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Abstract

Social media is an essential tool to share in-
formation about crisis events, such as natu-
ral disasters. Event Detection aims at ex-
tracting information in the form of an event,
but considers each event in isolation, with-
out combining information across sentences
or events. Many posts in Crisis NLP con-
tain repetitive or complementary information
which needs to be aggregated (e.g., the number
of trapped people and their location) for disas-
ter response. Although previous approaches
in Crisis NLP aggregate information across
posts, they only use shallow representations
of the content (e.g., keywords), which cannot
adequately represent the semantics of a crisis
event and its sub-events. In this work, we pro-
pose a novel framework to extract critical sub-
events from a large-scale crisis event by com-
bining important information across relevant
tweets. Our framework first converts all the
tweets from a crisis event into a temporally-
ordered set of graphs. Then it extracts sub-
graphs that represent semantic relationships
connecting verbs and nouns in 3 to 6 node sub-
graphs. It does this by learning edge weights
via Dynamic Graph Convolutional Networks
(DGCNys) and extracting smaller, relevant sub-
graphs. Our experiments show that our ex-
tracted structures (1) are semantically mean-
ingful sub-events and (2) contain information
important for the large crisis-event. Further-
more, we show that our approach significantly
outperforms event detection baselines, high-
lighting the importance of aggregating infor-
mation across tweets for our task.

1 Introduction

Social media is widely used for informing humani-
tarian aid efforts in crisis events (Nazer et al., 2017;
Reuter et al., 2017). During a large-scale crisis
event, there is a large set of smaller events in du-
ration and impact that are essential components of
the larger event, which are called sub-events. A

sub-event is a structure that represents an action,
and thus has a temporal dimension and a list of
entities involved. Detecting important sub-events
that occur during a crisis (e.g., road blocks, people
trapped) can aid authorities to prevent and respond
to urgent situations (e.g., rescue efforts) (Nazer
et al., 2017). However, this requires connecting in-
formation from multiple posts as they contain repet-
itive or complementary information which needs to
be aggregated (e.g., the number of trapped people
and their location) for disaster response.

1. #NepalQuake avalanche kills 8 at Nepal’s
Everest base-camp

2. Obliterated Everest basecamp where at least
10 people were buried alive by avalanche after
Nepal earthquake

3. Route to camp1 completely destroyed by
avalanche.#NepalQuake

4. Avalanche sweeps Everest base-camp, killing
17: An avalanche triggered by Nepal’s

massive earthquake. . .

S. #Everest avalanche more than 100 climbers
stuck in camp1 awaiting rescue.! #NepalQuake

Table 1: Example tweets from April 2015 Nepal
Earthquake crisis event.

Several approaches in crisis NLP aggregate in-
formation across multiple tweets in the form of
clusters, where each cluster is considered a sub-
event (Abhik and Toshniwal, 2013; Pohl et al.,
2012; Arachie et al., 2020). However, these meth-
ods have several shortcomings. First, the output
clusters may not refer to a single sub-event, but
to a list of sub-events that share similar informa-
tion types. For example, consider the tweets 25
people killed in Everest base-camp and 200 people
killed in Gorkha. They contain the same informa-
tion type (i.e., number of people killed), but clearly
refer to two different sub-events. This results in
large, non-interpretable clusters that lack cohesion
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(Jiang et al., 2019). Second, most work ignores or
uses heuristics to model the temporal dependencies
of sub-events, without explicitly modeling time-
sensitive information that gets updated, such as the
number of injured people. Third, tweet content
is represented by shallow semantics, such as bag-
of-words or verb-noun pairs. Such representations
miss information that distinguishes between differ-
ent sub-events of the same information type and
are inadequate to model semantic dependencies
across sub-events. To provide an example, con-
sider the Nepal earthquake in April 2015. In Table
1, we show tweets referring to a deadly avalanche
in mountain Everest which was triggered by the
earthquake. We may extract 100 climbers were
trapped in camp 1 and 2 from one tweet and the
route to camp 1 and camp 2 was completely de-
stroyed from another. Although these two tweets
refer to different sub-events, they are related and
an event extraction framework would benefit from
modeling their dependencies.

Representing events in text is a complex prob-
lem. Most work on event detection relies on the se-
mantic frame theory (Fillmore, 2008), according
to which an event is represented by the predicate,
typically a verb or noun denoting an action, and
the event arguments, a list of entities related to
the predicate via a specific set of relations (e.g.,
agent, patient,..). In this work, we use the same
notion of event representations. Thus, we can dis-
tinguish different sub-events even if they have the
same predicate and/or partially share entities, as in
the example discussed earlier.

Recent work on social event understanding pro-
posed a method to model event dependencies. They
construct a sequence of graphs representing all the
documents (Deng et al., 2019). They preserve tem-
poral dependencies of events by using a Dynamic
Graph Convolutional Network (DGCN); a model
that learns an expressive graph representation of
nodes not only from their connections in a certain
time-step, but also from the dynamic context of
the previous time-step. In our framework we ex-
ploit the expressive power of a DGCN to aggregate
tweet content and model large-scale crisis events,
by learning graph edge weights. These weights let
us identify important nodes and relations; a criti-
cal step for sub-event extraction (Meladianos et al.,
2018).

We propose SD2SG, (Sub-event Detection via
Dynamic Semantic Graphs): a novel framework

to extract important sub-events from a temporally-
ordered group of tweets related to a crisis event.
Our approach combines information across tweets
into a set of temporally-ordered graphs, which are
used to extract sub-events. Since we have lim-
ited data, we impose structural (entities can be
connected only via a predicate) and semantic con-
straints (predicates are defined via the FrameNet on-
tology) in each graph. Thanks to these constraints,
our model learns valid relations instead of coin-
cidental co-occurrences of words via the use of a
DGCN model. Finally, we exploit the same struc-
tural constraints another time to rank 3 to 6 node
subgraphs (sub-events) from the learned graph of
a crisis event. The contributions of our proposed
framework are summarized as follows:

® This is the first work in Crisis NLP that ex-
tracts sub-events in the form of semantic rela-
tions (i.e., predicate with a list of arguments);
in prior work sub-events correspond to clus-
ters of words or tweets.

® Our framework aggregates information across
tweets and models temporal and semantic de-
pendencies between sub-events. This prob-
lem is not addressed by event detection ap-
proaches, as they treat each sub-event inde-
pendent.

® We conduct a large-scale human evaluation of
the quality of the extracted sub-events, accord-
ing to which SD2SG outperforms baselines
by at least 3% and 6% in terms of the validity
and the importance of extracted sub-events
respectively.

2 Related Work

Relevant research focuses on two main directions:
(1) information extraction or classification in the
tweet/sentence level and (if) information aggrega-
tion across documents / posts.

Information Extraction & Classification in
Tweets. Given the large volume of noisy data
from social media, most tasks focus on sentence
classification problems, where the goal is to fil-
ter only the most important posts that might be
helpful for first responders. As discussed by Im-
ran et al. (2015); Tapia et al. (2011), there are
several types of sentence classification for disas-
ter response, such as determining if a message is
related to a specific crisis event (Caragea et al.,
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2016; Kruspe, 2019; Nguyen et al., 2016; Neu-
big et al., 2011), if it is actionable (Leavitt and
Robinson, 2017) or critical (Mccreadie et al., 2019;
Spiliopoulou et al., 2020). Other work classifies
tweets with respect to the type of information they
contain, a problem that is formulated as a multi-
class tweet classification (typically five major in-
formation types) (Burel et al., 2017; Nguyen et al.,
2017; Imran et al., 2016; Miyazaki et al., 2019;
Padhee et al., 2020).

Related work outside of Crisis NLP can also
be used to extract information from tweets, in the
form of events. Chen et al. (2018) use an encoder-
decoder framework to extract sub-events from each
tweet, while Rudra et al. (2018) use noun-verb pairs
to represent sub-events, where each pair is ranked
based on their overlap score in tweets. Some ap-
proaches outside the crisis domain that focus on
extracting textual sub-events from tweets or docu-
ments, in a sequence classification setup (Bekoulis
et al., 2019). Other related work includes Open
IE methods (open information extraction), which
extract tuples of expressions from text that repre-
sent the events of the sentence. Such work includes
Open IE by AllenNLP (Stanovsky et al., 2018),
which uses a deep BiLSTM sequence prediction
model and systems that combine BERT embed-
dings with other neural models, such as a BILSTM
encoder (Kolluru et al., 2020).

Aggregating Information Across Tweets. Re-
search on Crisis NLP that aggregates information
across posts aims at extracting sub-events that are
important in the context of the larger crisis event.
The notion of sub-events varies within this area; a
sub-event could correspond to an entire cluster of
words / tweets or to a textual span from a single
tweet. Earlier work in sub-event extraction forms
clusters of tweets during a crisis event based on a
set of shallow features, such as tf-idf and metadata
(Abhik and Toshniwal, 2013; Pohl et al., 2012).
Other approaches use topic clustering to form sets
of words (topics) that represent sub-events (Sri-
jith et al., 2017; Xing et al., 2016). Most recent
work forms clusters based on verb-noun pairs from
individual tweets (Jiang et al., 2019), which are
then ranked based on an ontology grounding score
(Arachie et al., 2020). In all these methods each
cluster is considered to correspond to a different
sub-event. However, the elements within each clus-
ter are not necessarily related via temporal or other
relations, which raises questions with respect to the
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Figure 1: Framework architecture diagram.

interpretability of the cluster/sub-event.

In a different direction, a group of temporally
ordered messages is used for large-event detection.
For example, (Sakaki et al., 2010) use statistical
and keyword features in a spatio-temporal model to
detect crisis events based on Twitter streams. More
recently, Meladianos et al. (2015, 2018) use a graph
representation of tweets to extract important sub-
events by detecting weight changes, a problem for-
mulated as a summarization task. Early approaches
that use text from social media to represent con-
text for social events rely on linear classifiers using
topic-related features (Wang et al., 2012), graph
features (Keneshloo et al., 2014) or combination of
heterogeneous data sources (Korkmaz et al., 2015)
and dynamic query expansion models with a static
vocabulary (Zhao et al., 2015) or fused with logistic
regression (Ramakrishnan et al., 2014). Ning et al.
(2018); Zhao et al. (2015) use multi-task models
with shared parameters across different locations
and events to model spatio-temporal correlations.
Most recent work that inspired our approach uses
dynamic graphs to represent information from so-
cial media, which model temporal constraints from
precursor events (Deng et al., 2020, 2019; Ning
et al., 2018). A common theme of this work, as
further discussed by Ning et al. (2019) underlines
the importance of explainability, since it is help-
ful for experts to analyze which factors led to the
development of a large-scale event and potential
ways to prevent or mitigate it.

3 Proposed Framework: SD2SG

In this section, we discuss our approach on extract-
ing sub-events from a stream of temporally-ordered
tweets related to a crisis event. Our framework con-
sists of the following steps, as shown in Figure 1:
(i) construct the initial dynamic semantic graph,
(i) learn the graph’s weights via a graph neural net-



Algorithm 1: Steps of SD2SG
Input

: C' = A set of crisis events,

tweet, . .., tweet, in a temporal order,

n = total number of tweets in a crisis event
t = number of time-steps,

k = number of sub-events,

pre-trained embeddings
Output : Extracted sub-events for each time-step ¢:

S1,S52,...,S; from each crisis event.
1. for each crisis event, C; € C do
for tweets € {relevant, irrelevant} do

Divide tweet;, tweets, . . . , tweet,, into

groups of equal size, D = D1, D2, ..., Dy;
for each D; € D do

| Construct semantic graph G;

2. Run learning framework, DGCN on the output
from Step 1 and extract indicator function I based
on DGCN’s parameters to extract graph weights;

3. for each crisis event, C; € C do

// Only run on graph constructed

from relevant tweets

for each G; € G do

a) Extract sub-graph G;- based on I;

b) Sample sub-events from random graph
walks in G;;

¢) Collect sub-events that meet semantic
constraints (event structure);

d) Rank extracted sub-events with tf-idf score.
Choose top k;

work, and (iii) extract sub-events from the learned
graph via random walks that satisfy our semantic
constraints. The pseudocode of our framework’s
steps is in Algorithm 1.

3.1 Constructing Initial Dynamic Semantic
Graphs

Given a large-scale crisis event, our first step is
to represent the content of the related tweets in
a graph structure by merging information across
all the messages, which we call initial graph. An
initial graph represents the tweets for a given time-
step; it can be used dynamically in a sequence of
initial graphs (i.e., one graph per time-step) or as a
single graph (i.e., one time-step).

There are multiple ways to build the initial graph
representation of tweets. In SD2$G, we use a se-
quence of initial semantic graphs, where each
graph is based on semantic relations from text.
Given a set of tweets from a specific time-step,
the initial semantic graph is a bipartite graph that
connects predicates with their arguments, as they
appear together in text. A group of tweets can be
represented by a single initial graph, where the
same predicate may be connected to different argu-
ments from different sentences. An example of an

Everest base-camp

sweep kill

route\ /avalanche earthquake

destroyed

rescue stuck

camp1i climbers 100

Figure 2: Initial semantic graph, based on subset of
Nepal 2015 earthquake tweets (tweets 3, 4, 5)

initial semantic graph is shown in Figure 2, which
is constructed based on tweets 3, 4 and 5 in Table
1.

Formally, given a tweet t;, we use a depen-
dency parser to extract the part-of-speech tags
from tweets. Based on these tags we form two
groups: (1) verbs and nominalized verbs (i.e.,
nouns that are derived from verbs, like explosion)
Vi = {v1,v9,...}, by matching the tokens to the
Lexical Units provided in FrameNet (Baker et al.,
1998) and (2) nouns (excluding nominalized verbs)
N; = {n1,n2,..}. The output graph has as nodes
U; V; UV for all tweets ¢;. We form weighted edges
only across the two groups (verbs V' and nouns N),
which are initialized based on the PMI of each pair
(Church and Hanks, 1990). More specifically, for
each tweet t;, we have (v;, n;)Vi, j but no (n;, n;)
edges. This ensures that we link the sentence’s
predicate with its arguments, while avoiding to link
arguments that appear together under different rela-
tions/predicates. As shown in Figure 2, this results
in a graph that combines information across tweets
in a more explainable way compared to previous
approaches (Deng et al., 2019), while maintaining
semantic relations from text.

3.2 Learning Edge Weights via a DGCN

The initial semantic graphs mainly capture infor-
mation mentioned in sentence level, without taking
context into account (i.e., information based on
neighboring relations). This results in large graphs
with noisy relations, where it is hard to extract im-
portant information. In order to get a smaller, less
noisy graph, we formulate our problem as a clas-
sification task using dynamic graph convolutional
networks (DGCNs) where the goal is to learn edge
weights, a mechanism introduced by Deng et al.
to detect social events for news articles. With this
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setup the model learns which neighbourhoods or
sets of nodes in the graph are important and corre-
spond to sub-events that occur during a crisis.

A DGCN model consists of a sequence of GCNs
that are linked together by feeding information
from the previous time-step to detect important
factors in the context of social event understand-
ing. Each initial graph is fed into a different GCN
layer by time. For each GCN layer except the first
one, the input features are processed by a tempo-
ral encoded module, involving the output of the
last GCN layer and the current word embeddings,
to capture temporal features. Finally, there is a
masked nonlinear transformation layer to unify the
final output vector from the final GCN layer. The
loss is calculated between the model output and
ground truth label, which, in our case, is whether a
group of tweets is related to a crisis event or not.

Formally, given a sequence of initial semantic
graphs, we form their normalized adjacent matri-
ces Ay, Ag, .. A; for each time-step t. We are also
given a matrix of initial node features Hy, which
in our case corresponds to the pre-trained word
embeddings of the vocabulary. At each time-step,
the convolutional layer of the DGCN is computed
by: Hip1 = g(AHW® 4+ b)), where W®  p(*)
are model parameters and ¢ is a non-linear activa-
tion function. Note that H; does not correspond
to the GCN output, but instead to the temporal en-
coding embeddings, calculated from the last TE
layer. The temporal encoding is defined based on
the following equations, where W),, W, b,, b, are
the parameters learned by the model:

H = H,w® + ) (1)
HY = How® 4+ ) )
H; = tanh(|H)||H|) 3)

In order to classify the group of tweets as related
or not to a crisis event, we set the output feature
dimension of the last layer as 1. Due to dynamic
graph encoding, the output feature vector of the
last GCN layer is a combined representation of all
graph nodes, which is different for each large-crisis
event (i.e., different graph nodes). To guarantee
the consistency of the model across instances, the
DGCN uses a masked nonlinear transformation
layer to map the final output vector to the predic-
tion of the task. Finally, for each node ¢ in the
graph, we use the scalar value h;; from the last
GCN layer and w; ;, from the masked nonlinear

transformation layer to define an indicator function
I; = hjtw; . This indicator function is used to
select important nodes and their edges from the
graph.

3.3 Extracting Sub-events

Given the sequence of learned graphs, the last part
of our framework aims at extracting significantly
smaller sub-graphs that represent sub-events (i.e. a
typical sub-event contains 3-6 terms, while a graph
might have 100-200 nodes). Although we use bipar-
tite graphs to represent tweets, during learning, we
treat them as homogeneous with zero edge-weight
because of the nature of GCN/DGCN models (they
operate on homogeneous graphs, where all nodes
are treated equally). In order to generate valid
sub-event candidates, we use a pattern matching
method based on iterations of random walks on
each graph (Bressan et al., 2018; Saha and Hasan,
2015). The patterns used correspond to the typical
structure of an event, where the predicate (usually a
verb) is linked to a set of arguments (entities/nouns).
Similarly to the semantic constraints in each initial
semantic graph, we generate sub-events of star-like
patterns of variable size (3-6 nodes), where the cen-
ter node is an event predicate, as defined by the
FrameNet lexicon.

After we extract our candidate sub-events, we
use a ranking method to remove duplicate or redun-
dant information. To do that, we use a tf-idf scoring
scheme, where each sub-event is treated as a single
document; the score of each sub-event equals to the
average tf-idf score of its words. While other rank-
ing or filtering methods can be used, tf-idf is most
appropriate as it retrieves important information
(tf) and avoids similar, almost duplicate sub-events

(@idf).

4 Training & Evaluation

Crisis Event Dataset. To train the model de-
scribed in Algorithm 1, we use a subset of the com-
bined dataset described in Alam et al., which con-
sists of Twitter data from 59 crisis events, including
natural and man-made disasters. The tweets in this
dataset were all manually annotated by Alam et al.
as either being related or unrelated to their corre-
sponding crisis event. The statistics of the dataset
are shown in Table 2.
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Crisis Event Type # Crisis # Related # Unrelated
Events Tweets Tweets
Hurricane/Typhoon 13 22,154 13,219
Crash/Explosion 11 7,689 9,718
Flood 11 12,366 9,747
Earthquake 10 12,164 6,911
Terrorist Attack 3 5,956 4,205
Tornado 3 6,242 5,034
Wildfire 3 2,842 348
MERS 1 1,113 69
Ebola 1 1,420 210
Volcano 1 104 191
Haze 1 476 136
Landslide 1 364 2,800
Total 59 73,070 52,588

Table 2: Dataset Statistics; number of tweets refers to
tweets related to the large-scale crisis event.

Training Details. We execute Step 1 of Algo-
rithm 1 on these 59 crisis events. For the models
based on dynamic graphs (SDZSG and Simple
Dynamic Graph) we use time-step ¢ = 3.

We randomly split the dataset in Table 2 into
train, development, and test sets, where an event
belongs to only one of these sets. Related and
unrelated sub-events are positive and negative ex-
amples, respectively. This set-up was used to train
the DGCN model (Step 2 of Algorithm 1). Out of
59 crisis events, we use 33, 10 and 16 as training,
dev and test sets. For word embeddings we used
100d GloVE (Pennington et al., 2014) pre-trained
on Twitter, and the DGCN was trained using the
Adam optimizer with learning rate Se-4, weight
decay Se-4, and dropout rate 0.2.

Once the DGCN is trained, we execute Step 3
in Algorithm 1 and extract sub-graphs of interest
for our evaluation. We evaluate our extracted sub-
events with respect to two factors: (7) validity and
(if) importance in the context of a large-scale crisis
event.

4.1 Baselines

To verify our assumption that information aggrega-
tion is important for our task, we chose baselines
consisting of various methods that either aggregate
information across tweets or not. We use Open IE
as the baseline that does not aggregate information,
while the remaining baselines are ablations of our
proposed model. Our ablations study lets us verify
the impact of every component of the proposed
model. Unfortunately, since no prior work in crisis
NLP extracts sub-events in the form of semantic

Large Scale Extracted
Crisis Events Sub-events
2014 India-Pakistan floods 1467
2012 Colorado wildfires 693
2013 Alberta floods 680
2013 Balochistan earthquakes 715
2013 Dhaka garment factory collapse 800
2013 Los Angeles International Airport shooting 687
2013 South Wales bushfires 683
2017 Puebla earthquake 710
2015 Nepal earthquake 939
2019 Covid pandemic 818
Cyclone Oswald 850
2013 Spuyten Duyvil derailment 771
Hurricane Harvey 688
MERS epidemic 894
2014 Typhoon Hagupit 690
West Texas Fertilizer Company explosion 915
Total | 13,000

Table 3: Large-scale crisis events and their number of
extracted sub-events.

relations, we cannot compare with these methods.
Here is a brief overview of each baseline:

Simple Dynamic-Graph: uses a complete graph
(i.e., edges across all pairs of nodes) without any
constraints. The weight of each edge is based
on the PMI of the two nodes. This model was
proposed by Deng et al. (2019) to model social
events.

Static Sem-Graph: (1 time step) constructs only
one graph for all the tweets, without taking into
account their temporal dimensions. The initial
graph is constructed in a similar manner as the
proposed model, but the weights are learned via a
static GCN model.

Init Sem-Graph: uses the sequence of initial
semantic graphs as-is (no learning of graph
weights)

Open IE: uses the output of an Open IE system for
each individual tweet to directly produce sub-event
candidates. For this baseline, we use the OpenlE
system developed by Stanovsky et al. (2018). Each
sub-event is formed by using Open IE’s predicate
as the sub-event predicate and the head nouns of
each argument phrase as the sub-event arguments.
Since the output is already a set of sub-events
instead of a graph, we directly rank them based
on tf-idf features, similarly to the last step of the
proposed model.
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Crisis Predicate —> ‘ Yes No ‘

Event Arguments —> ‘ All Some None ‘ All ‘ Some None ‘

Models | Sub-event Validity Score Predicate  Sub-event
Accuracy Accuracy

Open IE 030% 0.50% 270% | 1.00% 9.20%  86.30% | 4.50% 1.80%

nit sem-graph 7.70% 14.60% 13.00% | 7.00% 18.80% 42.00% | 39.20%  29.30%

(no learning)

Simple dynamic 8.00% 10.00% 11.30% | 7.00% 13.10% 56.80% | 30.00% 18.70%

static sem-graph 5.99% 890% 9.85% | 1.60% 17.50% 56.10% | 26.20% 16.49%

2
SD7SG 9.70% 1530% 13.70% | 7.10% 17.70% 36.50% | 45.40%  32.10%
(proposed)

Table 4: Percentage of valid sub-events. Sub-event Accuracy represents instances that fall under the Yes and

All/Some and No and All categories.

4.2 Validity of Sub-events

We perform a human evaluation of our extracted
sub-events based on crowdsourced annotations via
Amazon Mechanical Turk.

Data. We collect a total of 13,000 sub-events (de-
tails shown in Table 3) by selecting the top 100
sub-events for each baseline per time-step from
16 large-scale crisis events (after removing events
with few instances).

Annotation Guidelines. First, we want to as-
sess whether the extracted sub-events are valid.
We showed every candidate sub-event s; =
(t,a1,as9,..) (where t is the predicate and aq, az, ..
are the event arguments) to three MTurk annotators
and asked them the following questions:

1. Does the predicate represent a crisis incident
(e.g., outage, collapse, injury) during a major
crisis event? Possible answers: yes or no.

2. How many of the argument words describe a
crisis scenario with or without the predicate?
Possible answers: all, some, or none.

We estimate the inter-annotator agreement of
these judgments via Fleiss’ Kappa; the predicate
accuracy has k = 0.5, while sub-event accuracy
k =0.37.

Metric & Eval Summary. In table 4 we show
the detailed results of our human evaluation. To es-
timate the accuracy of the sub-events overall (pred-
icate and event arguments) for each baseline, we
merged the answers of three categories; Yes and
All, Yes and Some and No and All. We decided this
merging for two reasons. First, some sub-events

might have predicates that are not clearly related
to a crisis (e.g., keep, go), but in combination with
proper arguments the entire structure is a valid,
meaningful sub-event in a crisis scenario (e.g., pred-
icate: fly, arguments: rescuers, climbers, Everest).
Second, some sub-events may be partially valid;
the event predicate and some (but not all) of the
arguments are valid. Such instances still contain
meaningful information for the crisis event and
could be used to inform decisions.

Our results show that SD2SG outperforms all
baselines. This highlights that all the components
of the model (the initial semantic graph, the tem-
poral aspect and the learned weights) contribute
to a better model overall. However, we observe
that the initial semantic graph is the second best
performing model, with only 3% difference. From
that, we conclude that the semantic and structural
constraints are a crucial component to extract valid
sub-events.

4.3 Importance of Sub-events

Determining the importance of a sub-event is a
complex task that requires expert annotators, as
they need to consider the context of the crisis event.
Even though a sub-event may be valid with respect
to its structure, we still need to validate if it is
important in the context of the large-scale crisis
event.

Data. We used the sub-events from the top per-
forming baselines that were previously classified
to belong to one of the following categories (sub-
event accuracy); Yes and All, Yes and Some and No
and All. Out of a total of 1,756 valid sub-events, we
randomly select a subset of 300 (~ 80 sub-events
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per baseline).

Annotation Guidelines. To evaluate the impor-
tance of the sub-events, we conducted another hu-
man evaluation, where we asked two expert anno-
tators the following question, for each sub-event:

1. Go to the provided Wikipedia link. Is the
proposed sub-event important for this crisis
event? Suppose the proposed sub-event did
not happen, would the consequences of the
major crisis or the humanitarian aid response
be different? Possible answers: yes or no.

We estimate the inter-annotator agreement by
Cohen’s Kappa and Kappa score for this evaluation
task is 0.48.

Models Important Sub-event
Accuracy

init sem- graph 19%

(no learning)

simple dynamic 15%

static

sem-graph 14%

SD2SG 25%

(proposed)

Table 5: Percentage of important sub-events. The sec-
ond column is an estimate of the important sub-events
that each model extracts.

Metric & Eval Summary. To evaluate sub-event
importance we estimate the percentage of all ex-
tracted sub-events that are important, per model
(important sub-event accuracy). The goal of this
metric is to reflect how good each system is in
extracting important sub-events.

To estimate the important sub-event accuracy
we use the results obtained from both human eval-
uations. The first evaluation tells us how many
valid sub-events each system extracts, while the
second how many of these valid sub-events are
important, per system. Each annotated sub-event
was considered important if any of the two an-
notators labeled it as such. Thus, the impor-

tant sub-event accuracy per system is estimated

valid_sub  important_sub* . *
by extracted_sub  wvalid_sub* where valld—SUb

and important_sub* correspond to the number of
valid and important sub-events respectively in the

annotated sample (i.e., valid_sub* = 300).

The results of this evaluation are shown in Table
5. We observe that our proposed model performs
substantially better than the baselines (6% higher
than the second-best). Although the accuracy of
all systems is relatively low, this is due to the low
percentage of valid events (i.e., a sub-event must
be valid in order to be important).

5 Discussion

In the previous section we show that despite
SD2SG performed significantly better than our
baselines, our numbers are overall low; 45.5% of
our extracted sub-events are valid and only 25%
important. In this section we identify and discuss a
set of reasons why sub-event extraction of tweets
is a challenging problem and how we can improve.

Models Predicate | Argument
Overlap Overlap

init sem-graph 85.10% | 65.90%

(no learning)

PMI dynamic 92.85 % 58.20%

static

sem-graph 88.75% 67.60%

SD2SG (proposed) | 90.40% | 68.00%

Table 6: Overlap of extracted sub-events with terms
from the EM ontology.

The first step of our analysis is to compare our
extracted sub-events to an existing resource man-
ually curated by experts in crisis NLP. We used
the EMTerms (Emergency Management Terms)
ontology (Temnikova et al., 2015); a resource of
7,000 manually annotated terms that are used in
Twitter to describe crisis events, classified into 23
information-specific categories. Based on this lexi-
con and our extracted sub-events, we estimate the
percentage of predicates and arguments that exist
in the EM terms by a partial string matching (many
EMTerms are phrases of 2-3 words). In Table 6 we
show the results of this grounding. We observe that,
overall, a large percentage of the predicates can be
grounded in the ontology, while the argument over-
lap is significantly lower. This can be explained
by our semantic constraints on the predicates of
the extracted sub-events (must exist in FrameNet),
while the event arguments had no such constraints.
However, given the results of our human evalua-
tion in the previous section, we conclude that, even
though a word might be a crisis related keyword, a
sub-event formed by such keywords is not neces-
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sarily valid. This is due to the fact that sub-events
aim to represent relations between several terms,
thus grounding to an ontology is not a sufficient
metric of the quality of the extracted sub-events.

Crisis Event ‘ Predicate ‘ Arguments

1. Alberta floods evacuation | flooding, zone, Canada

2. Puebla earthquake | follow rescuer, victims

3. Typhoon Hagupit | keep safety, flee

4. Puebla earthquake | school kill, child, dead

5. MERS cough healthcare, surveillance

6. Duyvil fatality derailment,helicopter,

derailment major, abc, amtrak

7. MERS emergency | infection, Fukuda
discover

8. Dhaka garment rescue survivors, number,

factory collapse labor,factory

Table 7: Example output from SD2SG

In Table 7, we show a few real-output examples
that highlight the complexity of sub-events. These
sub-events belong to any of the three accepted cat-
egories of valid sub-events (Yes and All/Some or
No and All). Although they were all considered
valid by human annotators, we observe a few major
challenges. Although some predicates are not crisis
words, they could still form a valid crisis sub-event
with the appropriate arguments. Such an example
is the predicate follow in sub-event 2. However,
for some other instances (example 4), the predicate
might be an entity in the particular context.

A major problem in our framework is that we
don’t know how the arguments are related to the
predicate. Although semantic frames consist of
specific relations (e.g., agent, patient, location), our
framework provides only a list of the related enti-
ties without their relations. An open challenge is to
use thematic roles both for tweet representation and
for the extracted sub-events, as this will result in
more meaningful sub-events that would be easier to
evaluate. Given that SDszis modularized, it can
be modified to represent thematic roles by using
heterogeneous graph neural networks (HGNNs)
instead of DGCNs. HGNNs are a type of net-
work that consists of multiple types of edges or
nodes. However, extracting thematic roles from
text (first step of SD28G) would still be a particu-
larly hard task due to the nature of social media text,
which does not always conform to proper syntax
and grammar.

6 Conclusion

In this paper, we propose a novel framework to
extract sub-events from a large-scale crisis event.
Contrary to earlier views of sub-events as clusters
of unrelated words or phrases, our methodology
aims at extracting sub-events in the form of a pred-
icate and its arguments. Our framework aggregates
information across a set of tweets into dynamic
graph representations, while maintaining semantic
constraints. Through an extensive qualitative anal-
ysis of our extracted sub-events, we show that our
approach performs better than other baselines and
highlight the challenges of our task.
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