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Abstract

Commits in version control systems (e.g. Git)
track changes in a software project. Com-
mits comprise noisy user-generated natural
language and code patches. Automatic com-
mit classification (CC) has been used to deter-
mine the type of code maintenance activities
performed, as well as to detect bug fixes in
code repositories. Much prior work occurs in
the fully-supervised setting – a setting that can
be a stretch in resource-scarce situations pre-
senting difficulties in labeling commits. In this
paper, we apply co-training, a semi-supervised
learning method, to take advantage of the two
views available – the commit message (natural
language) and the code changes (programming
language) – to improve commit classification.

1 Introduction

As a society’s reliance on software grows, so will
its needs for software analysis. Commits in ver-
sion control systems (e.g. Git), a way of tracking
changes made to code repositories, have been used
in a range of analyses, including understanding
maintenance activities (Hindle et al., 2009; Levin
and Yehudai, 2017; Hönel et al., 2019), studying
the impact of social factors in developer teams
(Soto et al., 2017; Vasilescu et al., 2015), and de-
tecting bug-fixing patches (Tian et al., 2012; Casal-
nuovo et al., 2017; Zafar et al., 2019).

Despite the usefulness of analyzing commits,
there has been a lack of large-scale commit datasets.
In 2017, to our knowledge, the largest public com-
mit dataset (Levin and Yehudai, 2017) contained
1,151 commits categorized into three classes. For
perspective, open source projects could see to tens
of thousands of commits per year. For example, the
Linux kernel’s repository had 82,300 commits in
2019 (Foundation, 2021) and now comprises more
than 1 million commits. The rate at which commits
are created coupled with the variety of the kinds of

Commit Message (NL view):
Improve numerical stability of LayerNorm

↪→ (#59987)
Summary:
Pull Request resolved: #59987

Similar as GroupNorm, improve numerical
↪→ stability of LayerNorm by Welford
↪→ algorithm and pairwise sum.

Test Plan: buck test mode/dev-nosan //caffe2/
↪→ test:nn -- "LayerNorm"

Reviewed By: ngimel

Differential Revision: D29115235
fbshipit-source-id: 376

↪→ dac89a4e14bd340aaaf169fef8d0d4ca4a1c4

Code Change (PL view, cropped with ellipsis)
diff --git a/aten/src/ATen/native/cpu/

↪→ layer_norm_kernel.cpp b/aten/src/ATen/
↪→ native/cpu/layer_norm_kernel.cpp

index 95a35571646d..366afe64b72a 100644
--- a/aten/src/ATen/native/cpu/

↪→ layer_norm_kernel.cpp
+++ b/aten/src/ATen/native/cpu/

↪→ layer_norm_kernel.cpp
@@ -1,13 +1,14 @@
#include <cmath>
+#include <tuple>...
namespace at {
namespace native {
@@ -29,30 +30,21 @@ void

↪→ LayerNormKernelImplInternal(
DCHECK_EQ(X.numel(), M * N);
DCHECK(!gamma.defined() || gamma.numel()
↪→ == N);

DCHECK(!beta.defined() || beta.numel() ==
↪→ N);

- T* X_data = X.data_ptr<T>();
+ const T* X_data = X.data_ptr<T>();...

Figure 1: Example of the NL-PL views of a commit.

commits likely pose difficulties in the creation of
large-scale, quality commit datasets leading to data
scarcity.

A commit consists of a commit message in nat-
ural language (NL) and code changes in program-
ming languages (PL) (See Figure 1). Assuming
weak dependence between the two views (NL and
PL), a known sufficient condition for co-training
to succeed (Abney, 2002), we apply iterative co-
training (Blum and Mitchell, 1998) to train classi-
fiers by bootstrapping from freely available unla-
beled commit samples. Empirically, we show that
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co-training improves commit classification (CC)
over a range of data scarcity scenarios.

With large transformer models achieving state-
of-the-art performance in NLP tasks, Feng et al.
(2020) created CodeBERT, a pretrained bimodal
model based on RoBERTa’s (Liu et al., 2019) archi-
tecture (another large language model) for natural
language and code to capture the semantic connec-
tion between both modalities via an attention mech-
anism to output representations that can support
NL-PL understanding tasks. Due to the presence
of NL and PL views in commits, we propose fine-
tuning a pretrained CodeBERT for transfer learning
on the CC task.

In this paper we examine the following questions:
RQ1: Can attention between NL and PL improve
classification? RQ2: Is CodeBERT better than
RoBERTa at representing commit messages for
CC? RQ3: Can co-training improve CC? While
RQ3 is our main contribution, we study RQ1 and
RQ2 to decide on the neural network architecture.

2 Related Work

Commit Classification (CC) Over the years, re-
searchers have applied a variety of machine learn-
ing methods to CC. Hindle et al. (2009) applied
decision trees, naive Bayes, SVM (Support Vec-
tor Machine), and nearest-neighbor algorithms to
classify commits into maintenance categories. Tian
et al. (2012) used a SVM on engineered features
from commit messages (as a bag of words) and
code changes (parsed for the number of code con-
structs) to classify bug-fixing patches in the Linux
kernel, remarking that bug fixes typically involve
code changes at a single location while non-bug-
fixing commits involve more lines of code. Levin
and Yehudai (2017) used word frequencies in com-
mit messages and code changes as inputs to deci-
sion trees, GBM (Gradient Boosting Machine), and
RF (Random Forest) to classify commits into main-
tenance activities. Zhou and Sharma (2017) ap-
plied logistic regression on the outputs of RF, Gaus-
sian Naive Bayes, K-Nearest Neighbours, GBM,
and Adaboost to classify vulnerability-related com-
mits, remarking that commit messages, particularly
short ones, may not be unique enough to distin-
guish vulnerability-relatedness. Sabetta and Bezzi
(2018) used a SVM on bags of words obtained
from commit messages and another SVM on bags
of words from code changes to classify security-
relevant commits, remarking that code changes con-

tain names (e.g., variables, functions) that convey
semantics and could be treated as a text document.
Hönel et al. (2019) used a variety of methods on
the code density of commits to classify commits
into maintenance activities. Zafar et al. (2019) fine-
tuned a pre-trained BERT model (Devlin et al.,
2018) with a single neuron perceptron head to
classify bug-fixing commits. Keshav Ram (2020)
used a linear SVM on TF-IDF features of Java to-
kens extracted from code changes, Code2Vec (Alon
et al., 2019), convolutional neural network on code
changes with surrounding code as context, and
BiLSTM (Bi-directional Long Short-Term Mem-
ory) on code changes without context to classify
commits, remarking that the Code2Vec approach
yielded poor results. (Lozoya et al., 2021) proposed
a method inspired by Code2Vec to compute vec-
tors from code changes, trained on the pretext task
of classifying commits’ Jira Ticket Priorities be-
fore classifying security-fix commits. Many afore-
mentioned works were conducted under the fully-
supervised setting — a setting that can be a stretch
for new categories where labeled data is scarce.

With large language models achieving state-
of-the-art performance in NLP tasks, Feng et al.
(2020) created CodeBERT, a pre-trained bimodal
model based on RoBERTa’s (Liu et al., 2019) archi-
tecture (another large language model) for natural
language and code in an attempt to capture the
semantic connection between both modalities to
output representations that can support NL-PL un-
derstanding tasks. CodeBERT is pre-trained on
code-documentation pairs from Github repositories
with the masked language modeling objective (used
in pre-training BERT), as well as the replaced token
detection objective (used in pre-training ELECTRA
(Clark et al., 2020)). CodeBERT is bi-modal in the
sense that natural language and code can be con-
catenated into a single sequence and fed into the
model to give rise to attention between code and
natural language tokens. In this paper, we adopt a
fine-tuning approach to adapt RoBERTa and Code-
BERT models for CC.

Datasets Ghadhab et al. (2021) combined three
datasets (Levin and Yehudai, 2017; Mauczka et al.,
2015; AlOmar et al., 2019) containing commits
from open-source projects that cover a range of do-
mains such as databases, programming languages
and integration frameworks to create a dataset with
1,793 labeled commits for classifying types of soft-
ware maintenance activities. Another data set was
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compiled by Ponta et al. (2019), providing 1,282
commits that fix vulnerabilities in 205 open-source
Java projects for classifying security commits.

To our knowledge, the largest data set (that we
denote as RA-Data) was compiled by Reis and
Abreu (2021), aggregating three datasets (Ponta
et al., 2019; Reis and Abreu, 2017; Fan et al., 2020)
as well as additional scraping to provide 8,057
security-relevant commits and about 110,000 non-
security-relevant commits spanning 1,339 open-
source projects and 20 programming languages. In
this paper, we use RA-Data as it is larger and more
varied than the other datasets. To our knowledge,
our work is the first to attempt CC on this dataset.

Co-Training Co-training was first proposed by
Blum and Mitchell (1998) and applied to classify
university web pages by assuming that the web
pages’ text and inbound links are two distinct views
conditionally independent to the other given the
class label, and sufficient for learning by itself.
During each co-training iteration, the classifiers’
most confident predictions for each view are added
to an initially small set of labeled training data,
expanding it. In the same iteration, the classifiers
are further trained on the expanded dataset. Later,
Abney (2002) proved that weak dependence be-
tween views, a weaker assumption than conditional
independence, is sufficient for co-training. Next,
Balcan et al. (2005) proved an even weaker suf-
ficient condition they term expansion assumption.
After that, Wang and Zhou (2010) showed that com-
binative label propagation over two views is both
sufficient and necessary for co-training.

Ling et al. (2009) empirically verifies on 32
datasets that improvements by co-training are like-
lier the more independent the two views are and
the more sufficient each view is, publishing results
supporting aforementioned sufficient conditions for
co-training.

In this work, we observed that commits possess
a natural view split – commit message (natural lan-
guage) and code changes (programming language)
– that one could reasonably hope for the weak de-
pendence assumption as well as the sufficiency for
learning from one view assumption to hold. If true,
co-training is a natural fit for learning on commit
datasets.

3 The 900Repo Dataset

To create a balanced dataset from RA-Data, we first
noted that about 910 repositories overlap in both

classes – security (“positive” class) & non-security
(“negative” class). The remaining repositories oc-
cur in one class but not the other. We extracted
all 3,765 positive samples belonging to these 910
overlapping repositories and randomly sampled
twice as many negative samples from the same
910 repositories, giving a total of 10,000 commits.
As at August 2021, due to RA-Data not having
code changes (a.k.a. diffs), we scraped for the code
changes via Github’s API. The result is a dataset
with 3,765 positive samples and roughly 6,300 neg-
ative samples that we refer to as 900Repo. This
dataset is publicly available at https://github.
com/davidleejy/wnut21-cotrain.

4 Pre-trained models

RQ1. While it seems beneficial to pack the NL and
PL views into a single input sequence to a trans-
former model so that attention between message
tokens and code tokens could improve the repre-
sentation, such a sequence is likely to exceed the
maximum input sequence length even in large mod-
els like RoBERTa & CodeBERT. As such, striv-
ing for attention between NL and PL views often
means truncating both modalities significantly as
a trade-off, losing information in the process. An
alternative is to feed each modality into a separate
transformer model, effectively sacrificing attention
between modalities to gain information (fewer to-
kens truncated), and attaching, for example, a sin-
gle MLP (Multi-Layer Perceptron) at both heads of
these transformer models to yield a joint represen-
tation upon which classification can be performed.
Our experiments in Section 4.1 suggest that sacri-
ficing attention to allow longer text inputs is the
better approach.

RQ2. As CodeBERT was pre-trained with the
aim of capturing the semantic connection between
NL and PL, one might expect CodeBERT to pro-
duce better representations for commit messages
than the architecturally-identical RoBERTa which
was not trained with NL-PL understanding in mind.
Our experiments in Section 4.1 suggest that the
representations generated by RoBERTa and Code-
BERT for commit messages offer similar perfor-
mance outcomes for CC.

4.1 Models and Experiments

The 900Repo dataset is split with a 70:15:15
train:validation:test ratio. We fine-tune the MLP
to the CC task (binary classification) via gradi-

https://github.com/davidleejy/wnut21-cotrain
https://github.com/davidleejy/wnut21-cotrain
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Figure 2: Neural network architectures considered.

ent descent with ADAM. Pre-trained CodeBERT
and RoBERTa weights are not modified, each with
125M parameters. We explore three architectural
configurations (See Figure 2) to investigate RQ1
and RQ2:

C-ss (CodeBERT, single sequence): Both modal-
ities, NL and PL, are concatenated and truncated
into a single 512 token sequence (hence “single se-
quence”), before being fed into a pre-trained Code-
BERT model. Commit messages are roughly given
30% of the 512 token sequence limit and code
changes are given the remaining 70%. An MLP is
attached to the head of the CodeBERT model for
fine-tuning. The classification prediction is output
by the MLP.

CC-ds (CodeBERT & CodeBERT, distinct se-
quences): Both modalities are fed into separate,
identical pre-trained CodeBERT models (hence
“distinct sequences”). As such, there is no attention
across modalities. Both modalities are allowed the
maximum 512 token sequence limit and have its
own embedding. A single MLP is attached to both
heads of the two separate CodeBERT models (one
for NL, one for PL) to yield a joint representation.
The classification prediction is output by the MLP.

CR-ds (CodeBERT & RoBERTa, distinct se-
quences): Identical to CC-ds except the NL view
is fed to RoBERTa instead of CodeBERT.

Results: Table 1 shows the performance of the
three different architectural configurations. Both ds
(distinct sequences) models perform better than the
C-ss (single sequence) model, suggesting that sacri-
ficing attention between the modalities in return for

Model P R F1 AUC Acc.
C-ss 80.3 80.4 80.4 81.0 80.4
CC-ds 83.0 83.0 83.0 84.9 83.0
CR-ds 84.0 84.1 83.9 87.4 84.1

Table 1: Test results with different architectures.
P/R/F1: average weighted precision, recall and F1
(weighted by class-size), Acc.: accuracy, AUC: area
under precision-recall curve.

Algorithm 1: Co-training
Note: Denote positive class as �; negative

class as �.
Input: Confidence c; Confidence limit C;

Min. (resp. max.) of samples to
label as � (resp. �):
nmin(�), nmax(�) (resp.
nmin(�), nmax(�))

Data: Labeled T , Unlabeled U , Validation
V .

Output: Trained classifiers NL, PL.
1 Train on T to obtain NL and PL models
2 while U not empty do
3 for M in NL, PL do
4 Label U with M
5 for L in �,� do
6 Select samples with predicted

probability > 1− c when L is
� (resp. < c when L is �).
Denote selection’s size as nL.

7 If nL > nmax(L) limit, truncate
selection to size nmax(L).

8 If nL < nmin(L) limit, pad
selection to size nmin(L).

9 Add selected samples to T .
10 Train new models NLnew and PLnew

on T. If performance on V improves,
set NL = NLnew and PL = PLnew.

11 Increment c. Maintain c < C.

being able to pass more information into the model
is a reasonable trade-off for CC. The CR-ds (Code-
BERT & RoBERTa) model slightly outperformed
the CC-ds (CodeBERT & CodeBERT) model sug-
gesting that CodeBERT does not offer an advantage
over RoBERTa at representing commit messages
for the CC task.
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T Model P R F1 Acc.

0.5%

NL-T 67.8 68.8 66.7 68.8
PL-T 61.2 63.0 61.4 63.0
NL 68.0 69.0 66.7 69.0
PL 64.7 66.3 63.4 66.3

1%

NL-T 58.5 62.3 57.2 62.3
PL-T 65.2 65.3 65.3 65.3
NL 73.0 72.2 72.5 72.2
PL 68.5 67.3 60.9 67.3

2%

NL-T 75.9 76.3 76.0 76.3
PL-T 68.4 65.9 66.5 65.9
NL 76.2 76.5 76.3 76.5
PL 72.4 73.1 72.4 73.1

4%

NL-T 77.6 77.0 76.9 77.0
PL-T 71.2 69.3 69.7 69.3
NL 77.7 77.9 77.8 77.9
PL 73.4 70.6 70.9 70.6

Table 2: Co-training experimental results. T: labeled
training data as a percentage of the dataset. NL-T, PL-
T: supervised models trained only on T. NL, PL: co-
trained models. P/R/F1: average weighted precision,
recall, and F1 score. Acc.: accuracy.

5 Co-training for commit classification

In the previous section, a joint representation of
the two modalities is obtained by attaching a sin-
gle MLP to the outputs of the transformer mod-
els. However, here the CodeBERT & RoBERTa
outputs are directed to separate MLP’s. For conve-
nience, we denote as NL the RoBERTa-MLP clas-
sifier model on commit messages, and as PL the
CodeBERT-MLP classifier model on code changes.

To simulate resource-poor conditions, we use
either 0.5%, 1%, 2% or 4% of the 900Repo dataset
as labeled training data with a validation set of the
same size, and 15% of the data as test set. The
remaining is used as unlabeled data for co-training.
The validation data is used by supervised baselines
for model selection (i.e. selecting the epoch during
training with best performance on validation set).

We show our co-training algorithm in Algo-
rithm 1. In each iteration, a small amount of con-
fidently labeled commits are added to the training
dataset which in turn is used in the next iteration’s
training. At all times, only the MLP portions are
fine-tuned via gradient descent with ADAM for
CC. Pre-trained CodeBERT and RoBERTa weights
are frozen. In all our experiments, we set c =
0.001, C = 0.15, nmax(�) = 3, nmax(�) = 5,
nmin(�) = nmin(�) = 1.

Results: Table 2 shows the test performance for
resource-poor scenarios (T = 4%, 2%, 1%, &
0.5% labeled data). Co-training provided an im-
provement across virtually all performance metrics
in all scenarios. In all scenarios, the PL classi-
fier (CodeBERT-MLP) improved more than the NL
classifier (RoBERTa-MLP).

Under both supervised & co-training approaches,
the NL classifier is observed to perform better than
the PL classifier. This could be due to the chal-
lenging nature of obtaining good representations
for programming languages as well as the length
of code changes frequently being much longer than
the commit message and CodeBERT’s 512 token
limit.

6 Conclusion

We found co-training to be helpful for CC in
resource-poor settings where there are insufficient
labeled commits for supervised approaches. Fur-
ther research directions could explore the use of
semi-supervised learning methods to expand the
capabilities of semantic search within code repos-
itories. Another limitation of our current work is
that commits are often too long for Roberta and
CodeBert. For future work, we could apply mod-
els that allow longer sequences as input, e.g., the
Longformer (Beltagy et al., 2020).
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Cindy Rubio-González. 2017. Gitcproc: A tool for
processing and classifying github commits. In Pro-
ceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages
396–399.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than genera-
tors. arXiv preprint arXiv:2003.10555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen.
2020. Ac/c++ code vulnerability dataset with code
changes and cve summaries. In Proceedings of the
17th International Conference on Mining Software
Repositories, pages 508–512.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

The Linux Foundation. 2021. 2020 linux kernel history
report. -.

Lobna Ghadhab, Ilyes Jenhani, Mohamed Wiem
Mkaouer, and Montassar Ben Messaoud. 2021.
Augmenting commit classification by using fine-
grained source code changes and a pre-trained deep
neural language model. Information and Software
Technology, 135:106566.

Abram Hindle, Daniel M German, Michael W God-
frey, and Richard C Holt. 2009. Automatic classi-
cation of large changes into maintenance categories.
In 2009 IEEE 17th International Conference on Pro-
gram Comprehension, pages 30–39. IEEE.
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