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Abstract

Adverse Drug Event (ADE) extraction mod-
els can rapidly examine large collections of so-
cial media texts, detecting mentions of drug-
related adverse reactions and trigger medical
investigations. However, despite the recent ad-
vances in NLP, it is currently unknown if such
models are robust in face of negation, which is
pervasive across language varieties.

In this paper we evaluate three state-of-the-art
systems, showing their fragility against nega-
tion, and then we introduce two possible strate-
gies to increase the robustness of these mod-
els: a pipeline approach, relying on a specific
component for negation detection; an augmen-
tation of an ADE extraction dataset to artifi-
cially create negated samples and further train
the models.

We show that both strategies bring significant
increases in performance, lowering the num-
ber of spurious entities predicted by the mod-
els. Our dataset and code will be publicly re-
leased to encourage research on the topic.

1 Introduction

Exploring social media texts is becoming more and
more important in the field of pharmacovigilance
(Karimi et al., 2015b; Sarker and Gonzalez, 2015),
since it is common for Internet users to report their
personal experiences with drugs on forums and
microblogging platforms. Given the inherent nois-
iness of social media texts (colloquial language,
slang and metaphors, non-standard syntactic con-
structions etc.), the Natural Language Processing
(NLP) community dedicated a consistent effort in
developing robust methods for mining biomedical
information from social media outlets. This also
led to the creation of several dedicated shared tasks
series on ADE detection (SMM4H – Social Media
Mining for Health) (Paul et al., 2016; Sarker and

Gonzalez-Hernandez, 2017; Weissenbacher et al.,
2018, 2019; Klein et al., 2020).

Although these models have seen great advance-
ments in the last years, also thanks to the intro-
duction of pre-trained Transformers-based archi-
tectures (Vaswani et al., 2017; Devlin et al., 2019),
it is still unknown how robust they are in face of
some pervasive linguistic phenomena such as nega-
tion. However, general investigations on machine
comprehension and question answering tasks con-
firmed that such phenomena often pose a serious
challenge (Ribeiro et al., 2020). Managing to effi-
ciently handle the scope of negations and specula-
tions in clinical notes is a key problem in biomed-
ical NLP (Velldal et al., 2012; Cruz Díaz, 2013),
and similarly, for digital pharmacovigilance it is
essential to recognize whether the association be-
tween a drug and an ADE is actually being stated
or negated because the consequences of extract-
ing misleading information about the possible side
effects of drugs can be extremely serious.

In this paper, we analyze the performance of
some of the latest state-of-the-art ADE detection
systems on NADE: a new dataset derived from
SMM4H data, which contains a relevant amount of
annotated samples with negated ADEs. We also
introduce and analyze two strategies to increase the
robustness of the models: adding a negation detec-
tion module in a pipeline fashion to exclude the
negated ADEs predicted by the models; augment-
ing the training set with artificially negated samples.
As a further contribution, our dataset and scripts
will be made publicly available for researchers to
test the robustness of their ADE extraction systems
against negation.1

1https://github.com/AilabUdineGit/
NADE-dataset

https://github.com/AilabUdineGit/NADE-dataset
https://github.com/AilabUdineGit/NADE-dataset
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2 Related Work

Detecting negation scopes is a traditional topic of
NLP research. An early, popular system was in-
troduced by Chapman et al. (2001), whose NegEx
algorithm exploited regular expressions to identify
negations in clinical documents in English. Later,
machine learning approaches became more popular
after the publication of a common gold standard,
i.e. the BioScope corpus (Vincze et al., 2008). Sev-
eral proposals consisted of a two-steps methodol-
ogy: a first classifier to detect which token in a sen-
tence is a negation/speculation cue, and a second
classifier to determine which tokens in the sentence
are within the scope of the cue word (Morante et al.,
2008; Cruz Díaz et al., 2012; Attardi et al., 2015;
Zou et al., 2015).

More recently, approaches based on neural net-
works (CNN, Qian et al. 2016; BiLSTM, Fancellu
et al. 2016, 2017; Dalloux et al. 2019) have been
introduced in the literature, showing some crosslin-
guistic and crossdomain transferability. Moreover,
BERT-based models have been proposed to handle
this phenomenon (Khandelwal and Sawant, 2020;
Britto and Khandelwal, 2020), also with the aid of
multitask learning architectures (Khandelwal and
Britto, 2020).

To our knowledge, the research in biomedical
NLP mostly focused on scope detection per se and
on more formal types of texts (e.g. clinical notes,
articles). In our research we focus instead on the
specific task of ADE detection and on the impact of
negation on the performance of ADE systems for
noisy social media texts (e.g. tweets, blog posts),
with the goal of making them able to distinguish
between factual and non-factual information.

3 NADE Dataset

While there are several datasets for ADE detection
on social media texts (Karimi et al., 2015a; Alvaro
et al., 2017), the biggest collection of tweets tagged
for ADE mentions is the one released yearly for
the SMM4H Workshop and Shared Task. We used
the following resources:

a) SMM4H19ext. The training set for the ADE
extraction Task of SMM4H19 (Weissenbacher et al.,
2019), consisting of 2276 tweets that mention at
least one drug name. 1300 of them contain ADEs,
and annotations of their position in the text (ADE
class). The other 976 are control samples with no
ADE mentions (noADE). As the blind test set is not
publicly available, we rely on the training set only

and use the splits by Portelli et al. (2021a), which
balance positive and negative samples;

b) SMM4H19cls and SMM4H20cls (Weissenbacher
et al., 2019; Klein et al., 2020). The training sets
for SMM4H classification Tasks, containing tweets
labeled as ADE or noADE (1:9 ratio).

The community focused on the ADE extraction
task, so most datasets are made of samples that
either do or do not contain an ADE. Because of
this, they include a small number of negated ADEs
by construction: no particular attention is given
to these samples when curating the data and when
they are present they are treated as noADE samples
and not explicitly labelled. This leads to their class
being misrepresented and makes it harder to study
this phenomenon.

3.1 Data Augmentation
In order to perform our analysis we created a
new set of samples containing negated ADEs
(negADE) in two ways: looking for real samples
negating the presence of an ADE in SMM4H19cls

and SMM4H20cls (negADE_r); manually creating
negated versions for the ADE tweets in the test split
of SMM4H19ext (negADE_g). The original test split
includes 260 tweets, 7 of which were discarded dur-
ing the generation process, leading to 253 samples.
Further details in Appendix A.

Recovery of Real Samples
SMM4H19cls and SMM4H20cls contain a total of
24857 unique noADE tweets, so there is an high
chance of encountering negated ADEs. The sam-
ples have no other annotation apart from their bi-
nary labels and analyzing all of them manually
would be extremely time-consuming. We per-
formed a preliminary filtering, keeping only the
tweets containing a negation cue. Then we manu-
ally analyzed the filtered tweets, assessing whether
the negation refers to an ADE and if the message
actually negates the presence of the ADE. In the fol-
lowing examples: the first tweet is valid (it negates
the ADE); the second one contains a negation, but
does not negate the ADE.

1. This #HUMIRA shot has me feeling like a normal
human... No pain no inflammation no nothinggggh
2. But I’m not on adderall and I am feasting.

The tweets were evaluated by four volunteer an-
notators with a high level of proficiency in English,
and we only kept the samples for which they were
in agreement. As a result we obtained negADE_r,
a set of real tweets containing negated ADEs, that
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allows us to create a test set containing up to 16%
negated samples.

Generation of Artificial Samples

The generation process for the negADE_g samples
was carried out by the same four volunteers as be-
fore. Each one of them was given part of the 260
tweets from the SMM4H19ext test set, and was asked
to alter them (as conservatively as possible) to gen-
erate a new version of the tweet that negates the
presence of the ADE. Each volunteer was asked
to review the tweets generated by the other partic-
ipants and to propose modifications, in case the
tweets looked ambiguous or unnatural. If no agree-
ment was found about the edits, the augmented
tweets were discarded. The result of this procedure
is negADE_g, a new set of tweets denying the pres-
ence of an ADE. Here is an example of an original
tweet and its negated version (highlighting the cue
word added to negate the ADE):

Original: fluoxetine, got me going crazy.

Negated: fluoxetine, didn’t get me going crazy.

3.2 Data Partitioning

We split the available data in a train and a test
set, both containing the three categories of tweets:
ADE, noADE and negADE (Table 1). Given the small
amount of negADE_r tweets, we use all of them in
the test set to evaluate the performance only on real
tweets. Conversely, the training set only contains
the manually generated negADE_g samples.

ADE noADE negADE Total
Train 842 45% 785 42% 253 13% 1880

Test 200 43% 195 42% 73 16% 468

Table 1: Distribution of samples in NADE.

4 Analyzed models

4.1 ADE Extraction Models

We choose three Transformer-based models that
showed high performance on SMM4H19ext (Portelli
et al., 2021a,b), and are currently at the top of the
SMM4H19ext ADE extraction leaderboard: BERT
(Devlin et al., 2019), SpanBERT (Joshi et al., 2019)
and PubMedBERT (Gu et al., 2020). The models
are fine-tuned for token classification, predicting an
IOB label for each token in the sentence to detect
the boundaries of ADE mentions.

4.2 Negation Detection Models
We introduce two negation detection modules:
NegEx, a Python implementation (Pizarro et al.,
2020) of the NegEx algorithm, based on simple reg-
ular expressions, which evaluates whether named
entities are negated; BERTneg, a BERT model
(bert-base-uncased) that we finetuned for token
classification. We trained BERTneg on the Bio-
Scope dataset, which consists in medical texts anno-
tated for the presence of negation and speculation
cues and their related scopes. We selected 3190
sentences (2801 of which with a negation scope)
and finetuned the model for scope detection (10
epochs, learning rate 0.0001).

4.3 Pipeline Models
Let us consider a text t, a ADE extraction base
model B and a negation detection module N .
Given t, B outputs a set of substrings of t that are
labeled as ADE mentions: B(t) = {b1, . . . , bm}.
Similarly, N takes a text and outputs a set of sub-
strings, which are considered to be entities within
a negation scope: N (t) = {n1, . . . , nt}.

A combined pipeline model is obtained by dis-
carding all ADE spans bi ∈ B(t) that overlap one
of the negation spans nj ∈ N (t):
BN (t) = {bi ∈ B(t) | ∀j(nj ∈ N (t) ∧ bi ∩ nj = ∅)}

5 Experiments

All the reported results are the average over 5 runs.
For the Transformer models we used the same hy-
perparameters reported by Portelli et al. (2021a).

As metrics, we consider the number of false
positive predictions (FP) and the relaxed preci-
sion (P), recall (R) and F1 score as defined in the
SMM4H shared tasks (Weissenbacher et al., 2019):
the scores take into account “partial” matches, in
which it is sufficient for a prediction to partially
overlap with the gold annotation.

As a preliminary step, the two negation detection
models are trained and used to predict the negation
scopes for all the test samples once. This allows us
to compute the predictions of any pipeline model.

Exp 1: to provide a measure of the initial ro-
bustness of the base models and their general per-
formance, we train them on the ADE and noADE

samples only (842+785 samples). We then test the
efficacy of the pipeline negation detection method,
applying NegEx and BERTneg to the base models.

Exp 2: to test the effect of augmenting the train-
ing data with artificial samples (i.e., the second
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BERT
FP ADE noADE negADE

1 B (base model) 161.2 46.2 42.6 73.4
2 B+NegEx 106.4 41.6 40.4 24.4
3 B+BERTneg 120.2 40.0 41.0 39.2
4 B+50 146.6 40.2 38.4 69.0
5 B+100 166.8 50.4 48.4 69.0
6 B+150 125.8 43.0 41.4 42.4
7 B+200 105.4 41.0 36.0 29.0
8 B+253 101.6 42.6 35.8 23.2
9 B+NegEx +253 91.6 42.2 35.8 13.6

10 B+BERTneg +253 93.6 41.0 35.8 16.6

PubMedBERT
FP ADE noADE negADE

144.2 37.0 40.4 67.4
93.4 32.0 37.6 23.8

106.2 30.6 39.0 36.6
126.2 34.4 35.4 57.0
108.0 33.0 34.6 40.4
100.8 29.8 41.4 29.6
79.0 29.2 27.6 22.2
84.2 30.6 34.6 19.0
76.6 29.4 34.6 12.6
74.2 27.2 34.2 12.8

SpanBERT
FP ADE noADE negADE

245.6 66.2 79.8 100.8
170.8 58.4 74.0 38.6
184.0 56.2 74.8 53.2
183.2 46.2 58.6 79.2
230.0 58.6 77.4 95.4
156.8 47.6 50.8 59.2
134.2 38.6 44.4 51.6
179.8 55.2 60.6 65.2
136.4 52.0 57.0 27.6
145.4 51.4 57.4 36.8

Table 2: False Positives for: the base models; the pipeline models; base models trained with an increasing number
of negADE_g samples; pipeline models trained with all negADE_g samples.

BERT
P R F1

1 B (base model) 50.15 65.6 56.78
2 B+NegEx 55.59 58.03 56.73
3 B+BERTneg 54.37 60.7 57.30
...

...
8 B+253 58.85 63.86 61.21
9 B+NegEx +253 58.65 58.03 58.29

10 B+BERTneg +253 59.22 60.17 59.65

PubMedBERT
P R F1

53.24 67.41 59.47
59.21 59.76 59.47
57.69 62.64 60.04

...
63.28 63.33 63.20
63.24 58.29 60.58
64.74 60.98 62.72

SpanBERT
P R F1

43.65 73.28 54.61
48.65 65.04 55.55
47.82 67.39 55.85

...
48.52 68.76 56.85
51.63 61.29 55.98
51.31 64.10 56.94

Table 3: Precision, Recall and F1 score for: the base models; the pipeline models; base models trained with an
increasing number of negADE_g samples; pipeline models trained with all negADE_g samples.

negation detection method), we add to the train-
ing set an increasing number of negADE_g samples
(+50 to +253, in steps of 50 samples). During pre-
liminary experiments, we added 100 noADE sam-
ples from SMM4H19cls to the training set. The per-
formance of all the models did not vary in this case,
showing that the results of Exp 2 are caused by
the nature of the samples, and not simply by the
increased size of training set All the base models
are then fine-tuned on the resulting dataset.

Exp 3: to investigate whether the two methods
are complementary in their action, we combine the
two strategies, applying the pipeline architecture to
the models trained on the augmented dataset.

5.1 Results

Table 2 and 3 contain a summary of the most rel-
evant metrics for the tested models. We report
the number of FP both on the whole test set and
on individual partitions (ADE, noADE and negADE_r

samples).
Exp 1 (rows 1–3): all base models (row 1) have

a high number of FP, especially in the negADE cate-
gory. This strongly suggests that they are not robust
against this phenomenon. When combined with
NegEx (row 2), the FP decreases by 34%, show-
ing that the regular expression module removes
a great number of unwanted predictions. BERT-

neg decreases the number of FP, too, but only by
25%. This is due to the difference between the
brute-force behaviour of NegEx and the contextual
prediction of a deep machine learning model. We
can notice that the two pipeline models slightly
reduce the number of FP also in the ADE category
(e.g. from 66.2 to 56.2 for SpanBERT).

However, if we look at P and R in the first three
rows, we can see that the negation detection mod-
ules bring an increase in P at the cost of large drops
in R. Some correct predictions of the base models
get discarded, in particular the ADEs that contain
a negation (e.g., “After taking this drug I cannot
sleep anymore”). As this effect is undesirable, we
investigated the use of the negADE_g samples to
mitigate it.

Exp 2 (rows 4–8): adding negADE_g samples
to the training set (from +50 to +253) lowers the
number of FP predictions for all models. Using all
the available samples brings down the number of
FP as much as using NegEx on the initial model
(compare +NegEx and +253). This reduction is
given by the decrease of FP in the negADE set, while
the number of FP in the ADE and noADE categories
remains roughly stable.

Comparing row +253 with row 1 shows, as for
Exp 1, an increase in P and a drop in R. However,
the drop in R is less severe than before (5 points
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Figure 1: Top: total FP for the three base models and their pipeline versions with the increasing of negADE samples
in the training set (x-axis: from 50 to 253). Bottom: number of FP for all the models by sample category.

at most), meaning that less true positives are being
discarded. Also, P increases twice as much, leading
to an overall increase in F1.

Exp 3 (rows 9–10): the effect of augmented
dataset and negation modules are complementary,
as shown by the further decrease in FP. However,
combining the two approaches does not seem to be
a winning strategy, as it leads to a further decrease
in R without the benefit of increasing P.

The same behaviour can be observed for all the
base models, despite the different initial perfor-
mance (with SpanBERT having a generally higher
R and PubMedBERT an higher P).

Figure 1 offers another visualization of the effect
that adding negADE_g samples has on the number
of False Positives. The number of negADE samples
in the training set increases from left to right in
each plot (from 0 to 253). The top row shows
how the total number of predicted FPs decreases
(for all base and pipeline models) when adding the
generated negated samples. The plots in the bottom
row show how the number of FP varies for the three
categories of samples separately (ADE, noADE and
negADE, bottom row). As observed in Table 2, the
decrease is most significant in the negADE partition.

The results show that introducing a small number
of new samples (even if artificial) is the best way
to directly increase the model knowledge about
the phenomenon. However, this solution could be
expensive in absence of a large quantity of negated
data. For this reason, the pipeline models might be
a viable alternative, as they maintain the F1 score
while still decreasing the number of false positives.

6 Conclusions

In this paper, we evaluate the impact of negations
on state-of-the-art ADE detection models. We in-
troduced NADE, a new dataset specifically aimed
at studying this phenomenon. The dataset proves to
be a challenging setting and the experiments show

that current methods lack mechanisms to deal with
negations. We introduce and compare two strate-
gies to tackle the problem: using a negation de-
tection module and adding negADE_g samples in
the training set. Both of them bring significant
increases in performance.

Both the dataset and the code are made publicly
available for the community to test the robustness
of their systems against negation.

Future work should focus on more refined tech-
niques to accurately model the semantic properties
of the samples, also by jointly handling negation
and speculation phenomena. This might be an es-
sential requirement for dealing with the noisiness
and variety of social media texts. The main short
term directions are increasing the quality and quan-
tity of real negADE samples (possibly via crowd-
sourcing), and creating a model that is able to
discard negADE (keeping an high precision level),
without sacrificing recall.

7 Acknowledgments

We would like to thank the three anonymous re-
viewers for their insightful feedback.

References
Nestor Alvaro, Yusuke Miyao, and Nigel Collier. 2017.

TwiMed: Twitter and PubMed Comparable Corpus
of Drugs, Diseases, Symptoms, and Their Relations.
JMIR Public Health Surveillance, 3(2):e24.

Giuseppe Attardi, Vittoria Cozza, and Daniele Sartiano.
2015. Detecting the Scope of Negations in Clinical
Notes. In Proceedings of CLiC.it.

Benita Kathleen Britto and Aditya Khandelwal. 2020.
Resolving the Scope of Speculation and Nega-
tion using Transformer-Based Architectures. arXiv
preprint arXiv:2001.02885.

Wendy W Chapman, Will Bridewell, Paul Hanbury,
Gregory F Cooper, and Bruce G Buchanan. 2001. A
Simple Algorithm for Identifying Negated Findings



235

and Diseases in Discharge Summaries. Journal of
Biomedical Informatics, 34(5):301–310.

Noa P Cruz Díaz. 2013. Detecting Negated and Un-
certain Information in Biomedical and Review Texts.
In Proceedings of the RANLP Student Research
Workshop.

Noa P Cruz Díaz, Manuel J Mana López, Jacinto Mata
Vázquez, and Victoria Pachón Álvarez. 2012. A
Machine-learning Approach to Negation and Spec-
ulation Detection in Clinical Texts. Journal of the
American Society for Information Science and Tech-
nology, 63(7):1398–1410.

Clément Dalloux, Vincent Claveau, and Natalia Grabar.
2019. Speculation and Negation Detection in
French Biomedical Corpora. In Proceedings of
RANLP.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of NAACL.

Federico Fancellu, Adam Lopez, and Bonnie Webber.
2016. Neural Networks for Negation Scope Detec-
tion. In Proceedings of ACL.

Federico Fancellu, Adam Lopez, Bonnie Webber, and
Hangfeng He. 2017. Detecting Negation Scope Is
Easy, Except When It Isn’t. In Proceedings of
EACL.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas,
Naoto Usuyama, Xiaodong Liu, Tristan Naumann,
Jianfeng Gao, and Hoifung Poon. 2020. Domain-
Specific Language Model Pretraining for Biomed-
ical Natural Language Processing. arXiv preprint
arXiv:2007.15779.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2019.
SpanBERT: Improving Pre-training by Representing
and Predicting Spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64–77.

Sarvnaz Karimi, Alejandro Metke-Jimenez, Madonna
Kemp, and Chenchen Wang. 2015a. CADEC: A
Corpus of Adverse Drug Event Annotations. Jour-
nal of Biomedical Informatics, 55:73–81.

Sarvnaz Karimi, Chen Wang, Alejandro Metke-
Jimenez, Raj Gaire, and Cecile Paris. 2015b. Text
and Data Mining Techniques in Adverse Drug Re-
action Detection. ACM Computing Surveys (CSUR),
47(4):1–39.

Aditya Khandelwal and Benita Kathleen Britto. 2020.
Multitask Learning of Negation and Speculation us-
ing Transformers. In Proceedings of the EMNLP In-
ternational Workshop on Health Text Mining and In-
formation Analysis.

Aditya Khandelwal and Suraj Sawant. 2020. Neg-
BERT: A Transfer Learning Approach for Negation
Detection and Scope Resolution. In Proceedings of
LREC.

Ari Klein, Ilseyar Alimova, Ivan Flores, Arjun Magge,
Zulfat Miftahutdinov, Anne-Lyse Minard, Karen
O’Connor, Abeed Sarker, Elena Tutubalina, Davy
Weissenbacher, et al. 2020. Overview of the
Fifth Social Media Mining for Health Applications
Shared Tasks at Coling 2020. In Proceedings of
the COLING Workshop on Social Media Mining for
Health Applications.

Roser Morante, Anthony Liekens, and Walter Daele-
mans. 2008. Learning the Scope of Negation in
Biomedical Texts. In Proceedings of EMNLP.

Michael Paul, Abeed Sarker, John Brownstein, Azadeh
Nikfarjam, Matthew Scotch, Karen Smith, and Gra-
ciela Gonzalez. 2016. Social Media Mining for Pub-
lic Health Monitoring and Surveillance. In Biocom-
puting, pages 468–479.

Jeno Pizarro, Leon Reteig, and Luke Murray. 2020.
jenojp/negspacy: Minor Bug Fix, Improve Chunk
Prefix Functionality (Version v0.1.9).

Beatrice Portelli, Edoardo Lenzi, Emmanuele Cher-
soni, Giuseppe Serra, and Enrico Santus. 2021a.
BERT Prescriptions to Avoid Unwanted Headaches:
A Comparison of Transformer Architectures for Ad-
verse Drug Event Detection. In Proceedings of
EACL.

Beatrice Portelli, Daniele Passabì, Edoardo Lenzi,
Giuseppe Serra, Enrico Santus, and Emmanuele
Chersoni. 2021b. Improving Adverse Drug Event
Extraction with SpanBERT on Different Text Ty-
pologies. arXiv preprint arXiv:2105.08882.

Zhong Qian, Peifeng Li, Qiaoming Zhu, Guodong
Zhou, Zhunchen Luo, and Wei Luo. 2016. Specu-
lation and Negation Scope Detection via Convolu-
tional Neural Networks. In Proceedings of EMNLP.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond Accuracy: Behav-
ioral Testing of NLP Models with CheckList. In Pro-
ceedings of ACL.

Abeed Sarker and Graciela Gonzalez. 2015. Portable
Automatic Text Classification for Adverse Drug Re-
action Detection via Multi-corpus Training. Journal
of Biomedical Informatics, 53:196–207.

Abeed Sarker and Graciela Gonzalez-Hernandez. 2017.
Overview of the Second Social Media Mining for
Health (SMM4H) Shared Tasks at AMIA 2017.
Training, 1(10,822):1239.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Proceedings of NIPS.

https://doi.org/10.5281/zenodo.3702544
https://doi.org/10.5281/zenodo.3702544


236

Erik Velldal, Lilja Øvrelid, Jonathon Read, and
Stephan Oepen. 2012. Speculation and Negation:
Rules, Rankers, and the Role of Syntax. Computa-
tional Linguistics, 38(2):369–410.

Veronika Vincze, György Szarvas, Richárd Farkas,
György Móra, and János Csirik. 2008. The Bio-
Scope Corpus: Biomedical Texts Annotated for Un-
certainty, Negation and their Scopes. BMC Bioinfor-
matics, 9(11):1–9.

Davy Weissenbacher, Abeed Sarker, Arjun Magge,
Ashlynn Daughton, Karen O’Connor, Michael Paul,
and Graciela Gonzalez. 2019. Overview of the
Fourth Social Media Mining for Health (SMM4H)
Shared Tasks at ACL 2019. In Proceedings of the
ACL Social Media Mining for Health Applications
(# SMM4H) Workshop & Shared Task.

Davy Weissenbacher, Abeed Sarker, Michael Paul, and
Graciela Gonzalez. 2018. Overview of the Social
Media Mining for Health (SMM4H) Shared Tasks
at EMNLP 2018. In Proceedings of the EMNLP
Workshop on Social Media Mining for Health Appli-
cations.

Bowei Zou, Qiaoming Zhu, and Guodong Zhou. 2015.
Negation and Speculation Identification in Chinese
Language. In Proceedings of ACL-IJCNLP.

A Data Augmentation Process

The data augmentation process was carried out by
four volunteers with a high level of proficiency in
English. More specifically, the volunteers were:
two graduate students (Master’s degree in Com-
puter Science and Artificial Intelligence) and two
Ph.D. in Natural Language Processing. All of them
have a minimum English level of C1.2

A.1 Recovery of Real Samples
The noADE samples from the SMM4H19cls and
SMM4H20cls binary classification datasets have been
filtered using the negation cues from BioScope (e.g.
none, missing, no longer, etc.). Thanks to this first
filtering, only the remaining 3897 samples have
been analyzed by the volunteers. A tweet was kept
only if it negated the presence of an ADE.

In the following examples, 1 and 2 are valid
tweets, while 3 and 4 contain negations but do not
negate the ADE:

1. This #HUMIRA shot has me feeling like a nor-
mal human... No pain no inflammation no noth-
inggggh #RAproblems

2. @UKingsbrook That’s correct! Metoprolol is NOT
known to cause hypokalemia.

2https://www.efset.org/cefr/c1/

3. I’ve seen so much Tamiflu these past couple of
days I’m not even surprised I’m shivering and
experiencing aches right now. *sigh

4. But I’m not on adderall and I am feasting.

A.2 Generation of Artificial Samples
According to the split provided by Portelli et al.
(2021), we extracted and modified only the ADE

samples from the test set (260 samples). The vol-
unteers were instructed to modify the samples with
as little edits as possible, while still generating a
plausible tweet. They were encouraged to add one
or more negation cue words to negate the ADE re-
ported in the tweet. In the case it was not possible
to negate the meaning of the tweet just by adding
cue words, they were allowed to perform more edits
in the sentence and use longer expressions.

Each annotator was asked to review the edits
done by the others, and asked to point out which
samples seemed unrealistic or failed to negate the
ADE. During the augmentation process, if no agree-
ment was found about the edits, the tweet modified
tweet was discarded. At the end of the process 7
tweets were removed from the final dataset. Due to
the generation process we implemented, we could
not directly measure the inter-annotator agreement,
which could, however, be inferred by the number
of discarded samples.

B Full Results

Table 4 reports the metrics for all the models (aver-
age over 5 runs). The table includes also the results
for the pipeline models trained with an increas-
ing number of negADE_g samples, which show the
same trend as the base models. The most relevant
combinations (discussed in the main part of the pa-
per) are highlighted in color (base models in gray�,
base models trained with 253 negADE_g samples in
orange�, pipeline models in blue�).

https://www.efset.org/cefr/c1/
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False Positives
negADE_g samples 0 50 100 150 200 253
BERT 161.20 146.60 166.80 125.80 105.40 101.60
+NegEx 106.40 97.60 119.20 100.00 90.00 91.60
+BERTneg 120.20 111.40 129.40 108.00 94.40 93.60

PubMedBERT 144.20 126.20 108.00 100.80 79.00 84.20
+NegEx 93.40 85.60 84.00 86.60 68.00 76.60
+BERTneg 106.20 91.40 85.40 87.40 67.60 74.20

SpanBERT 245.60 183.20 230.00 156.80 134.20 179.80
+NegEx 170.80 125.40 163.80 115.80 99.80 136.40
+BERTneg 184.00 138.40 175.40 124.60 107.20 145.40

Precision
negADE_g samples 0 50 100 150 200 253
BERT 50.15 51.47 49.17 54.24 57.82 58.85
+NegEx 55.59 56.79 53.52 56.53 58.52 58.65
+BERTneg 54.37 55.34 52.78 55.88 58.53 59.22

PubMedBERT 53.24 56.43 59.25 59.46 62.94 63.28
+NegEx 59.21 61.60 61.98 60.29 63.84 63.24
+BERTneg 57.69 61.24 62.44 61.12 64.84 64.74

SpanBERT 43.65 53.32 45.46 48.24 52.80 48.52
+NegEx 48.65 60.44 49.95 52.83 55.95 51.63
+BERTneg 47.82 56.60 49.25 51.43 55.54 51.31

F1 score
negADE_g samples 0 50 100 150 200 253
BERT 56.78 56.59 56.18 58.41 59.45 61.21
+NegEx 56.73 56.48 56.10 57.03 57.19 58.29
+BERTneg 57.30 56.73 56.61 57.65 58.06 59.65

PubMedBERT 59.47 61.37 62.72 61.59 61.74 63.20
+NegEx 59.47 60.91 61.26 59.22 59.26 60.58
+BERTneg 60.04 62.15 62.70 61.10 61.36 62.72

SpanBERT 54.61 45.76 56.20 49.47 54.75 56.85
+NegEx 55.55 46.54 56.69 48.85 53.44 55.98
+BERTneg 55.85 46.61 57.17 49.61 54.49 56.94

Recall
negADE_g samples 0 50 100 150 200 253
BERT 65.60 63.04 65.57 63.41 61.85 63.86
+NegEx 58.03 56.32 58.97 57.66 56.43 58.03
+BERTneg 60.70 58.38 61.09 59.66 58.16 60.17

PubMedBERT 67.41 67.44 66.67 64.03 60.67 63.33
+NegEx 59.76 60.33 60.59 58.32 55.45 58.29
+BERTneg 62.64 63.19 62.99 61.19 58.36 60.98

SpanBERT 73.28 59.73 74.19 59.22 60.32 68.76
+NegEx 65.04 53.01 65.95 52.86 53.91 61.29
+BERTneg 67.39 54.98 68.48 55.14 56.27 64.10

Table 4: All metrics for: the original base models (gray�); the base models trained with different quantities of
negADE_g samples (the results of training with 253 negADE_g samples in orange�); the two pipeline models (in
blue�); the combination of the two methods. For each model, in bold is highlighted the best value for the specific
evaluation metric.


