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Abstract

Quality Estimation (QE) is an important com-
ponent of the machine translation workflow as
it assesses the quality of the translated out-
put without consulting reference translations.
In this paper, we discuss our submission to
the WMT 2021 QE Shared Task. We partici-
pate in Task 2 sentence-level sub-task that chal-
lenge participants to predict the HTER score
for sentence-level post-editing effort. Our
proposed system is an ensemble of multilin-
gual BERT (mBERT)-based regression mod-
els, which are generated by fine-tuning on dif-
ferent input settings. It demonstrates compara-
ble performance with respect to the Pearson’s
correlation and beats the baseline system in
MAE/ RMSE for several language pairs. In ad-
dition, we adapt our system for the zero-shot
setting by exploiting target language-relevant
language pairs and pseudo-reference transla-
tions.

1 Introduction

Progress in machine translation (MT) has accel-
erated due to the introduction of deep learning
based approaches, dubbed as neural machine trans-
lation (NMT) (Cho et al., 2014; Sutskever et al.,
2014; Bahdanau et al., 2014). Several metrics (e.g.,
BLEU (Papineni et al., 2002), METEOR (Agar-
wal and Lavie, 2008)) are used to automatically
evaluate the quality of the translations outputted by
the NMT systems. However, these evaluation met-
rics require comparing the NMT outputs against
human-prepared reference translations, which can-
not be readily obtained. To tackle this predicament,
recently quality estimation (QE) (Blatz et al., 2004;
Specia et al., 2018) has emerged as an alternative
evaluation approach for NMT systems. QE obvi-
ates the need for human judgements and hence can
be efficiently integrated into the dynamic transla-
tion pipeline in the industry setting.
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QE is performed at different granularity (e.g.,
word, sentence, document) (Kepler et al., 2019a);
in this work we focus on the sentence-level post-
editing effort task, which predicts the quality of
the translated sentence as a whole in terms of the
number of edit operations that need to be made to
yield a post-edited translation, termed as HTER
(Snover et al., 2006).

Sentence-level QE using neural approaches is
generally treated as a supervised regression prob-
lem involving mainly two steps. In the first step,
an encoder is used to learn vector representation/s
of the source and translation sentences. While in
the second step, the learned representations are
passed through a sigmoid output layer to estimate
the HTER score. These two steps can be per-
formed either with a single model in an end-to-
end fashion (e.g., Bi-RNN (Ive et al., 2018)), or
using two separate models (e.g., POSTECH (Kim
et al., 2017)). The different QE systems vary in
their choice of the encoder, which range from RNN-
based to Transformer-based models.

In this work, we leverage the fine-tuning capa-
bility of a Transformer-based encoder, namely the
mBERT (Devlin et al., 2018) pre-trained model.
Alongside the standard practice of feeding both
the source and target (i.e., translation) sentences
as the input sequence (Kepler et al., 2019a; Kim
et al., 2019), we also explore other input settings
based on only the target-side sentences (i.e., mono-
lingual context). To this end, our final QE system
is an ensemble of several mBERT models !, each
generated by fine-tuning on a different input com-
bination comprising the source and/or target sen-
tences. We experiment with the following three
input settings: (1) both source and target, (2) just
target and (3) both target and a randomly-sampled
target sentence in the data forming the input se-

'we also experimented with XLM-RoBERTa (Conneau
et al., 2019) as the component model in our preliminary run;
however, the results were worse compared to mBERT
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quence. Empirical analysis on 6 language pairs
shows that the ensemble model is able to perform
better than the individual fine-tuned models. More-
over, we provide experimental results for zero-shot
QE, where training data for the test language pair
is not available. This we tackle by improvising
on the available training/dev data that match the
target language of the test language pair and also
by generating the pseudo-reference translations in
that language.

2 Data

We use the WMT21 QE Shared Task 2 sentence-
level data (Specia et al., 2021; Fomicheva et al.,
2020a,b) for the following 7 language pairs:
English-German (En-De), Romanian-English (Ro-
En), Estonian-English (Et-En), Nepalese-English
(Ne-En), Sinhala-English (Si-En), Russian-English
(Ru-En) and Khmer-English (Km-En). Source-side
data for each language pair includes sentences from
Wikipedia articles, with part of the data gathered
from Reddit articles for Ru-En. To obtain the trans-
lations, state-of-the-art MT models (Vaswani et al.,
2017) built using fairseq toolkit (Ott et al., 2019)
were used. The label for this task is the HTER
score for the source-translation pair. Annotation
was performed first at the word-level with the help
of TER ? tool. The word-level tags were then aggre-
gated deterministically to obtain the sentence-level
HTER score. The training, development, test and
blind test data sizes for each language pair (except
Km-En) are 7K, 1K, 1K and 1K instances respec-
tively. As Km-En language pair was introduced for
zero-shot prediction, only the test data containing
990 source and translation sentences was provided.

3 Our Approach

A key innovation in recent neural models lies in
learning the contextualized representations by pre-
training on a language modeling task. One such
model, the multilingual BERT (mBERT) 3 isa
transformer-based masked language model that is
pre-trained on monolingual Wikipedia corpora of
104 languages with a shared word-piece vocabu-
lary. Training the pre-trained mBERT model for
a supervised downstream task, aka finetuning, has
dominated performance across a wide spectrum
of NLP tasks (Devlin et al., 2018). Our proposed

2http://www.cs.umd.edu/ snover/tercom/
3https://github.com/google-
research/bert/blob/master/multilingual.md

approach leverages this fine-tuning capability of
mBERT so as to form the component models in the
ensemble QE system (Section 3.3). That is, each
component model is a re-purposed mBERT that
is fine-tuned for the sentence-level HTER score
prediction task on one of the three input settings
discussed in Section 3.2.

3.1 Fine-tuning mBERT for Regression

mBERT’s model architecture is similar to BERT
4 and contains the following parameter settings:
12 layers, 12 attention heads and 768 hidden di-
mension per token. However, the only difference
is that mBERT is trained on corpora of multiple
languages instead of just on English. This enables
mBERT to share representations across the differ-
ent languages and hence can be conveniently used
for all language pairs in the WMT?21 data.

We first load the pre-trained mBERT model °
and use its weights as the starting point of fine-
tuning. The pre-trained mBERT is then trained on
QE-specific input sequences (Section 3.2) for a few
epochs such that the constructed sequence X is
consumed by mBERT to output the contextualized
representation h = (hers, ha,, hays hap, hsEP).
Here, [C'LS] is a special symbol that denotes down-
stream classification and [SEP] is for separating
non-consecutive token sequences. Considering the
final hidden vector of the [C'L.S] token as the aggre-
gate representation, it is then passed into the output
layer with sigmoid activation to predict the HTER
score:

y = sigmoid(W - hcrs + b) (1

W is a weight matrix for sentence-level QE fine-
tuning that is trained along with all the parameters
of mBERT end-to-end.

3.2 Input Settings

We construct the input sequence for each language
pair in the following three ways:

SRC-MT: Given a source sentence s =
(s1,82,...sy) from a source language (e.g.,
English) and its translation t = (¢, to, ...tar)
from a target language (e.g., German),
we concatenate them together as X =
([CLS), t1,ta, ...tar, [SEP), s1, 82, ...SN,
[SEP]) to form the input sequence.

*https://huggingface.co/bert-base-uncased
Shttps://huggingface.co/bert-base-multilingual-uncased
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MT: The target sentence is
used to form the input
X = ([CLS], ty,ta, ...tpr, [SEP]).

only
sequence,

MT-MT’:

Given the translation t for a source sen-
tence s, we randomly sample another trans-
lation £ = (t},t5,...th,) from the train-
ing data having HTER label close to t .
Although the source sentences for t and
t> are different, we assume the additional
monolingual context would help mBERT
learn the correlating QE-specific features
between t and t’ for the target-side lan-
guage. The resultant input sequence is X =
([CLS], t1, ta, ...tar, [SEP], tll,tl2, "'t/K7
[SEP)).

We fine-tune each of these mBERT models us-
ing AdamW optimizer (Kingma and Ba, 2014;
Loshchilov and Hutter, 2017) for two epochs
with a batch size of 32 and a learning rate of
270,

3.3 Ensemble Model

To take advantage of the individual strengths of the
three mBERT component models fine-tuned on the
aforementioned input settings, we combine their
HTER score predictions by training an ensemble
model. In particular, we experiment with three dif-
ferent ensemble models - Gradient Boosting (Fried-
man, 2001), AdaBoost (Freund and Schapire, 1997)
and Average. For Gradient Boosting and AdaBoost
we use the implementation in scikit-learn 7 with
10-fold cross validation. The settings for Gradient
Boosting are: number of estimators 600, learning
rate 0.01, minimum number of samples 3 and other
default settings. We use the default settings for
AdaBoost. In Average ensembling, we average the
HTER score predictions by the three mBERT mod-
els. Our system submission to WMT21 is based on
Gradient Boosting as it gave the best performance
on the test data, as shown in Table 1.

3.4 Zero-Shot QE

Performing sentence-level QE in the zero-shot set-
ting presents a unique challenge as the QE system
is expected to predict HTER scores for sentences
in a test language pair (e.g., Km-En) without hav-
ing been trained on any instances from that test

Sto ensure that t” is similar to t, we check that the difference

between their HTER scores is within 0.1
"https://scikit-learn.org

Table 1: Performance of ENSBRT with different en-
semble methods on the En-De test set.

Avg  AdaBoost GradBoost

0.266 0.458 0.473
0.249 0.436 0.443

Pearson’s
Spearman’s

language pair. We address this by training on lan-
guage pairs in the WMT21 QE data that match
the target-side language (i.e., En) in the test lan-
guage pair. The reason we focus on the target-side
language is because the component mBERT mod-
els in the proposed ensemble QE system are fine-
tuned on monolingual input sequences in the target-
side language, which could potentially help the
QE system generalize on the unseen test language
pair. We consider the training and development
data for the following language pairs in WMT21
QE data: Ro-En, Si-En, Et-En. Additionally, we
augment this data by generating pseudo-references
in the target language. A pseudo-reference (Scar-
ton and Specia, 2014) is a translation for a source
sentence that is outputted by a different NMT sys-
tem than the one that produced the actual transla-
tions (e.g., transformer-based translation system
proposed in (Vaswani et al., 2017)) and has shown
to improve sentence-level QE performance (Sori-
cut and Narsale, 2012). We use Google Translate
8 to get the pseudo-references in En for the Ro, Si
and Et source sentences. The HTER scores for the
translation and pseudo-reference pairs are then ob-
tained using the TER tool. We train the ensemble
QE system on the combined WMT21 QE data and
the pseudo-reference parallel data, and test on the
unseen test language pair.

4 Baseline

The baseline QE system (BASELINE) set by the
WMT?21 organizers this year is the Transformer-
based Predictor-Estimator model (Kepler et al.,
2019b; Moura et al., 2020). XLM-RoBERTa is
used as the Predictor for feature generation. The
baseline system is fine-tuned on the HTER scores
and word-level tags jointly.

5 Results

Table 2 presents the experimental results of mBERT
fine-tuned on the SRC-MT, MT and MT-MT’

8https://github.com/lushan88a/google_trans_new
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Table 2: Performance in Pearson’s correlation of mBERT fine-tuned with different input settings on the test set.

ENSBRT is the proposed ensemble mBERT QE system.

En-De Ro-En Ru-En Si-En Et-En  Ne-En
SRC-MT | 0.389  0.793 0.400 0.526 0.601 0.489
MT 0469 0762 0.374 0.552 0.580 0.491
MT-MT’ | 0.431 0.761 0.350 0.492 0.556 0.454
ENSBRT | 0.473 0.802 0.418 0.576 0.632 0.525

Table 3: Performance of BASELINE and ENSBRT on the WMT21 blind test set for different language pairs. Bold

indicates ENSBRT beats BASELINE in that metric.

En-De Ro-En Ru-En Si-En  Et-En Ne-En Km-En

§ Pearson’s 1 | 0.529  0.831 0.448 0.607 0.714 0.626 0.576
E MAE | 0.183  0.142 0.255 0.204  0.195 0.205 0.241
Zé RMSE | 0.129  0.115 0.188 0.159 0.149 0.160 0.196
Q

E Pearson’s 1 | 0.519  0.795 0.376 0.522 0.666 0572 0.529
é',‘g MAE | 0.171 0.171 0.251 0206 0171 0.176 0.262
E RMSE | 0.129  0.141 0.189 0.162 0.132 0.139 0.197

input settings, as well as the performance of the
ensemble of the three mBERT models, which we
call ENSBRT. First, comparing among the three
input settings, it seems that mBERT exhibits com-
petitive results even when it does not have knowl-
edge of the source-side text in the M7 and MT-
MT’ settings, in particular for the following lan-
guage pairs - En-DE, Si-En, Ne-En. While the
ensemble mBERT model, ENSBRT, outperforms
the independent counterparts for all the language
pairs. This shows that the ensemble method can
help to balance out the weakness of any compo-
nent model, thereby benefiting the sentence-level
QE task overall. We also visualize ENSBRT’s pre-
dictions against the ground truth HTER scores in
Figure 1.

Table 3 compares the QE performance between
the BASELINE and ENSBRT in terms of Pearson’s
correlation, RMSE and MAE on the WMT?21 blind
test set, for which the ground truth HTER scores
were not available at the time. We submitted results
for 6 language pairs (En-De, Ro-En, Ru-En, Si-En,
Et-En, Ne-En) in the normal QE setting and one
language pair (Km-En) for zero-shot prediction.
ENSBRT demonstrates comparable performance
to the BASELINE for Pearson’s and outperforms it
in either MAE or RMSE for the following language

pairs: En-De, Ru-En, Et-En and Ne-En.

6 Conclusion

In this work, we describe the ENSBRT system sub-
mission to the WMT21 QE Shared Task. ENSBRT
is based on fine-tuning the multilingual BERT pre-
trained model for sentence-level translation quality
score prediction. We explore three different in-
put settings for fine-tuning which include either
bilingual or monolingual context, and combine the
predictions of the three models using ensemble
methods as our final system. Furthermore, zero-
shot QE is facilitated by using labeled data for
existing language pairs and pseudo-references that
align with the target language of the unseen test
data.
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Figure 1: Visualization comparing HTER score predictions by ENSBRT (i.e., predicted (red)) against the gold
labels (i.e., original (blue)) for 6 language pairs on the test set. X-axis represents each data point and Y-axis is
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HTER prediction to be same as or close to the ground truth.
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