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Abstract

This paper presents the NICT Kyoto submis-
sion for the WMT’21 Quality Estimation (QE)
Critical Error Detection shared task (Task 3).
Our approach relies mainly on QE model pre-
training for which we used 11 language pairs,
three sentence-level and three word-level trans-
lation quality metrics. Starting from an XLM-
R checkpoint, we perform continued training
by modifying the learning objective, switch-
ing from masked language modeling to QE
oriented signals, before finetuning and ensem-
bling the models. Results obtained on the
test set in terms of correlation coefficient and
F-score show that automatic metrics and syn-
thetic data perform well for pretraining, with
our submissions ranked first for two out of four
language pairs. A deeper look at the impact of
each metric on the downstream task indicates
higher performance for token oriented metrics,
while an ablation study emphasizes the use-
fulness of conducting both self-supervised and
QE pretraining.

1 Introduction

This paper describes the NICT Kyoto submission to
the WMT’21 Quality Estimation (QE) shared task.
We participated in Task 3 “Critical Error Detection”
involving four language pairs, namely English–
Chinese, English–Czech, English–Japanese and
English–German. A critical error is defined as
a translation error falling into one of the follow-
ing five categories: toxicity, health or safety risk,
named entity, sentiment polarity and number or
unit deviation.1

The objective of the task is to classify a sequence
pair, composed of a sentence in the source language
and its automatic translation in the target language,
in a binary fashion whether it contains or not at
least one of the five types of critical errors. This

1More details about these categories and the task it-
self can be found here: http://statmt.org/wmt21/
quality-estimation-task.html

task differs from the other QE tasks as not all trans-
lation errors should be detected but only critical
ones. Labels were produced by majority vote over
three annotators for each pair leading to two pos-
sible classes: ERR (or class 1) when at least one
critical error is spotted and NO (or class 0) when
no critical errors are present.

Our approach relies mainly on QE model pre-
training leveraging a large amount of synthetic data
produced using parallel corpora and MT systems.
Because annotating translations for critical error is
costly, we propose to pretrain a model on transla-
tion quality scores computed with automatic met-
rics. To capture multiple translation error gran-
ularities during pretraining, we employ multiple
metrics and evaluate their performance individu-
ally on the downstream task. Additionally, we pre-
train the QE model jointly on all WMT QE shared
tasks language pairs as a data augmentation method.
Transfer learning is then conducted for each lan-
guage pair by finetuning the pretrained model on
the downstream task with the officially released
training data annotated with critical errors.

The remainder of this paper is organized as fol-
lows. In Section 2, we introduce our approach
involving multimetric and multilingual pretraining.
In Section 3, the data, tools and training proce-
dure are presented, followed by the experimental
results and their analysis in Section 4, before the
conclusion in Section 5.

2 Multimetric & Multilingual
Pretraining

Multilingual pretrained masked language models
(LMs) were shown to perform well in several down-
stream natural language processing tasks (Devlin
et al., 2019; Conneau et al., 2020; Liu et al., 2020).
Starting from an XLM-R checkpoint (Conneau
et al., 2020), we performed continued (or inter-
mediate) training (Phang et al., 2018; Rubino and
Sumita, 2020) with large amount of automatically

http://statmt.org/wmt21/quality-estimation-task.html
http://statmt.org/wmt21/quality-estimation-task.html
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translated source language texts (thereafter called
synthetic data), replacing the masked LM objec-
tive with QE oriented ones. Because XLM-R is
multilingual and all languages in this model share
a common vocabulary of sub-words, we decided to
conduct QE pretraining on the 11 language pairs
from all subtasks of WMT’21 QE. These language
pairs all share English, whether on the source or
target side, and this method can be seen as a data
augmentation approach to increase vocabulary cov-
erage.

The objective of QE Task 3 is to classify sen-
tence pairs in a binary fashion. Formally, given a
source sequence s and its translation t, we want to
learn a function f : fθ(s, t)→ y where y ∈ {0, 1}
is the class associated with the sequence pair (s, t)
and θ represents the model parameters. While fine-
tuning a pretrained model on the official QE task 3
data allows us to directly learn model parameters
approximating y given (s, t), we do not have such
classes for synthetic data. We decided to use MT
automatic metric scores as objective instead, assum-
ing that critical error classes could correlate with
translation quality scores at least in extreme cases
(e.g. no translation errors also means no critical
errors).

Several automatic metrics are used by the re-
search community to evaluate the performance of
MT systems by measuring translation accuracy
against a human-produced reference at different
granularity levels. We opted for metrics capturing
quality information at the character (chrF (Popović,
2017)), token (TER (Snover et al., 2006)) and to-
ken n-gram (BLEU (Papineni et al., 2002)) levels.
For the latter, the smoothed sentence-level BLEU
was chosen (Chen and Cherry, 2014). In addition to
sentence-level metrics, token-level binary tags were
also extracted following the usual procedure to de-
termine post-editing effort (Specia et al., 2020).2

To allow for sentence-level QE predictions, we
added a feed-forward layer on top of XLM-R for
each of the three metrics employed without param-
eter sharing, following:

ŷs = tanh (φ(h)Ws1 + bs1)Ws2 + bs2 (1)

where ŷs ∈ R1 is the sentence-level score, Ws1 ∈
Rd×d, bs1 ∈ Rd, Ws2 ∈ Rd×1 and bs2 ∈ R1

are parameters of the model with dimensionality
d = 1, 024, φ is a pooling function and h ∈ Rn×d

2Scripts and procedure available at https://github.
com/deep-spin/qe-corpus-builder

is the set of contextual embeddings correspond-
ing to the n tokens in (s, t). The pooling function
is the class token added at the beginning of each
input sequence. For token-level predictions, we
used a linear transformation from contextual em-
beddings to two-dimensional output (for binary
token-level classes): ŷt = softmax (hWt + bt),
with ŷt ∈ Rn×2 are token-level scores, Wt ∈ Rd×2

and bt ∈ R2 are the parameter matrix and bias.
Parameters of the model are learned with mini-
batch stochastic gradient descent based on losses
computed for sentence-level and token-level predic-
tions. For the former loss, we used mean squared
error, while cross-entropy was used for the latter.
All losses are linearly summed with equal weights
before back-propagation. The parameters of the
classification and regression heads are optimized
along with XLM-R.

3 Data and Tools

This section presents the data used in our experi-
ments, including the synthetic data produced for
pretraining and the official QE task 3 corpora, along
with the tools required to train our models and the
procedure employed for both pretraining and fine-
tuning.

3.1 Datasets

In order to gather as much data as possible for many
language pairs, we collected all parallel data from
the QE shared tasks (from all subtasks). Addition-
ally, we retrieved parallel data from the WMT news
translation task (Barrault et al., 2020) and from
OPUS (Tiedemann, 2016).3 The source side of
these parallel corpora was translated using publicly
available neural MT models based on the Trans-
former architecture (Vaswani et al., 2017). For
Estonian–English (et–en), Nepalese-English (ne–
en), Romanian–English (ro–en), Russian–English
(ru–en), Sinhala–English (si–en), English–German
(en–de) and English–Chinese (en–zh), we used the
MT systems made available by the shared task orga-
nizers,4 while for English–Czech (en–cs), English–
Japanese (en–ja), Khmer–English (km–en) and
Pashto–English (ps–en), we used the mBART50

3The corpora from OPUS used in our experiments are:
Common Crawl, ParaCrawl, OpenSubtitles, DGT, IWSLT,
KFTT and XLEnt.

4Links to models available at https://github.com/
facebookresearch/mlqe/blob/master/nmt_
models/README-models.md

https://github.com/deep-spin/qe-corpus-builder
https://github.com/deep-spin/qe-corpus-builder
https://github.com/facebookresearch/mlqe/blob/master/nmt_models/README-models.md
https://github.com/facebookresearch/mlqe/blob/master/nmt_models/README-models.md
https://github.com/facebookresearch/mlqe/blob/master/nmt_models/README-models.md
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Lang. Token Type
src tgt Sent. src tgt src tgt

Synthetic Data (pretraining)
en cs 14.1M 244.4M 220.2M 2.3M 2.5M
en de 22.3M 477.5M 442.9M 2.5M 4.6M
en ja 3.3M 64.7M 86.7M 1.2M 732.1k
en zh 16.2M 407.2M 350.4M 1.1M 1.1M
et en 14.8M 143.3M 176.8M 2.3M 0.9M

km en 3.7M 47.7M 34.8M 1.3M 480.5k
ne en 0.9M 10.1M 8.5M 307.6k 343.2k
ps en 1.0M 11.6M 10.2M 332.6k 190.3k
ro en 2.3M 55.7M 51.9M 331.7k 261.1k
ru en 5.0M 82.1M 90.1M 1.8M 0.9M
si en 1.4M 17.6M 12.8M 366.7k 344.4k

Official QE Task 3 Data (finetuning)
en cs 7.5k 122.2k 125.9k 23.6k 22.5k
en de 7.9k 127.7k 154.6k 24.7k 19.6k
en ja 7.7k 126.3k 213.7k 24.6k 12.8k
en zh 6.9k 110.7k 122.9k 21.9k 12.9k

Table 1: Number of sentences (Sent.), tokens and types
in the source (src) and target (tgt) corpora used in our
experiments (M stands for millions and k for thou-
sands).

model (Liu et al., 2020; Tang et al., 2020).5

Statistics about the synthetic corpora after trans-
lation are presented in Table 1, along with the offi-
cial QE data for Task 3 released by the shared task
organizers. After deduplicating and cleaning the
synthetic corpora produced to conduct QE pretrain-
ing, the total amount of data reached 72.3M triplets
(source, translation and reference sentences).

3.2 Tools

Data preprocessing was conducted using the to-
kenizer and truecaser from the Moses distribu-
tion (Koehn et al., 2007), except for Chinese,
Japanese, Nepalese and Sinhala, for which the tok-
enization was conducted using jieba,6 KyTea7 and
FLORES (Goyal et al., 2021) respectively.

To compute the sentence-level and token-level
scores, we used automatic metrics implementations
available in the tools SacreBLEU (Post, 2018) for
BLEU and chrF and tercom (Snover et al., 2006)
for TER and token-level classes.

The XLM-R checkpoint used was the xlm-
roberta-large from HuggingFace Transformers li-
brary (Wolf et al., 2020). We used in-house Py-
torch (Paszke et al., 2019) code and V100 GPUs
hardware for QE pretraining and finetuning, 8

5More details about the model available at
https://github.com/pytorch/fairseq/tree/
master/examples/multilingual

6https://github.com/fxsjy/jieba
7http://www.phontron.com/kytea/

GPUs for the former step and 1 GPU for the latter.

3.3 Training Procedure

Model pretraining on synthetic data was con-
ducted for one epoch (approx. 500k updates) with
batches of 128 source and target sequences for a
total training time of 3 days. The AdamW opti-
mizer (Loshchilov and Hutter, 2019) was used with
β1 = 0.9, β2 = 0.999 and ε = 1 × 10−6, while
the weight decay was set to 0. A linear learning
rate warmup was used during the first 50k updates
to reach a maximum value of 5 × 10−6, which
remained without decay until the end of the first
epoch. The dropout rates were set to 0.1 for both
the embeddings and the transformer blocks (feed-
forward and attention layers). A total of four mod-
els were pretrained with different random seeds
before being finetuned on the official QE Task 3
data.

To conduct finetuning, we added a classification
layer on top of XLM-R following:

ŷe = softmax(tanh (φ(h)We1 + be1)We2 + be2)
(2)

where ŷe ∈ R2 is the sentence-level probability
distribution over the two classes, We1 ∈ Rd×d,
be1 ∈ Rd, We2 ∈ Rd×2 and be2 ∈ R2 are param-
eters of the model with d = 1, 024. The pooling
function φ is the same as the one employed during
pretraining presented in Section 2. Due to the class
imbalance of the critical error dataset, we used the
weighted cross-entropy loss function to finetune
our models. The weight given to the error class
(the least populated) was tuned on the validation
set in a grid-search manner, with integer values
ranging from 1 to 8.

During finetuning, which lasted 40 minutes per
model, we used the validation set to select the best
performing models according to the Matthews cor-
relation coefficient (MCC), which is the main met-
ric chosen by the shared task organizers for the final
evaluation. One model per seed was selected and
a total of four models were ensembled to produce
our final submission to the shared task.

4 Results and Analysis

We present in this section the main results obtained
on the official shared task test set as reported by the
organizers, followed by an analysis with ablation
study and various pretraining objectives.

https://github.com/pytorch/fairseq/tree/master/examples/multilingual
https://github.com/pytorch/fairseq/tree/master/examples/multilingual
https://github.com/fxsjy/jieba
http://www.phontron.com/kytea/
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Lang. MCC F1 ERR F1 NOT F1 Multi

Official Baseline
en–cs 0.3875 0.8992 0.4768 0.4287
en–de 0.3974 0.8484 0.5317 0.4511
en–ja 0.2139 0.9505 0.2439 0.2318
en–zh 0.1873 0.8980 0.2694 0.2419

Our Baseline
en–cs 0.4030 0.8984 0.4985 0.4478
en–de 0.5204 0.8687 0.6495 0.5642
en–ja 0.2523 0.9294 0.3191 0.2966
en–zh 0.2413 0.8667 0.3714 0.3219

Our Ensemble
en–cs 0.5105 0.9132 0.5949 0.5433
en–de 0.5464 0.8767 0.6667 0.5845
en–ja 0.2375 0.9447 0.2896 0.2736
en–zh 0.3109 0.8833 0.4260 0.3763

Table 2: Results obtained on the test set for the
WMT’21 QE shared task, Task 3 “Critical Error De-
tection”. F1 ERR denotes the F-score obtained on the
error class, F1 NOT denotes the F-score obtained on the
non-error class, F1 Multi stands for the multiplication
of F1 ERR and F1 NOT.

4.1 Shared Task Results

The official results reported by the shared task or-
ganizers are presented in Table 2. We compare
our final ensemble results, obtained with four mod-
els trained on different seeds, to our baseline, ob-
tained with a single model. We also include the
official baseline provided by the shared task orga-
nizers. All our submissions outperform the official
baseline and our ensembles reach the highest per-
formance according to the correlation score and
F-measure. One exception, however, is for the
English–Japanese language pair. Despite several
attempts to improve our ensembling method for
this pair, we could not improve over our baseline.

A comparison with other shared task participants
in terms of MCC and F1 scores shows that our sub-
missions were ranked first for English–Czech and
English–German, third for English–Chinese and
sixth for English–Japanese. We assume that the
smaller amount of synthetic data, as well as a pos-
sible preprocessing mismatch between the official
data and our synthetically generated corpora, could
be the reason behind the low performance of the
two latter language pairs. More precisely, the data
preprocessing pipeline for English, German and
Czech are commonly based on the Moses tokenizer
and truecaser, and it is possible to infer the parame-
ters used with these tools by looking at the official
training data released for the task. For Chinese and
Japanese, however, due to the lack of details given

Lang. MCC F1 ERR F1 NOT F1 Multi

No Checkpoint
en–cs 0.3844 0.4847 0.8996 0.4360
en–de 0.3796 0.5575 0.8219 0.4582
en–ja 0.1963 0.2047 0.9461 0.1937
en–zh 0.2461 0.3513 0.8948 0.3143

No QE Pretraining
en–cs 0.4728 0.5593 0.9132 0.5107
en–de 0.5182 0.6192 0.8804 0.5451
en–ja 0.2999 0.3439 0.9441 0.3247
en–zh 0.3649 0.4633 0.8897 0.4122

Checkpoint + QE Pretraining
en–cs 0.5271 0.6000 0.9266 0.5560
en–de 0.5501 0.6615 0.8829 0.5840
en–ja 0.3286 0.3497 0.9499 0.3322
en–zh 0.3833 0.4784 0.8905 0.4260

Table 3: Results obtained on the WMT’21 QE Task 3
“Critical Error Detection” validation set. All results are
obtained with ensemble of 4 models. No Checkpoint
denotes QE pretraining of randomly initialized XLM-
R without usual masked LM pretraining, followed by
finetuning, No QE Pretraining denotes direct finetun-
ing of an XLM-R checkpoint on the official task spe-
cific training data, Checkpoint + QE Pretraining is our
submission to the shared task based on XLM-R and QE
pretraining with finetuning.

by the shared task organizers, it was not possible
to use the same preprocessing tools and parameters
with certainty.

4.2 Impact of Pretraining Steps

While our approach relied on a two-step process,
QE pretraining on synthetic data followed by fine-
tuning on the task specific training set, we still
made use of a pretrained XLM-R model by initi-
ating QE pretraining from a checkpoint. Overall,
three steps are thus required to obtain the results
presented in Table 2. XLM-R and QE pretraining,
as well as producing synthetic data, are the most
computationally expensive steps, whereas finetun-
ing is relatively cheap to perform due to the small
amount of task specific data. Therefore, we per-
formed an ablation study aiming at evaluating the
impact of each pretraining step and ran two sets of
experiments following the same experimental setup
employed for our main submission to the shared
task.

For the first set of experiments, no pretraining of
XLM-R was conducted, meaning that we did not
start QE pretraining from an existing checkpoint,
but instead randomly initialized XLM-R parame-
ters and ran QE pretraining from scratch (this setup
is noted No Checkpoint). For the second set of
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Lang. MCC F1 ERR F1 NOT F1 Multi

TER pretraining
en–cs 0.4725 0.5605 0.9235 0.5176
en–de 0.5092 0.6378 0.8786 0.5604
en–ja 0.2891 0.3628 0.9490 0.3443
en–zh 0.3284 0.4324 0.9158 0.3960

BLEU pretraining
en–cs 0.4760 0.5629 0.9266 0.5216
en–de 0.4917 0.6290 0.8725 0.5488
en–ja 0.2982 0.3636 0.9513 0.3459
en–zh 0.3442 0.4450 0.9061 0.4032

chrF pretraining
en–cs 0.4200 0.4988 0.9210 0.4594
en–de 0.4122 0.5911 0.8540 0.5048
en–ja 0.2375 0.3163 0.9496 0.3004
en–zh 0.2925 0.3838 0.9242 0.3547

All sentence-level pretraining
en–cs 0.4700 0.5539 0.9258 0.5128
en–de 0.5229 0.6609 0.8726 0.5767
en–ja 0.2982 0.3636 0.9496 0.3453
en–zh 0.3660 0.4639 0.9207 0.4271

All word-level pretraining
en–cs 0.4697 0.5556 0.9172 0.5096
en–de 0.5323 0.6667 0.8728 0.5819
en–ja 0.3100 0.3743 0.9505 0.3558
en–zh 0.3756 0.4688 0.9127 0.4279

All metrics pretraining
en–cs 0.5015 0.5796 0.9289 0.5384
en–de 0.5276 0.6431 0.8779 0.5646
en–ja 0.3131 0.3824 0.9507 0.3635
en–zh 0.3546 0.4391 0.9112 0.4001

Table 4: Results obtained on the WMT’21 QE Task
3 “Critical Error Detection” validation set with single
models (no ensemble) based on various learning objec-
tives used during pretraining. Results in bold indicate
the best MCC scores among the pretraining configura-
tions for a given language pair.

experiments, we finetuned the XLM-R checkpoint
directly on the task specific data, without conduct-
ing QE pretraining. This alleviates the need to
produce large amount of synthetic QE data (this
setup is noted No QE Pretraining). We conducted
an additional set of experiments based on XLM-
R and QE pretraining without finetuning on the
official training set but the obtained results were
subpar compared to the baseline, due to the ran-
domly initialized parameters of the classification
layer (see eq. (2)) which was not tuned for the task
following this configuration. We present the results
of the two ablation experiments in Table 3.

While combining both the use of a pretrained
XLM-R with masked LM and QE pretraining on
synthetic data leads to the best results on the four
language pairs, No QE Pretraining performs bet-
ter than the No Checkpoint configuration. These

results emphasize the usefulness of large self-
supervised LM pretraining. The amount of data
used for QE pretraining is smaller compared to
the large quantity of monolingual and parallel data
used to train xlm-roberta-large, which could be an
explanation for the difference in downstream per-
formances according to the MCC and F1 metrics.

4.3 Impact of Pretraining Objectives

As an additional analysis, we propose to evaluate
the impact of different metrics used as pretraining
objectives on the downstream critical error detec-
tion task. Several independent QE pretraining were
conducted for this purpose: one for each sentence-
level translation quality metrics, one for the combi-
nation of sentence-level metrics and finally one for
word-level metrics which includes source, target
and gap error predictions as described in Section 2.
The finetuning step for each pretrained model is
identical, only the learning objective during pre-
training differs. The results obtained on the vali-
dation set for the critical error detection task are
presented in Table 4.

Based on MCC scores, using sentence-level met-
rics during pretraining is not leading to the best
downstream performance compared to using word-
level metrics or combining both sentence and word-
level quality indicators. From the three sentence-
level metrics used as learning objectives during
pretraining, TER and BLEU outperform chrF. For
English–German and English–Chinese, using word-
level metrics outperforms the combination of all
metrics, while it is the opposite for English–Czech
and English–Japanese. These results show that
the optimal quality indicator for QE pretraining
depends on the language pair and the translation
direction, and should therefore be considered as a
hyper-parameter to be optimized. However, due to
the costly nature of large model pretraining, com-
bining multiple translation quality indicators in a
multi-task learning fashion appears to be an effi-
cient solution, in addition to using masked LM
pretrained model as shown in the results presented
in Section 4.2.

5 Conclusion

This paper presented the NICT Kyoto submission
for the WMT’21 QE Task 3 “Critical Error Detec-
tion”. Our submissions were ranked first for two
out of four language pairs. Our approach relies
mainly on model pretraining with large amount of
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synthetic data, followed by finetuning on the offi-
cial data released for the shared task. We proposed
a novel QE pretraining approach which allows for
a multimetric learning objective based on relatively
cheap to compute MT automatic metrics. An anal-
ysis of each automatic metric used during QE pre-
training shows the complementarity of metrics both
at level of sentences and words. The ablation study
emphasized the usefulness of both self-supervised
and QE pretraining. Future work focuses on ex-
ploring additional metrics and their performance
on various downstream QE tasks.
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