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Abstract
This work explores the capacities of character-
based Neural Machine Translation to translate
noisy User-Generated Content (UGC) with a
strong focus on exploring the limits of such ap-
proaches to handle productive UGC phenom-
ena, which almost by definition, cannot be
seen at training time. Within a strict zero-
shot scenario, we first study the detrimental
impact on translation performance of various
user-generated content phenomena on a small
annotated dataset we developed, and then show
that such models are indeed incapable of han-
dling unknown letters, which leads to catas-
trophic translation failure once such characters
are encountered. We further confirm this be-
havior with a simple, yet insightful, copy task
experiment and highlight the importance of
reducing the vocabulary size hyper-parameter
to increase the robustness of character-based
models for machine translation.

1 Introduction
Neural Machine Translation (NMT) models fall
far short from being able to translate noisy User-
Generated Content (UGC): the quality of their trans-
lation is often even worse than that of a traditional
phrase-based system (Khayrallah and Koehn, 2018;
Rosales Núñez et al., 2019). In addition to am-
biguous grammatical constructs and profusion of
ellipsis, the main difficulty encountered when trans-
lating UGC is the high number of out-of-vocabulary
tokens (OOVs) resulting from misspelled words,
emoticons, hashtags, mentions, and all specific con-
structs used in online forums and social medias
(Foster, 2010; Seddah et al., 2012; Eisenstein, 2013;
Sanguinetti et al., 2020). Some of those phenom-
ena can be perceived as noise while the others are
typical markers of language variation among speak-
ers. Moreover, a certain amount of those same
phenomena operate at the lexical level (either at
the character, subword or word levels) (Sanguinetti
et al., 2020). This is why, focusing more on the

noise axis, char-based models appear to offer a nat-
ural solution to this problem (Luong and Manning,
2016; Ling et al., 2015): indeed these open vocab-
ulary models are designed specifically to address
the OOV problem.

In this work, we explore the ability of out-of-the-
box character-based NMT models (Lee et al., 2017)
to address the challenges raised by UGC translation.
While character-based models may seem promising
for such task, to the best of our knowledge, they
have only been tested either on data sets in which
noise has been artificially added through sampling
an edited word error data set (Belinkov and Bisk,
2018; Ebrahimi et al., 2018a) and on canonical data
set, in which they prove to be very effective for
translating morphologically-rich languages with a
high number of OOVs (Luong and Manning, 2016).
However, our starting-points experiments show

that character-based systems are outperformed by
BPE models even when translating noisy UGC. To
understand this counter-intuitive result, we conduct
several experiments and analyses. In particular, we
manually annotated 400 sentences at the token level
using a fine-grained typology, to perform our anal-
yses. These sentences correspond to the worst and
the best translated utterances of two MT systems
(a char-based and a transformer-based model). Our
results highlight the extreme sensibility of character-
based models to the vocabulary size, a parameter
often overlooked in the literature. Using a simple
set of experiments, we thus show that these models
are unable to perform an easy copy task due to their
poor handling of unknown and rare characters. By
adjusting the vocabulary size parameter, we drasti-
cally improve the robustness of our character-based
model without causing a large drop in in-domain
performance.
Our contributions are as follows:
• we provide an annotated data set1 that enables
1https://github.com/josecar25/char_bas

ed_NMT-noisy_UGC

https://github.com/josecar25/char_based_NMT-noisy_UGC
https://github.com/josecar25/char_based_NMT-noisy_UGC
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in-depth evaluations of the impact of UGC
idiosyncrasies;

• we demonstrate that char-based neural ma-
chine translation models are extremely sen-
sitive to unknown and rare characters on both
synthetic data and noisy user-generated con-
tent;

• we show how an overlooked hyper-parameter
drastically improve char-based MT models ro-
bustness to natural noise while maintaining
the in-domain level of performance.

2 Character-level NMT

In this work, we explore two character-based
translation models. The first model we consider,
charCNN is a classic encoder-decoder in which the
encoder uses character-based embeddings in com-
bination with convolutional and highway layers to
replace the standard look-up based word represen-
tations. The model considers, as input, a stream of
words (i.e. it assumes the input has been tokenized
beforehand) and tries to learn a word representation
that is more robust to noise by unveiling regular-
ities at the character level. This architecture was
initially proposed by Kim et al. (2016) for language
modeling; Costa-jussà and Fonollosa (2016) shows
how it can be used in an NMT system and report
improvements up to 3 BLEU (Papineni et al., 2002)
points when translating from a morphologically-
rich language, German, to English.
The second model we consider does not rely

on an explicit segmentation into words: Lee et al.
(2017) introduce the char2char model that di-
rectly maps a source characters sequence to a tar-
get characters sequence without any segmentation
thanks to a character-level convolutional network
with max-pooling at the encoder. It can be consid-
ered as an open-vocabulary model: it can gener-
ate any word made of any of theN most frequent
characters of the train set (where N is a model
hyper-parameter) and only outputs an <UNK> to-
ken in the presence of character that is not in this
(char-) vocabulary. Lee et al. (2017) show that this
model outperforms subword-level (i.e. BPE-based)
translation models on two WMT’15 tasks (de-en
and cs-en) and gives comparable performance on
two tasks (fi-en and ru-en). Lee et al. (2017) ad-
ditionally report that in a multilingual setting, the
character-level encoder significantly outperforms
the subword-level encoder on all the language pairs.
These two models have been originally tested

on WMT or IWSLT tasks that consider texts that
mostly qualify as canonical with very few spelling
or grammatical errors. The impact of noise on
charCNN and char2char has been evaluated
by Belinkov and Bisk (2018) and Ebrahimi et al.
(2018b). By adding noise to canonical texts (the
TEDTalk dataset). Their results show that the dif-
ferent character levels models fail to translate even
moderately noisy texts when trained on ‘clean’ data
and that it is necessary to train a model on noisy
data to make it robust. Note that, as explained in
Section 3, there is no UGC parallel corpus large
enough to train a NMT model and we must rely on
the models’ ability to learn, from canonical data
only, noise- and error-resistant representations of
their input that are robust to the noise and errors
found in UGCs. This is why, in this work, we are in-
terested in studying MT performance in a zero-shot
scenario when translating noisy UGC.

To the best of our knowledge, no work has stud-
ied the performance of the character-based NMT
architectures on an actual UGC scenario with real-
world gathered and fine-grained annotated noisy
sentences. This sets the main motivation for the
present work.

3 Datasets

Training sets Due to the lack of a large paral-
lel corpus of noisy sentences, we train our sys-
tems with ‘standard’ parallel datasets, namely the
corpora used in the WMT campaign (Bojar et al.,
2016) and the OpenSubtitles corpus (Lison
et al., 2018). The former contains canonical texts
(2.2M sentences), while the latter (9.2M sentences)
is made of written dialogues from popular tv se-
ries. The reason for using OpenSubtitles is
the assumed greatest similarity, compared to WMT,
between its content and the UGC conversational
nature that predominates most social media. How-
ever, UGC differs significantly from subtitles in
many aspects: in UGC, emotions are often denoted
with repetitions, there are many typographical and
spelling errors, and sentences may contain emojis
that can even replace some words (e.g. ♥ can stands
for the verb ‘love’ in sentences such as ‘I ♥ you’).
UGC productivity limits the pertinence of domain
adaptation methods such as fine-tuning, as there
will always be new forms that will not have been
seen during training (Martínez Alonso et al., 2016).
This is why we focus here on zero-shot scenarios,
as we believe they provide a clearer experimental
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protocol when it comes to study the impact of UGC
specificities on MT models.
Test sets We consider in our experiments two
French-English test sets made of user-generated
content. These corpora differ in the domain of their
contents, their collection date, and in the way sen-
tences were filtered to ensure they are sufficiently
different from canonical data.
The first one, the MTNT corpus (Michel and

Neubig, 2018), is a multilingual dataset that con-
tains French sentences collected on Reddit and
translated into English by professional translators.
The second one, the Parallel French Social Me-
dia Bank (PFSMB)2, introduced in (Rosales Núñez
et al., 2019) and made from a subpart of the French
Social Media Bank (Seddah et al., 2012), consists
of comments extracted from Facebook, Twitter and
Doctissimo, a health-related French forum. Table 9
shows some examples of source sentences and refer-
ence translations extracted from these two corpora
and illustrates the peculiarities of UGC and difficul-
ties of translating them. User-generated contents
raise many challenges forMT systems: they notably
contain char-OOVs, that is to say characters that
have not been seen in the training data (e.g. emojis),
rare character sequences (e.g. inconsistent casing
or usernames) as well as many word-OOVs denot-
ing URL, mentions, hashtags or, more generally,
named entities. See (Foster, 2010; Seddah et al.,
2012; Eisenstein, 2013; Sanguinetti et al., 2020)
for a complete account of UGC idiosyncrasies. We
have also selected a pair of blind UGC test sets,
corresponding to non-overlapping partitions of the
PFSMB and MTNT datasets, respectively. These
were chosen to validate our approaches and mod-
els, after performing error analysis and benchmarks
with the UGC test sets described above.

Additionally, we also evaluate our NMT systems
on a pair of non-noisy, edited, datasets, which are
chosen to match both of the train data configu-
ration mentioned above, namely NeswTest and
OpenSubTest, forWMT andOpenSubs corpora,
respectively. These test sets serve a double purpose:
evaluate the performance impact due to domain
drift and the in-domain performance for both WMT
and OpenSubs. See Tables 1 & 2 for relevant
statistics.
It is worth noticing how the noisy UGC corpus,

i.e. PFSMB and MTNT, have remarkably high TTR,
2https://gitlab.inria.fr/seddah/paral

lel-french-social-mediabank

high KL-divergence, %OOV rate and perplexity,
even when compared to the out-of-domain test set
in Table 2 (NeswTest).
4 NMT Models

Character-based models In our experiments,
we compare the two character-level NMT systems
introduced in Section 2, namely charCNN and
char2char. Both models were trained as out-
of-the box systems using the implementations pro-
vided by Kim et al. (2016) for charCNN,3 and by
Lee et al. (2017) for char2char.4
It must be noted that the charCNN extracts

character n-grams for each input word and pre-
dicts a word contained in the target vocabulary or
a special token, <UNK>, otherwise, whereas the
char2char is capable of open-vocabulary trans-
lation and does not generate <UNK> tokens, un-
less an out-of-vocabulary character (char-OOV)
is present in the input.
BPE-based models We use as our baselines two
standard NMT models that consider tokenized sen-
tences as input.
The first one is a seq2seq bi-LSTM architec-

ture with global attention decoding. The seq2seq
model was trained using the XNMT toolkit (Neubig
et al., 2018).5 It consists of a 2-layered Bi-LSTM
layers encoder and a 2-layered Bi-LSTM decoder.
It considers, as input, word embeddings of size 512
and each LSTM units has 1,024 components.
Our second baseline model is a vanilla Trans-

former model (Vaswani et al., 2017) using the im-
plementation proposed in the OpenNMT frame-
work (Klein et al., 2018). It consists of 6 layers
with word embeddings that are 512-dimensional,
a feed-forward layers made of 2,048 units and 8
self-attention heads.
Unknown Token Replacement One of the pecu-
liarities of our UGC datasets is that they contain a
many OOVs denoting URL, mentions, hashtags, or
more generally named entities: for instance several
sentences of the PFSMBmention the game “Flappy
Bird” or the TV show “Teen Wolf”. Most of the
time, these OOVs are exactly the same in the source
and target sentences and consequently, the source

3https://github.com/harvardnlp/seq2seq
-attn

4https://github.com/nyu-dl/dl4mt-c2c
5We decided to use XNMT, instead of OpenNMT in our

experiments in order to compare our results to the ones of
Michel and Neubig (2018).

https://gitlab.inria.fr/seddah/parallel-french-social-mediabank
https://gitlab.inria.fr/seddah/parallel-french-social-mediabank
https://github.com/harvardnlp/seq2seq-attn
https://github.com/harvardnlp/seq2seq-attn
https://github.com/nyu-dl/dl4mt-c2c
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Corpus Split #sentences #tokens avg. sent.len TTR Vocab. size #chars types
WMT

Train 2.2M 64.2M 29.7 0.20 1.037M 335
NewsDiscussDev 1,500 24,978 16.65 0.22 7,692

OpenSubs Train 9.2M 57.7M 6.73 0.18 2.08M 428
PFSMB †

Test
777 13,680 17.6 0.32 3,585 116

MTNT† 1,022 20,169 19.7 0.34 3,467 122
OpenSubsTest (2018) 11,000 66,148 6.01 0.23 15,063 111
NewsTest (2014) 3,003 68,155 22.70 0.23 15,736 111

Table 1: Statistics on the FR side of the corpora used in our experiments. TTR stands for Type-to-Token Ratio.
Corpus containing mainly UGC are indicated with a †.

↓Metric / Test set → PFSMB † MTNT † NeswTest OpenSubTest

3-gram KL-Div 1.563 0.471 0.406 0.006
%OOVs 12.63 6.78 3.81 0.76
PPL 599.48 318.24 288.83 62.06

Table 2: Domain-related measure on the source side (FR), between Test sets and OpenSubs training set. Dags
indicate UGC corpora.

and reference share a lot of common words: the
BLEU score between the sources and references of
the PFSMB being of 15.1,6 while it is only 2.7 on
the WMT test set.

Closed-vocabulary MT systems that are not able
to copy OOVs from the source sentence are there-
fore penalized. That is why, as part of our transla-
tion pipeline, we introduce a post-processing step
in which the translation hypothesis is aligned with
the source sentence and the <UNK> tokens replaced
by their corresponding aligned source tokens. For
the seq2seq the alignments between the source
and translation hypothesis are computed using an
IBM2model.7. For the charCNNmodel, the align-
ments are deduced from the attention matrix. The
char2char model is an open-vocabulary system
that is able to generate new words when necessary.
The vanilla Transformer implementation we
use is able to copy unknown symbols directly.
5 Experiments and Results

We train and evaluate the MT models presented in
the previous section using the data train and test con-
figurations in Section 3. We first compare perfor-
mances for our clean test sets (whether in-domain or
our-of-domain, accordingly) and noisy UGC when
translated using BPE- and character-based models
before exploring into detail our results.

6The sources and references of the MTNT corpus are less
similar (BLEU score: 5) since all user mentions and URL are
removed in the distributed version of the corpus.

7The alignments are computed by concatenating the test set
to the training set and using FastAlign (Dyer et al., 2013).

Table 3 reports the BLEU scores, as calculated by
Post (2018)’s SacreBleu of the different models
we consider, both on canonical and non-canonical
test sets. Contrary to the first results of Michel and
Neubig (2018), the quality of UGC translation does
not appear to be so bad: the drop in performance
observed on non-canonical corpora is of the same
order of magnitude as the drop observed when trans-
lation models are applied to out-of-domain data.
For instance, the BLEU score of a Transformer
model trained on OpenSubtitles has the same
order of magnitude on PFSMB, MTNT and news:
on all these datasets, the performance dropped by
roughly 4 BLEU points compared to its performance
on in-domain data. However, this improvement in
translation quality is partly due to our <UNK> re-
placement strategy, a step that was not considered
by Michel and Neubig (2018).

As expected, all models perform better when they
are trained on the OpenSubs corpus than when
they are trained on WMT, as the former is intuitively
more similar to UGC data than WMT is. More sur-
prisingly, it appears that character-based models
are largely outperformed by BPE-based models for
most train-test combinations and, therefore, that
their capacity to learn word representations that are
robust to noise can be questioned.

Another interesting observation is that, while the
Transformer achieves the best results on all test
sets when trained on OpenSubtitles, it is out-
performed by seq2seq when the WMT training set
is considered. The situation is similar for character-
based models. This observation suggests that these
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WMT OpenSubtitles

PFSMB MTNT News† Open PFSMB MTNT News Open†
BPE-based models
seq2seq 9.9 21.8 27.5 14.7 17.1 27.2 19.6 28.2

+ <UNK> rep. 17.1 24.0 29.1 16.4 26.1 28.5 24.5 28.2
Transformer

+ <UNK> rep. 15.4 21.2 27.4 16.4 27.5 28.3 26.7 31.4
Character-based models
charCNN 6.2 12.7 17.2 9.2 13.3 16.3 10.1 21.7

+ <UNK> rep. 16.1 18.2 22.1 11.5 18.6 20.2 14.6 23.9
char2char 7.1 13.9 18.1 8.8 23.8 25.7 17.8 26.3

Table 3: BLEU scores for our models for the different train-test combinations. In-domain test sets are marked
with a dag. ‘News’ and ‘Open’ stand, respectively, for the WMT and OpenSubtitles test sets. WMT and
OpenSubtitles are the training corpora, described in Section 3

models do not capture the same kind of information
and do not have the same generalization capacities,
as they roughly have the same number of param-
eters (69M parameters for the char2char and
Transformer models, 65M for the charCNN
and 49M for the seq2seq model).
Error analysis In order to find which kind of
UGC specificities are the most difficult to trans-
late and can explain the difference in performance
between character-based and BPE-based systems,
we have conducted a contrastive analysis between
the predictions of the Transformer and the
char2char models. For each model, we have
selected the 100 source sentences with the highest
translation quality and the 100 ones with the lowest
translation quality.8 We have manually annotated
these 400 sentences, using the typology described
in Table 4, to identify which UGC specificities were
the hardest to translate. Such a classification is
adopted from the fined-grained list of UGC partic-
ularities of Sanguinetti et al. (2020). Examples of
annotations are given in Table 10, in the Appendix.

Figure 1 shows the number of UGC specificities
in the 100 worst and 100 best translations of the
two considered models. As expected, there are far
fewer specificities in the best translations than in
the worst translations except for the high number
of named entities that is found in both cases. This
is, however, not a surprise given the high number
of named entities in UGC (see §4).

The specificities that are the most problematic to
translate9 appear, as can be seen in Figure 1.a, to

8To evaluate translation quality at the sentence level, we
consider the edit distance between the translation hypothesis
and the reference.

9Because we only report statistics on the best and worst
translations of each system, our analysis does not allow us

code kind of specificities
1 Letter deletion/addition
2 Missing diacritics
3 Phonetic writing
4 Tokenisation error
5 Wrong verb tense
6 #; @, URL
7 Wrong gender/grammatical number
8 Inconsistent casing
9 Emoji
10 Named Entity
11 Contraction
12 Graphemic/punctuation stretching

Table 4: Typology of UGC specificities used in our
manual annotation.

be the presence of named-entities (10th category)
and the inconsistent casing (8th category) often cor-
responding to several words written fully upper-
cased to denote emotions or excitement. Coun-
terintuitively, these two kinds of noise have more
impact on the char2char model than on the
Transformermodel, even if it could be expected
that the character embeddings learned by the for-
mer would not be sensitive to the case. When man-
ually inspecting its prediction, it appears that, often,
the char2char model is not able to copy named
entities and replace some of their characters. For
instance, the entity Cllaude468 is translated into
Claudea64666, and flappy bird into flappe bird.
Interestingly this second entity is correctly trans-
lated by the char2char model when it is written
Flappy Bird. Similarly, the Transformermodel
often tries to translate part of the hashtags relying
on the subword units identified by the BPE tok-
enization rather than simply copying them from
to directly compare the performance of the two models and
we can only identify general trends in the impact of UGC
idiosyncrasies on translation quality.
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Figure 1: Comparison of the number of UGC specificities in the best and worst translation hypotheses of
char2char and Transformer. Noise categories are defined in Table 4.

Ã src Si au bout de 5 mois tu rescend (3) toujours se (3) genre "d’effet secondaire" c’est vraiment mauvais.
ref If after 5 months you’re still feeling this kind of "side effect" that’s really bad.
Tx If after five months you’re still re-exciting this whole "special effect" thing is really bad.
c2c In the end of five months, you’re always responding to secondary effects, that’s really bad.

Ä src y a ma cousine qui joue a (2) flappy bird (10) mdrrrrrrrrrrr (11, 12) elle et plus nuuul (12,7) que moi
ref my cousin plays flappy bird loooooooooool she’s more hopeless than me
Tx There’s my cousin who plays a flappy bird mdrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
c2c There’s my cousin that plays a flappy bird flappy bird might bring her and nouse than me.

Table 5: Examples from our noisy UGC corpus showing the Transformer (denoted as Tx) and char2char
(denoted as c2c) predictions. Source sentences have been annotated with UGC specificities of Table 1 (in blue).
Part of the reference that were correctly generated are underlined.

the source: for instance “#ÇaMeVenereQuand”
(“#ItAnnoysMeWhen” in English) is translated into
“#CaMevenreWhen”.

Another important category of errors, is the 6th
category that corresponds to hashtags, mentions
and URLs, for which the char2charmodel is not
capable of producing characters or sequence of char-
acters that are rare in the training set (namely #, @
or http://www). For instance, the char2char
model only outputs 8 sharp symbols when translat-
ing the test set of the PFSMB, while the reference
contains 345 hash tags starting with a ‘#’. While
the Transformer model is less sensitive to this
problem (it produces 105 sharp symbols when trans-
lating the PFSMB test), its translation quality also
suffers from the presence of hashtags as, as for
named entities it often translates some of the sub-
word units resulting from the BPE tokenization. Fi-

nally, we notice that errors 2 and 12 (diacritization
and repetition) are treated somewhat better by the
char2char model than by the Transformer
model, being less frequent in the worst translations
of the former.
Qualitative Analysis Table 10 reports transla-
tion hypotheses predicted by the Transformer
and char2char models. These examples illus-
trate the difficulty of the char2char model to
translate named entities: while the simple strategy
of copying unknown OOVs from the source imple-
mented by the Transformer is very effective,
the char2char model tend to scramble or add
letters to NE. They also illustrate the impact of pho-
netic writing on translation: for instance “rescend”
that should be spelt “resents” (feeling, example 4)
and “joue a that should be spelt “joue à” (play a vs
play with - auxiliary verb instead of a preposition-
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example 5) both result in a wrong translation: in
the former case, the meaning of the sentence is not
captured, in the latter the “a” is wrongly copied in
the translation hypothesis.
5.1 Copy Task Control Experiment
To corroborate our analysis of the special char-
acters impact on char2char and quantify the
impact of char-OOVs and of rare character se-
quences, we conduct a control experiment in which
a char2char system with different vocabulary
sizes must learn to copy the source, that is to say:
we apply a char2char on an artificial parallel
corpus in which the source and the target sentences
are identical. By varying the number of characters
considered by the system, we can control the num-
ber of rare characters in our corpora (recall that
with a char-vocabulary of size N all characters but
theN most frequent ones are mapped to a special
<UNK> character). Note that this task is a simpli-
fication of the problem we have highlighted in the
previous section: the model has simply to learn to
always make an exact copy of the whole source
sentence and not to detect some special characters
(such as # or @) from the input that trigger the copy
of the next characters, while the rest of the sentence
should be translated.

More precisely, we built an artificial train set con-
taining 1M random sentences with lengths between
5 and 15 characters long, keeping a 164 fixed-size
character vocabulary (this correspond to the size of
the extended ASCII alphabet), and whose charac-
ters are distributed uniformly, in order to rule out
the impact of rare characters and keeping only the
effect of char-OOVs over the performance. We
consider two test sets made of 3,000 sentences each:
in-test that uses the same 164 characters as the
train set and out-test that uses 705 different
characters. Source and reference are identical for
every example of the train and test sets.
Results Table 6 reports the results achieved on
the copy task with and without replacing the pre-
dicted <UNK> symbols.

Note that, in this very simple task, <UNK> char-
acters are always replaced by their true value. These
results show that this task is not trivial for char-
based systems: even when all characters have been
observed during training, the system is not able to
copy the input perfectly.
Above all, reducing the vocabulary size from

164 to 125 results in an increase of the BLEU score

on the two considered conditions, even without re-
placing the <UNK> that the system has started to
generate, where ‘%<UNK> pred.’ indicates the per-
centage of <UNK> tokens in the prediction. Further
reducing the size of the vocabulary artificially im-
proves the quality of the systems: they generate
more and more <UNK>, which are replaced during
post-processing by their true value. These observa-
tions suggest that unknown or rare characters are
not only difficult to copy, but they also distort the
representation of the input sequence built by the
system impacting the whole prediction.

Vocabulary Size
164 125 100 80 60

in-test
%<UNK> pred. 0 0.2 5 17 29.5
BLEU 92.9 95.8 77.6 24.9 1.9
+<UNK> rep. 92.9 96.6 98.4 98.5 98.7

out-test
%<UNK> pred. 0 9.2 13.8 25 36
BLEU 54.5 63.7 52.3 15.3 0.9
+<UNK> rep. 54.4 96.6 98.7 99.1 99.5

Table 6: Results of the copy task evaluated by the BLEU
score before and after <UNK> replacement (+<UNK>
rep.) and percentage of <UNK> characters in the pre-
diction (%<UNK> pred.).

6 Impact of the Char-Vocabulary Size on
Translation Quality

To validate in a more realistic setting the conclu-
sion we draw from our copy tasks experiments, we
present in Figure 2, the impact of unknown char-
acters on translation quality of the PFSMB test set
for the Transformer and char2char models.
While the translation quality is almost the same for
both models when there is no char-OOVs in the
input, the occurrence of an unknown character hurts
the translation quality of the char2char model
beyond the mistranslation of a single character.

Motivated by these observations, we carried out
experiments on our char2char models, trained
on OpenSubtitles, with different character vo-
cabulary size. Results in Table 7 show that ‘cor-
rectly’ choosing the vocabulary size can improve
the translation performance on both canonical and
non-canonical corpora. We did not observe any no-
ticeable improvements in in-domain data as those
test sets contain very few char-OOVs compared
to their UGC counterparts, e.g., 0.76% for the
OpenSubtitles test set. However, overall sta-
bility in in-domain performance is observed, unlike
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Figure 2: Impact of the number of char-OOVs in the
input sentence on the BLEU score. Systems trained on
OpenSubs.

what has been reported when domain-adaptation
methods were used (Michel and Neubig, 2018; Be-
linkov and Bisk, 2018).
For vocabulary sizes larger than 90 characters,

the char2char system achieves the same BLEU
scores as with 90 characters. Note that in our first
experiments (reported in Table 3), we used the ‘stan-
dard’ character vocabulary size (namely 300 char-
acters) that was used in (Lee et al., 2017) and, to
the best of our knowledge, in all following works.
vocab. size PFSMB MTNT News OpenTest†

90 23.9 25.8 18.7 26.6
85 23.9 25.3 19.9 26.9
80 23.9 25.8 18.3 26.6
75 24.5 25.9 17.8 26.3
70 24.6 25.4 17.8 26.3
65 22.7 25.5 18.0 26.4

Table 7: BLEU results for MT of char2char with re-
duced vocabulary size. Systems trained on OpenSubs.
† marks in-domain test set.

As shown by an evaluation done on the blind
tests of our UGC dataset, in Table 8, setting the vo-
cabulary size parameters based on the improvement
they bring reduces the difference in performance
between the char2char and Seq2seq systems.
With the ‘correct’ vocabulary size the former is out-
performed by only 0.3 (resp. 1) BLEU points while,
with the default value, the difference is 1.2 (resp.
3.1) BLEU points on the PFSMB (resp. MTNT).
By manually comparing the system outputs for

different vocabulary sizes, it seems that the ob-
served differences in performance can be explained

PFSMB
blind

MTNT
blind

char2char-base 17.8 20.9
vocab-75 18.3 24.0
vocab-70 18.7 22.8

Transformer 19.0 25.0
seq2seq 22.1 20.4

Table 8: BLEU results for blind MT test sets of
char2char with reduced vocabulary size. Systems
trained on OpenSubs. The Transformer and
Seq2seq are presented as comparison data points.

by drop- and over-translation phenomena, two well-
identified limits of NMT (Mi et al., 2016; Koehn
and Knowles, 2017; Le et al., 2017). An analysis
of Figure 3, which displays the ratio between the
hypothesis and reference lengths for the different
vocabulary sizes, seems to confirm this hypothesis
as it appears that the vocabulary size parameter pro-
vides control over the translation hypothesis length
and consequently, a way to limit these drop- and
over-translation phenomena.
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Figure 3: Reference/hypothesis length ratios on the
PFSMB test set produced by char2char for different
vocabulary sizes.

7 Discussion

Our work follows many studies on the robustness
of character-based models, most notably from Be-
linkov and Bisk (2018) who compared different
translation unit levels for NMT and showed that,
overall, MT systems trained on clean data only pre-
sented considerable performance decrease when
processing synthetic character-level noise and word-
level noise. Here, we also perform comparisons
with other mainstream strong BPE-based baselines
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and because of our annotated UGC data set are able
to provide a more precise view on the phenomena
at stake when processing natural noisy-input.

Similarly to Durrani et al. (2019) what concluded
for morpho-syntactic classification tasks, our re-
sults show that a more fined-grained granularity
of learning representations, characters over BPEs,
provides a higher robustness to certain types of
noise. Contrary to the both aforementioned works,
our study is performed using annotated real-world
noisy UGC, which proved crucial for our study.

In line to Fujii et al. (2020) findings, where fine-
grained NMT granularity provided robustness ad-
vantages when processing misspelling, our results
show that the best and worst translations’ specifici-
ties distribution point to a better performance of
char2char for the missing diacritics category, giv-
ing insights on more specific types of misspellings
that affect performance.
Continuing this research track, we broaden the

spectrum of studying UGC specificities, exploring
the effects of the vocabulary training size and show
that tuning it can achieve better results when trans-
lating noisy UGC. This simple hyper-parameter
choice proved effective, providing an alternative
to using fine-tuning methods (Michel and Neubig,
2018) or back-translation (Vaibhav et al., 2019).

8 Conclusion

We showed that in zero-shot scenarios, char-based
models are not robust to UGC idiosyncrasies. We
presented several experiments that explained this
counter-intuitive result by an over-sensibility of
these models to the vocabulary size. We demon-
strated that drastically lowering this parameter in-
creased the robustness of our char-based models
when facing noisy UGC while maintaining almost
the same level of performance for in-domain and
out-of-domain canonical datasets. Interestingly, we
noticed a lack in the literature regarding the impor-
tance of vocabulary considerations when training
character-based NMTmodels. However, our results
show that a path for improvement exists, leading to
more generic and stable models and making us be-
lieve that further research on the matter can bring
promising alternatives to domain-adaptation via
target domain data addition. Our data set is avail-
able at https://github.com/josecar25/
char_based_NMT-noisy_UGC.
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A Appendix

PFSMB src ma TL se vide après j’me fais chier puis jme sens seule mais c surtout pdt les vacs mais c pas le cas dc ça compte pas trop
ref my TL is emptying then I get bored then I feel alone but mostly during holidays but it’s not the case so it’s not so important
google my TL is empty after I’m pissing then I feel alone but c especially pdt vacs but it does not matter that it does not count too much
src Dans Flappy Bird quand mon Bird il fait 10 jsuis trop contente #TeamNul Mdddr
ref At Flappy Bird when my Bird has 10 Im so happy #TeamFail Loool
google In Flappy Bird when my Bird is 10, I’m too happy #TeamNul Mdddr
src Boooooooooooooooooooooonnne Annniversaure Ma viiiiiiiiiiiiiie jtm plus que tout profite bien de tes 22ans moaaaaaaaaa
ref Haaaaaaaaaaaaaaaaaaaaaapppy Biiirthday My liiiiiiiiiiiiiife luv you more than anything enjoy your 22years mwaaaaaaaaah
google Boooooooooooooooooooooonnne Annniversaure My viiiiiiiiiiiiiie jtm more than anything enjoy your 22 years moaaaaaaaaaa

MTNT src AJA que le XV de France féminin est un train de faire un grand chelem, OKLM
ref TIL that the XV of Feminine France is doing a grand chelem, FRESH
google AJA that the XV of France feminine is a train of a grand slam, OKLM
src Je pensais mais c’est le même ident et mdp que mon compte "normal", et il détecte même la profile pic et le nom
ref I thought so but it’s the same username and password as my ’normal’ account, and it detects even the profile pic and the name
google I thought but it’s the same ident and mdp as my "normal" account, and it even detects the pic profile and the name
src Aaaaaaaah.... 8 ans après, je viens de percuter.... :o ’tai je me disais bien que je passais à côté d’un truc vu les upvotes.
ref Aaaaaaaah.... 8 years later, I’ve just realized.... :o damn I had the feeling that I was missing something considering the upvotes.
google Aaaaaaaah .... 8 years later, I just collided ....: oh well I was telling myself that I was missing something seen the upvotes.

Table 9: Examples from both noisy UGC showing the source phrase, reference translation and Google Translate
output. UGC idiosyncrasies are highlighted using bold characters.

À src JohnDoe389 (10) qui n’arrive pas a (2) depasser (2) 1 a (2) FlappyBird 10 ... ptddddr (11, 12)
ref JohnDoe389 who can’t score more than 1 at FlappyBird ... lmaooooo
Tx John Doe389 who can’t pass one to Flappy Bird... ptdddr.
c2c Johndeigh doesn’t happen to pass one on Flappyrib... please.

Á src JohnDoe665 (10) viens (5) de regarder Teen Wolf (2011) S03E17 [Silverfinger] (10) et s’en va apprendre
l’humanité à Castiel (10).

ref JohnDoe665 just watched Teen Wolf (2011) S03E17 [Silverfinger] and he’s on his way to teach Castiel humanity.
Tx John Doe665 just watched Teen Wolf (2011) S03E17 (Silverfinger) and is going to teach humanity at Castiel.
c2c Johndoedsoids is looking at Teen Wolf 2011, and learn about humanity in Castiel.

Â src Jai (1,4) fait 10 a (2) flappy bird (10) mddr (11, 12) # JeMeLaDonneMaisJavancePas (6)
ref I did 10 at flappy bird lool # JeMeLaDonneMaisJavancePas
Tx I did 10 a flappy bird mdr # I’m not moving
c2c ♪I’ve made 10 flappy birdd ♪

Table 10: Examples from our noisy UGC corpus showing the Transformer (denoted as Tx) and char2char
(denoted as c2c) predictions. Source sentences have been annotated with UGC specificities of Table 1 (in blue).
Part of the reference that were correctly generated are underlined.
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B Reproducibility

Data All the UGC test sets and source code for our experiments are provided in the supplementary
materials. For training data, we let the reader refer to each project’s website for WMT10 (consisting
of Europarlv7, Newcommentariesv10 and Open Subtitles11, both accessed on November,
2019. Regarding clean test sets, we used newstest15 from WMT and a subset of 11.000 unique phrases
from Open Subtitles. We make the former test available in the link provided above for exact
performance comparison.
Computation The NMT systems were trained using 1 Tesla V100, during an average of 72 hours to
converge to the final solution for the char2char model and 56 hours for the BPE-based baselines.
B.1 NMT Models
Character-based models Both charCNN and char2char models were trained as out-of-the box
systems using the implementations provided by (Kim et al., 2016) for charCNN,12 an by (Lee et al., 2017)
for char2char.13
BPE-based models We consider, as baseline, two standard NMT models that take, as input, tokenized
sentences. The first one is a seq2seq bi-LSTM architecture with global attention decoding. The
seq2seq model was trained using the XNMT toolkit (Neubig et al., 2018).14 It consists of a 2-layered
Bi-LSTM layers encoder and 2-layered Bi-LSTM decoder. It considers, as input, word embeddings of
512 components and each LSTM units has 1,024 components.
We also study a vanilla Transformer model using the implementation proposed in the OpenNMT

framework (Klein et al., 2018). It consists of 6 layers with word embeddings of 512 components, a
feed-forward layers made of 2,048 units and 8 self-attention heads.
The vocabulary parameter for experiments in § 6 were obtained through a first exploratory uniform

segmentation of the possible vocabulary sizes, and then, discovering the threshold (vocabulary with
90 characters) for which the char2char model started producing <UNK> during evaluation. We then
proceeded to obtain the results displayed above by sampling this parameter by decreasing 5 characters.
Hyper-parameters In Table 11, we list the training variables set for our experiments. They match their
corresponding default hyper-parameters.

Batch size 64
Optimizer Adam
Learning rate 1e-4
Epochs 10 (best of)
Patience 2 epochs
Gradient clip [-1.0, 1.0]

Table 11: Hyper-parameters used for training the NMT systems.

Pre-processing For the BPE models, we used a 16K merging operations tokenization employing
sentencepiece15. For word-level statistics we segmented the corpora using the Moses tokenizer 16.

10https://www.statmt.org/wmt15/translation-task.html
11http://opus.nlpl.eu/download.php?f=OpenSubtitles/v2018/moses/en-fr.txt.zip
12https://github.com/harvardnlp/seq2seq-attn
13https://github.com/nyu-dl/dl4mt-c2c
14We decided to use XNMT, instead of OpenNMT in our experiments in order to compare our results to the ones of Michel

and Neubig (2018).
15https://github.com/google/sentencepiece
16https://github.com/moses-smt/mosesdecoder
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