual and monolingual mod-
els (mBERT and CamemBERT).

Interestingly, we generalize this observation
by using the same architecture on a much larger
French user-generated Content treebank that ex-
hibits similar language variability issues than NAra-
bizi. In fact, pre-training a character-based model
on 1% of the large-scale French instance of the
multilingual corpus OSCAR leads to similar per-
formance as a subword based model trained on the
full corpus, showing that such character-based lan-
guage model can reach similar performance levels
and that the resulting models exhibit the same tol-
erance to noise as their much larger BERT counter-
parts. This demonstrates the value of such models
in very scarce resource scenario. Our code and
models are freely available.3

2 NArabizi: A Challenging Use Case for
NLP in Low-resource Scenarios

As the official language of 25 countries, Arabic
showcases a linguistic phenomenon called diglos-
sia (Habash, 2010). It means that the speakers use

3https://gitlab.inria.fr/ariabi/chara
cter-bert-ugc

Modern Standard Arabic (MSA) for formal and
official situations but use other forms of Arabic in
informal situations. These dialectal forms consti-
tute a dialect continuum with large variability from
one country to the other. Arabic dialects are de-
fined by their spoken form and often exhibit a lack
of standardized spelling when written. When Ara-
bic speakers produce written text in such dialects,
they merely transcribe their spoken, colloquial lan-
guage, which leads to different forms for the same
word. Many users use the Latin script to express
themselves online in their dialect (Seddah et al.,
2020). In particular, they transcribe phonemes that
cannot be straightforwardly mapped to a Latin let-
ter using digits and symbols,4 with a high degree
of variability at all levels; this is called Arabizi,
with its North-African version called NArabizi by
Seddah et al. (2020). For cultural and historical
reasons, NArabizi also exhibits a high degree of
code-switching with French and Amazigh (Ama-
zouz et al., 2017), i.e. alternations between two or
more languages during the conversation. Besides,
the only available textual resources for Arabizi data
are user-generated content, which is by itself inher-
ently noisy (Foster, 2010; Seddah et al., 2012a;
Eisenstein, 2013), making the production of super-
vised models, assuming the availability of labeled
data, or even the collection of large pre-training
data set a rather difficult task.

This data scarcity problem is often solved in
the NLP literature using transfer learning: trans-
ferring knowledge learnt by large scale language
models pre-trained on larger corpora. However,
the use of Latin script makes it harder to transfer
knowledge from language models trained on Ara-
bic script corpora. For subword-based tokenization
models, words are represented by a combination
of subwords from a predefined list. When applied
to a highly variable language with code-switching,
a large vocabulary would be necessary to get a
good covering of all possible orthographic vari-
ations which makes this approach less practical.
Table 1 presents several examples of lexical varia-
tion within NArabizi. Interestingly, this variability
also affects the code-switched vocabulary, which
is mostly French in this case.

4For example, the digit “3” is often used to denote the ayin
consonant, because it is graphically similar to its rendition in
Arabic script.

https://gitlab.inria.fr/ariabi/character-bert-ugc
https://gitlab.inria.fr/ariabi/character-bert-ugc
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GLOSS ATTESTED FORMS LANG

why wa3lach w3alh 3alach NArabizi
all ekl kal kolach koulli kol NArabizi
many beaucoup boucoup bcp Code-switched Fr.

Table 1: Examples of lexical variation in NArabizi.
(From Seddah et al., 2020)

3 Related work

3.1 Transfer Learning for Low-resource
Languages

Low-resource languages, by definition, face a lack
of textual resources – annotated or not –, which
makes it difficult for the NLP community to de-
velop models and systems adapted to them (Joshi
et al., 2020). The majority of the almost-7000
languages worldwide actually fall into the “low-
resource” category. This makes the development
of systems for low-resource languages necessary
to widen the accessibility of NLP technology.

For deep learning approaches, which depend on
the availability of large data sets, the solution to
the low-resource problem comes from the idea of
transfer learning. Early instances of cross-lingual
transfer learning rely on non-contextualised word
embeddings (Ammar et al., 2016). More recently,
multilingual pre-trained language models (Con-
neau et al., 2020) has spread far and wide in NLP,
enabling high-performance zero-shot cross-lingual
transfer for numerous tasks and languages. The
main idea is to exploit a large amount of unlabeled
data to pre-train a model using a self-supervised
task, such as masked language modeling (Lam-
ple and Conneau, 2019; Vania et al., 2019). This
pre-trained model is then fine-tuned on a much
smaller annotated data set and used for another lan-
guage, domain or task. Strategic knowledge shar-
ing has been shown to improve the performance
on downstream tasks and languages (Gururangan
et al., 2020). Therefore, this technique is crucial for
multilingual applications, as most of the world’s
languages lack large amount of labeled data (Con-
neau et al., 2019; Eisenschlos et al., 2019; Joshi
et al., 2020). However the performance of multi-
lingual language model on low-resource languages
is still limited compared to other languages since
they are naturally under-sampled during the train-
ing process (Wu and Dredze, 2020).

To improve performance on a specific low-
resource languages, there are two possibilities. Ei-
ther to attempt to train a language model on it from

scratch despite the scarceness of data; or fine-tune a
pre-trained multilingual language model on the low-
resource language corpus, also called cross-lingual
transfer learning (Muller et al., 2021a). The first
option can sometimes lead to decent performance,
provided that the training corpus is diverse enough
(Martin et al., 2020).

When following the fine-tuning approach, unsu-
pervised methods can be implemented to facilitate
the transfer of knowledge (Pfeiffer et al., 2020).
The most widely used unsupervised fine-tuning
task is masked language modeling (MLM). This
system has proven its efficiency between languages
that have already been seen in the training cor-
pus (Pires et al., 2019); it is still a challenge for
unseen languages, especially low-resource ones.
However, Muller et al. (2020) achieved promising
results by performing unsupervised fine-tuning on
small amounts of NArabizi data. We follow their
approach by comparing the performance of our
pipeline in two setups: MODEL+MLM+TASK and
MODEL+TASK. We describe these setups in more
details in section 6.

3.2 Tokenization & Character-based models

Standard language models rely on a subword-based
approach to process tokens in a sequence (Kudo,
2018a). This allows the model to handle any word
unseen in the training data, working in an “open-
vocabulary setting,” where words are represented
by a combination of subwords from a pre-defined
list. On top of alleviating the issue of out-of-
vocabulary words, this approach allows the model
to handle sequences written in a language unseen
during training, as long as it uses the same script.
Therefore, subword tokenization is a crucial fea-
ture of state-of-the-art models in NLP. But its suit-
ability for all types of data has always been ques-
tioned. While splitting texts into subwords based
on their frequencies works well for English, mod-
els using this kind of tokenization struggle with
noise, whether it is naturally present in the data
(Sun et al., 2020) or artificially generated to chal-
lenge the model (Pruthi et al., 2019). Moreover,
language models that use subword-based tokeniza-
tion struggle to represent rare words (Schick and
Schütze, 2020). Many research projects have fo-
cused on improving subword tokenization. For ex-
ample, Wang et al. (2021) suggested a multi-view
subword regularization based on the sampling of
multiple segmentations of the input text, based on
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the work of Kudo (2018b).
Other parallel efforts bid on character-based

models. For example, El Boukkouri et al. (2020)
proposed a possible solution to get a better tok-
enization system more resilient to orthographic
variations and noise in the data set by using a
character-level model, inspired by a previous word-
level open-vocabulary system (Peters et al., 2018a).
This new model gets better results than vanilla
BERT on multiple tasks from the medical domain.
Furthermore, the authors claim that it is more ro-
bust to noise and misspellings. In the same vein,
Ma et al. (2020a) combined character-aware and
subword-based information to improve robustness
to spelling errors. This initiated a new wave of
tokenizer-free models based on characters or bytes
(Tay et al., 2021; Xue et al., 2021; Clark et al.,
2021).

The question of knowing if character-based lan-
guage models can handle high language variability
since they are supposed to be resilient to noise and
spelling variations is crucial when dealing with
non-normalized dialects and non-canonical forms
of language as found on many user-generated con-
tent platforms. This is why we focus on this work
on the analysis of the performance of character-
based models on several user-generated content
data sets that we now describe.

4 Data sets

In this section, we describe the data sets we use
to evaluate our pipeline on our downstream tasks,
namely Part-Of-Speech (POS) tagging and depen-
dency parsing.

NArabizi Data Set We use the NArabizi treebank
(Seddah et al., 2020), containing about 1500 sen-
tences randomly sampled from the romanized Al-
gerian dialectal Arabic corpus of Cotterell et al.
(2014) and from a small corpus of lyrics com-
ing from Algerian dialectal Arabic songs popu-
lar among the younger generation. This treebank
is manually annotated with morpho-syntactic in-
formation (parts-of-speech and morphological fea-
tures), together with glosses and code-switching
labels at the word level, as well as sentence-level
translations. Moreover, this treebank also contains
36% of French tokens. Within the NArabizi anno-
tated corpus,5 In addition to labeled data, The NAra-
bizi treebanks provides about 2 millions words, 99k

5http://almanach-treebanks.fr/NArabizi

Treebank # Tokens # Sentences Genres

GSD 389,363 16,342 Blogs, News
Reviews, Wiki

Sequoia 68,615 3,099 Medical, News
Non-fiction, Wiki

Spoken 34,972 2,786 Spoken

FSMB 56,009 4,055 Twitter, Facebook
Web Forums

Table 2: Statistics on the treebanks used in our POS
tagging and dependency parsing experiments.

sentences, of unlabeled data collected from vari-
ous sources.6 We use this corpus for unsupervised
fine-tuning.

French Data Sets We use the following Univer-
sal Dependencies, UD, (Nivre et al., 2020) version
of the following treebanks: French GSD (McDon-
ald et al., 2013), Sequoia (Candito and Seddah,
2012) and Spoken, an automatic conversion of the
Rhapsodie corpus (Lacheret et al., 2014) to the UD
annotation scheme.

For our experiments on noisy UGC treebank,
we use an extension of the French Social Media
Bank, FSMB7 (Seddah et al., 2012a): a treebank
of French sentences coming from various social
media sources only available either in constituent
trees or in the native French Treebank dependency
annotation scheme (Candito et al., 2010), along
with the Sequoia original treebank that we use with
the same annotation scheme for compatibility in
our French UGC experiments. A brief overview of
the size and content of each treebank can be found
in Table 2.

Pre-training Data Sets Note that in some of our
experiments, we use a fraction, 1% of the dedupli-
cated French instance of the Oscar corpora (Suárez
et al., 2019), about 380M words, as a source of un-
labeled data to be either mixed with NArabizi pre-
training data (as an 2.5M words additional sample)
or used as pre-training data for characterBert when
evaluated on French UGC (whole 1%). Statistics
on those data sets are presented on Table 3.

5 Model

CharacterBERT (El Boukkouri et al., 2020) is a
character-based variant of BERT that replaces the
WordPiece embedding matrix with multiple CNN

6The original data set provides 50k sentences of clean
NArabizi sentences and an additional 49k sentences of more
noisy data, we use here a concatenation of both.

7We use a shuffled version of the treebank split into a train
set of about 2 000 sentences and a dev and test set of about
1 000 sentences each.

http://almanach-treebanks.fr/NArabizi
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# Tokens # Sentences Language
99k Narabizi 2.527k 99k ar-dz

1% Oscar 318.715k 9.342k fr
10% Oscar 1.885.351k 55.261k fr

100% Oscar 23.209.872k 558.092k fr

Table 3: pre-training data set statistics.

and a highway layer (Srivastava et al., 2015). This
method for encoding token representations is in-
spired from ELMo (Peters et al., 2018b), one of
the first pre-trained language models for transfer
learning. It generates a context-independent rep-
resentation from character embeddings and feeds
them to transformer encoder layers, similarly to
BERT architecture. Therefore, it produces a sin-
gle embedding for any input token and does not
need a WordPiece vocabulary. This avoids having
an inconstant number of subword vectors for each
word. We choose this model since its robustness
to noise, when tested on biomedical domain by
El Boukkouri et al. (2020), can lead to interesting
result when facing our noisy experiment data. It
is the first character-based and BERT-like model,
along with CharBERT (Ma et al., 2020b), that uses
both character and subword embeddings and has
the advantage of being publicly available.8 Note
that we retrain CharacterBert from scratch on our
data sets and do not make use of any of its available
pretrained at models any point in our experiments.

6 Experiments

In this section, we present our fully-supervised
and semi-supervised baselines. We also evaluate
different fine-tuning strategies combined with two
layers configurations. We use various embedding
models that we contrast with the CharacterBERT
model.

Baseline Models For our fully-supervised base-
line, we use FastText embeddings (Joulin et al.,
2016) trained from scratch on our treebank training
sets and used as input for our downstream tasks
without any special treatment.

To measure the effectiveness of using a contex-
tualized character-based language model, we com-
pare its performance to subword based language
models, both monolingual and multilingual, that
constitute the basis of our semi-supervised base-
lines. For multilingual subword based language

8https://github.com/helboukkouri/char
acter-bert-pre-training

UPOS UAS LAS
No external embeddings 57.61 55.48 39.32

Table 4: Pos-Tagging and Parsing Baseline Results for
NArabizi test set.

model, we use mBERT, the multilingual version of
BERT (Devlin et al., 2018). It is trained for 104
different languages on Wikipedia data, including
French and Arabic, languages for which Muller
et al. (2020) showed that, to a certain extent, they
could transfer to NArabizi. For our monolingual
model we use CamemBERT (Martin et al., 2020)
which is a contextualized language model based on
the RoBERTa model (Liu et al., 2019) trained and
optimized specifically for French.

MODEL+TASK We use the implementation of
the Biaffine graph parser (Dozat and Manning,
2016) from Grobol and Crabbé (2021); they
adapted it to handle several input sources, such
as BERT representations. The parser performs its
own tagging using a multi-layer perceptron. The
word representations are a concatenation of word
embeddings and tag embeddings learned together
with the model parameters on the treebank train-
ing data. We fine-tune the overall model by back-
propagating through the average of all sub-tokens
of a word. Baseline results, without any external
embeddings, for this parser are provided in Table 4.

MODEL+MLM+TASK Before fine-tuning the
model on the downstream task, we perform lan-
guage adaptation by fine-tuning it in a self-
supervised fashion with the MLM loss. We use
the NArabizi raw data; we train the model for 20
epochs, keeping the best model obtained at the end.
The evaluation is done using the MLM log likeli-
hood, with 10% of the data kept for validation.

.

Fine-Tuning Strategy In addition to using only
the last layer (cf. Appendix A where we conducted
several experiments to explore the effect of differ-
ent layer configurations in our downstream tasks),
we also test two options for the layers aggregation.
The first one is simply taking the mean of selected
layers. The second is scalar mix, introduced by
ELMo (Peters et al., 2018b): a convex combina-
tion of the transformer layers where the weights
are learnt.

For each of these configurations, we test two
setup: with and without training the transformer

https://github.com/helboukkouri/character-bert-pre-training
https://github.com/helboukkouri/character-bert-pre-training
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Fine-tuning
Strategy

MODEL+TASK MODEL+MLM+TASK

UPOS UAS LAS UPOS UAS LAS
last-layer-ft 81.14 72.59 60.35 83.08 73.77 62.00
last-layer-fz 56.05 62.48 43.95 70.23 67.86 53.45
mean-ft 80.86 73.06 61.11 84.22 72.97 61.58
mean-fz 65.41 64.27 48.11 73.53 68.05 53.92
scalar-mix-ft 80.15 70.46 58.08 83.65 74.62 62.62
scalar-mix-fz 58.74 63.80 46.93 61.20 67.25 52.84

(a) CamemBERT

Fine-tuning
Strategy

MODEL+TASK MODEL+MLM+TASK

UPOS UAS LAS UPOS UAS LAS
last-layer-ft 80.48 69.19 57.89 84.55 73.82 62.67
last-layer-fz 65.08 62.95 45.84 79.44 71.55 58.98
mean-ft 84.40 72.83 61.81 84.50 71.31 60.96
mean-fz 69.47 64.89 49.34 78.40 69.71 57.61
scalar-mix-ft 80.25 69.19 56.14 84.31 72.78 61.67
scalar-mix-fz 71.79 66.73 52.17 78.83 72.07 59.17

(b) mBERT

Fine-tuning
Strategy

NArabizi Sample Oscar NArabizi + Oscar
99k 99k 66k+33k

UPOS UAS LAS UPOS UAS LAS UPOS UAS LAS
last-layer-ft 81.19 70.56 58.65 78.83 69.52 56.33 80.67 69.90 57.75
last-layer-fz 75.71 66.87 53.69 71.74 65.31 51.75 75.38 68.57 55.15
mean-ft 81.00 70.70 58.84 78.78 69.52 55.81 80.91 69.57 57.18
mean-fz 77.08 68.05 55.53 72.35 66.54 51.98 77.22 69.33 56.14
scalar-mix-ft 79.96 69.47 57.84 80.62 68.76 56.76 80.15 69.90 57.56
scalar-mix-fz 75.90 68.10 54.58 71.69 66.16 51.80 77.60 69.33 55.91

(c) CharacterBERT (MODEL+TASK)

Table 5: Performances of the models on the NArabizi treebank using different fine-tuning strategy (We use ft to
indicate that the embeddings are fine-tuned for the tasks, while fz is used when the embeddings are frozen during
the fine-tuning step).

model weights during the fine-tuning. We call the
first strategy frozen representation, noted with a
-fz suffix in our results, where the language model
is used to extract meaningful features that consist
of contextual embeddings. In the second strategy,
the contextual embedding extractor – that is, the
pre-trained language model – is fine-tuned on the
downstream task alongside the task-specific com-
ponent, noted with a -ft suffix in our results.

7 Results and Discussion

In this section, we compare all the systems pre-
sented before on the NArabizi and French treebanks.
We especially focus on the impact of corpus size
on the models’ performance.

7.1 Experiments on NArabizi treebank

Scores are reported as triplets describing UPOS/UAS/LAS

results. Highlighted cells marks the best results column-wise

while bold marks best results row-wise

We report in Table 5 the scores for the different
fine-tuning strategies for the three models Camem-
BERT, mBERT and CharacterBERT.

Additional insights on the extraction of a repre-
sentation from the different layers are provided in
the Appendix, Table 9, with analysis on the effect
of the combination of different subsets of layers on
the accuracy.

CharacterBERTNArabizi performs better overall
in the Model+TASK setting Looking at table

5, we notice that CharacterBERTNArabizi signifi-
cantly outperforms mBERT and CamemBERT in
the MODEL+TASK setup without MLM for almost
all the configurations, except for the two config-
urations mean-ft (when using the mean of all the
fine-tuned layers) and scalar-mix-ft (when using
the scalar-mix of all the layers) where mBERT and
CamemBERT show slightly better performance
than CharacterBERTNArabizi. In this latter case,
mBERT outperforms CharacterBERTNArabizi on
the NArabizi data set with accuracy differences
of (3.40/2.13/2.96) for (UPOS/UAS/LAS) using
mean-ft, which is only significant for UAS with p-
value<0.05.9 The same observation can be done for
CamemBERT in the MODEL+TASK setting which
outperforms CharacterBERTNArabizi with accuracy
differences of (-0.14/2.36/2.26).

The same is observed for the scalar-mix-ft
option but the differences are not significant
with p-value<0.05 for UAS and LAS. Besides
these two configurations, CharacterBERTNArabizi
always outperforms the other two models with-
out MLM. The most notable difference using
CharacterBERTNArabizi is when the latter out-
performs CamemBERT with accuracy differ-
ences of (19.66/4.39/9.74) and mBERT with
(10.63/3.92/7.854) in the last-layer-fz setting with
a p-value<0.05 for both comparisons.

9We tested the statistical significance using the publicly
available Dan Bikel’s code at https://github.com/t
dozat/Parser-v1

https://github.com/tdozat/Parser-v1
https://github.com/tdozat/Parser-v1
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Adding MLM reverses the trend However,
when we compare CharacterBERTNArabizi to
CamemBERT+MLM and mBERT+MLM, we
see that while they both generally outperform
CharacterBERTNArabizi, there are some settings
where CharacterBERTNArabizi still gets better
scores. mBERT+MLM gets the best scores
for all of the configurations we test among the
three models. While both CamemBERT and
mBERT perform comparably, mBERT outper-
forms CharacterBERTNArabizi when it is used
with MLM. Some of the best performance are
achieved in the last-layer-ft setting with scores
of (83.08/73.77/62.00) for CamemBERT and
(84.55/73.82/62.67) for mBERT and lower scores
of (81.19/70.56/58.6) for CharacterBERTNArabizi
(both models outperform CharacterBERTNArabizi in
this case).

In other settings, CharacterBERTNArabizi is still
competitive with the two other MLM-pretrained
models, as illustrated by the last-layer-fz set-
ting with scores of (70.23/67.86/53.45) for
CamemBERT, and (75.71/66.87/53.69) for
CharacterBERTNArabizi and (79.44/71.55/58.98)
for mBERT. Still, the general tendency in the
Model+MLM+TASK setting is that mBERT
outperforms CharacterBERTNArabizi when
used with MLM and CamemBERT exhibits
performance similar to CharacterBERTNArabizi
in the same setting. This is in contrast with the
earlier comparison without MLM pre-training
where both CamemBERT and mBERT reached
scores lower than those of CharacterBERTNArabizi.

This observation confirms the findings of Muller
et al. (2021a) regarding the positive impact of unsu-
pervised fine-tuning for BERT models even if the
language is not one of the pre-training languages.

CharacterBERT pretrained on 1% of Os-
car performs roughly the same than Camem-
BERT+Task If we compare the performance of
CamemBERT in the MODEL+TASK setting to
CharacterBERT trained on sub-sample of Oscar,
we see that both models are comparable. Typically,
CamemBERT seems to outperform Character-
BERT in some settings like last-layer-ft where the
latter records (78.83/69.52/56.33) for UPOS, UAS
and LAS scores respectively while CamemBERT
records higher at (81.14/72.59/60.35). In other
settings, CharacterBERT seems to outperform
CamemBERT. In the mean-fz setting for instance,
CharacterBERT has scores of (72.35/66.54/51.98)

which surpasses the (69.47/64.89/49.34) scores of
CamemBERT. No clear conclusion can be drawn
about the best use of one model over the other in
the different settings since they all display com-
petitive scores. This is essentially due to the fact
that CamemBERT is trained on the full Oscar data
set, while CharacterBERT is trained on just 0.01%
of it. In addition, the test set is made of only
140 NArabizi sentences, making any interpretation
of the results difficult. These two reasons make
difficult the drawing of concrete conclusions on
the performance of both models compared to each
other. Therefore in the next section, we will evalu-
ate the models using the best fine-tuning strategy
on French treebanks with a larger evaluation set
and a CharacterBERT trained on 1% Oscar.

7.2 The Impact of Data Size: Experiments on
French treebanks

In-domain experiments For our experiments on
French treebanks, we keep the best setup from our
previous results and use the last layer of the model
fine-tuned for the task.

In table 6, we report the scores obtained by both
models CamemBERT and CharacterBERT on three
French treebanks, compared to our parser with-
out external embeddings from pre-trained models,
which we consider as our baseline for those ex-
periments. All systems using CamemBERT or
CharacterBERT models outperform our baseline.
Both models have competitive scores. For ex-
ample, when tested on the GSD treebank, our
baseline obtains scores of (96.35/89.98/86.96)
while CamemBERT and CharacterBERT obtain
both better, yet relatively close scores, with
(98.53/95.74/94.17) for the CamemBERT-based
model and (98.07/95.22/93.50). The same observa-
tions apply for the other two treebanks SEQUOIA
and SPOKEN. These results are coherent with
the comparisons done earlier for NArabizi where
both CharacterBERT and CamemBERT models
produced comparable scores even though Charac-
terBERT was trained on only 0.01% of the full data
set on which CamemBERT was trained on. Our
results on those much larger data sets corroborate
then our NArabizi models results and confirm the
interest of using characterBert-based models in our
scenarios.

Extremely noisy user-generated content exper-
iments In table 7, we compare both models
CamemBERT and CharacterBERT in two different
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Model-LayerConfig GSD SEQUOIA SPOKEN
UPOS UAS LAS UPOS UAS LAS UPOS UAS LAS

No pre-training 96.35 89.98 86.96 92.57 82.28 77.72 83.60 67.65 58.04
CamemBERT (100% Oscar) 98.53 95.74 94.17 99.23 95.78 94.59 97.41 88.15 83.00
CharacterBERT (1% Oscar) 98.07 95.22 93.50 99.27 94.98 93.80 96.62 86.82 81.22

Table 6: POS and dependency parsing scores on 3 French treebanks.

Model-LayerConfig Dev Test
UPOS UAS LAS UPOS UAS LAS

F
S

M
B

tr
ai

n
No pre-training 81.24 70.04 59.46 81.62 69.19 59.17
CamemBERT 95.34 87.01 81.56 95.48 87.47 82.66
CharacterBERT 95.08 85.99 80.51 95.19 86.26 81.26

Se
qu

oi
a

tr
ai

n

No pre-training 71.50 59.04 47.30 72.79 59.92 48.81
CamemBERT 89.47 81.80 74.33 90.10 82.68 75.85
CharacterBERT 90.12 81.79 74.43 90.68 82.39 75.39

Table 7: POS and dependency parsing scores on the FSMB.

settings. In the first one, both models are fine-tuned
on the FSMB training set. In the second one, the
models are trained on the Sequoia training set. The
performance of these models is to be compared – as
in table 7 – to the performance of a parser without
external embeddings from a pre-trained model. As
expected, both models outperform the baseline and
– similarly to previous results – are competitive in
their respective obtained scores.

In the FSMB training setting, CamemBERT
achieves scores of (95.34/87.01/81.56) when
tested on the development part of the data set,
and CharacterBERT achieves close scores of
(95.08/85.99/80.51) on the same data set. Both
scores outperform the ones obtained by the baseline
of (81.24/70.04/59.46) also on the development set.
The same behavior can be observed in the Sequoia
training setting where CamemBERT gets scores of
(89.47/81.80/74.33) and CharacterBERT scores of
(90.12/81.79/74.43) on the development set: both
are still higher than the baseline scores. This com-
parison is still valid when we consider the test set
results. For reasons probably tied to the random
sampling done when splitting the data set, the score
ranking are reversed in the test set, yet results are
very similar and the slight differences between the
two models results are not statistically significant.
This shows the actual effectiveness of having a
character-based model trained on only a small frac-
tion of its “classic” BERT counterpart when facing
noisy user-generated content from a data set that
was proven to be much more noisy that many other
similar data sets (Rosales Núñez et al., 2019).

UPOS UAS LAS %Oscar
FSMB fine-tuned (in-domain)

CamemBERT 95.48 87.47 82.66 100
CamemBERT4gb 95.13 85.73 80.72 2.38
Character-BERT 95.19 86.26 81.26 1

Sequoia fine-tuned (out domain)
CamemBERT 90.10 82.68 75.85 100

CamemBERT4gb 90.69 82.29 75.83 2.38
Character-BERT 90.68 82.39 75.39 1

Table 8: CharacterBert model performance compared
with a small CamemBERT (4gb) model on the FSMB
test set in in-domain and out-of-domain fine-tuning sce-
narios. Full-size Camembert results are reported here
for reference.

8 Discussion

In this work, we evaluate the benefits of using a
character-based model in low-resource scenarios.
Our results show that training such a model from
scratch on much fewer data gives similar perfor-
mance to a multilingual BERT adapted to the lan-
guage using the same amount of data.

Overall, our observations confirm the findings
of El Boukkouri et al. (2020) regarding the robust-
ness to noise and misspellings of the Character-
BERT model. We showed that the model has com-
petitive performance on noisy French UGC data
when trained on only a fraction of the OSCAR
corpus compared to CamemBERT trained on the
full corpus and when trained on corpora containing
about 1M words in the extremely noisy and low-
resource case of NArabizi. This is consistent with
the findings of Martin et al. (2020) and Micheli
et al. (2020), who showed that MLM could already
learn a lot from pre-training on smaller data set.
Extending this investigation by training on a larger
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amount of data could help to explore the ability of
the model to handle highly variable noisy data.

However, one could question the usefulness of
such Character-BERT based models if small Bert-
based models were available on the same domain.
To build an answer to that question, we conducted
a quick set of experiments comparing our char-
acterBert model trained on 1% of Oscar with the
off-the-shelf Camembert version trained on 4gb of
the Oscar corpus French instance (2.38% of the
full corpus) and which was shown to perform al-
most as well as the full model (Martin et al., 2020)
on many downstream tasks. Both models were
fined-tuned according to our MODEL+Task archi-
tecture on either the FSMB or the Sequoia treebank,
allowing us to evaluate their in-domain and out-of-
domain performance. Results on Table 8 confirm
the effectiveness of our characterBert model with
overall better results than CamemBERT4gb in the
in-domain scenario and similar, if not slightly bet-
ter in the out-of-domain scenario, except for the
labeled attachment score (75.83 vs 75.39). The fact
that CamemBERT4gb was trained on more than
twice as much data and with 200k pre-training
steps while the characterBert pre-training stopped
below 20k steps probably explains this small dis-
crepancy but further investigations are needed with
a fully parallel setting where both characterBert and
CamemBERT are pretrained on the same amount
of data and the same hyper-parameters. The take-
home message from this in-domain experiments is
that CharacterBert seems to be able to better cap-
ture at least some of the UGC idiosyncracies that
are prevalent in the FSMB (Seddah et al., 2012b)
than its Bert-based counterparts. This was also
shown by Rosales Núñez et al. (2021) in the con-
text of character-based neural machine translation.
Interestingly, their results showed that transformer-
based models with subword tokenization also ex-
hibit strong robustness to a certain type of lexi-
cal noise. This behavior has been very recently
demonstrated by Itzhak and Levy (2021) and could
explain why the BERT-based models we tested per-
formed so well in our experiments. The key seems
to be relying on the ability of the subword distri-
bution to model some forms of lexical variations.
Much more experiments are needed to clearly in-
vestigate in what circumstances, besides noisy and
resource-scarce scenarios, characterBERT models
bring in a decisive advantage.

Our results are based on the evaluation of two

low-level tasks. Therefore, it would be interesting
to see if they can be generalized to other – e.g.
more semantic – tasks, as additional experiments
on model layers configuration showed that most of
the important information is captured early in the
layers of the model (cf. Appendix A).

Regarding the specific case of Arabic dialects
written in Arabizi, a recent BERT-based model
have been pretrained on 7 millions Egyptian tweets
and displayed effective results on a sentiment anal-
ysis task (Baert et al., 2020). Another very recent
model, at the date of writing, was pre-trained on
4 millions Algerian tweets and also demonstrated
interesting results on sentiment analysis (Abdaoui
et al., 2021). Unfortunately, the authors did not
perform any experiments on the Narabizi data set,
making thus the comparison with our work not
straightforward. It would be of course interesting
to evaluate the interoperability between these new
data sets and the NArabizi resources we used to
produce our models. Head to head comparisons
between these models and ours could be of value of
course but we believe that given the shortcomings
of finding enough data to pretrain large models for
dialects, it would be probably better to first consol-
idate a large enough common pre-training data set
and then work on model performance. We leave
this for future work.

We showed that CharacterBert models trained on
very little data could provide an interesting alterna-
tive to large multilingual and monolingual models
in resource-scarce and noisy scenarios. This is why
we release all the code, data and models to repro-
duce our experiments, hoping our work will favor
the rise of efficient robust NLP models for under-
resourced languages, domains and dialects.10
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A Layer Configuration Experiments

We focus on the scalar mix strategy to study the
effect of the combination of different subsets of
layers on the accuracy of the downstream task, in-
stead of only aggregating all layers. For example,
it has been shown that higher layers contain more
semantic information, while lower layers contain
more syntactic information (Jawahar et al., 2019).
We compare several layer configurations, that is
different subsets of the transformer from which we
get the sentence representation.

The effect of the Layer Configuration We re-
port in tables 9a, 9b and 9c the scores for the
different layers combinations for CamemBERT,
mBERT and CharacterBERT respectively. For
mBERT and CamemBERT, the performance in-
creases when using the last layers, while for Char-
acterBERT, there is no big difference between the
different layers combinations. For example for
the setup MODEL+TASK, the accuracy for POS
tagging (UPOS) goes from around 70 with the
first layer using CamemBERT and mBERT, and
reaches 80 using CharacterBERT_arabizi. For
CharacterBERT, these scores stay around 80 even
when using farther layers (for layers 4 to 7 for
instance, the UPOS score is 80.53 and for lay-
ers 6-11 it is around 80.34), and while using the
last layer gives the best score of 81.19, the lat-
ter is still considered around 80 and the stagna-
tion in the scores is hence visible. Contrarily, for
CamemBERT and mBERT, the UPOS scores for
the MODEL+TASK setup increase from around 70
using only the first layer to above 80 when us-
ing layers 6 through 11 (80.39 for CamemBERT
and 80.72 for mBERT). The best UPOS score for
CamemBERT appears when using the last layer
alone (81.14) while for mBERT it is when us-
ing layers 6 through 11 (80.72). This clearly il-
lustrates the increase of performance when using
higher layers for CamemBERT and mBERT. The
same observation can be made for UPOS scores in
the MODEL+MLM+TASK setup for mBERT and
CamemBERT, and for the other Unlabeled Attach-
ment Score (UAS) and Labeled Attachment Score
(LAS) scores as well.

One possible explanation is that the information
captured by CharacterBERT layers does not evolve

along the model’s layers. The model produces a
single embedding for any input token based on an
aggregation of the characters embeddings while
for BERT-like-models, each sub-word unit in a
word is embedded using a WordPiece embedding
matrix. Therefore, a possible interpretation is that
CharacterBERT learns all the information at the
earliest layers as we feed it the whole word directly
and not an inconstant count of sub-words when
WordPiece vocabulary is in use. Moreover, less
than 10% of the 100 000 most frequent sub-words
in the NArabizi raw data are present in the mBERT
vocab due to the high variability of NArabizi.
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Layer
Config

MODEL+TASK MODEL+MLM+TASK

UPOS UAS LAS UPOS UAS LAS
0 68.38 66.21 50.61 70.89 64.74 49.81
0-5 77.93 70.51 57.04 80.95 72.21 59.45
4-7 79.63 70.18 57.56 81.57 72.54 60.92
6-11 80.39 71.88 58.41 83.65 74.15 62.15
11 81.14 72.59 60.35 83.08 73.77 62.00
all 80.15 70.46 58.08 83.65 74.62 62.62

(a) CamemBERT

Layer
Config

MODEL+TASK MODEL+MLM+TASK

UPOS UAS LAS UPOS UAS LAS
0 73.63 65.36 52.08 75.43 66.21 52.98
0-5 79.40 69.19 57.23 82.37 69.90 58.08
4-7 80.62 69.61 57.33 83.74 72.45 62.05
6-11 80.72 68.53 56.76 85.02 72.40 61.63
11 80.48 69.19 57.89 84.55 73.82 62.67
all 80.25 69.19 56.14 84.31 72.78 61.67

(b) mBERT

Layer
Config

NArabizi Sample OSCAR NArabizi + Oscar
99k 99k 66k+33k

UPOS UAS LAS UPOS UAS LAS UPOS UAS LAS
0 78.92 70.79 57.99 78.26 69.61 56.76 79.25 69.33 57.14
0-5 79.63 70.23 57.99 79.54 70.13 56.76 79.06 68.05 55.25
4-7 80.53 69.28 57.47 79.77 70.75 57.84 80.10 69.90 56.76
6-11 80.34 70.60 57.84 78.26 68.43 55.58 80.91 69.66 57.80
11 81.19 70.56 58.65 78.83 69.52 56.33 80.67 69.90 57.75
all 79.96 69.47 57.84 80.62 68.76 56.76 80.15 69.90 57.56

(c) CharacterBERT

Table 9: Performances of the models on the NArabizi treebank using different combinations of the model layers
for embeddings.


