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Abstract

This paper describes Kakao Enterprise’s sub-
mission to the WMT21 shared Machine Trans-
lation using Terminologies task. We integrate
terminology constraints by pre-training with
target lemma annotations and fine-tuning with
exact target annotations utilizing the given
terminology dataset. This approach yields a
model that achieves outstanding results in
terms of both translation quality and term con-
sistency, ranking first based on COMET in
the En→Fr language direction. Furthermore,
we explore various methods such as back-
translation, explicitly training terminologies as
additional parallel data, and in-domain data se-
lection.

1 Introduction

We participate in the WMT21 Machine Trans-
lation using Terminologies Task in four lan-
guage directions, English→French (En→Fr),
English→Chinese (En→Zh), English→Korean
(En→Ko) and Czech→German (Cs→De).

1.1 Task description

The recent COVID-19 pandemic has raised the ur-
gency to translate and distribute the latest medical
information worldwide. However, despite recent ad-
vances in neural machine translation (NMT), trans-
lation in such emerging domains remains a chal-
lenge, as it is unaffordable to collect fair amounts
of quality in-domain parallel data in a short time.
As an alternative, word- or phrase-level dictionaries
of key terms are relatively easier to obtain. These
dictionaries are prevalent in commercial settings,
where customers specify domain-specific jargon
that human translators can attend to. However, in-
corporating pre-specified dictionaries effectively
into NMT models is a non-trivial problem, as NMT

*Work done during the author’s internship at Kakao En-
terprise.

is inherently trained without explicit constraints
compared to statistical approaches.

In this context, the shared task of Machine Trans-
lation using Terminologies is held in five language
directions at WMT21. The task assumes a realis-
tic scenario where parallel and monolingual data
are abundant in generic domains (e.g., news, web
crawl), but only hundreds of word- or phrase-level
term dictionaries are available in the domain of in-
terest — COVID-19. Technically, this poses a chal-
lenge as we must impose terminology constraints
without hurting general translation quality, while
only 1.5% of parallel data contain the provided ter-
minologies. Additional issues such as the 1 : N
mapping of term translations further complicate the
problem.

Evaluating MT systems in specialized domains
diverge from general MT evaluation in that overall
translation quality may not ensure the translation
accuracy of domain-specific terms. This potential
gap calls the need for evaluation metrics that di-
rectly assess the consistent use of terms. Concretely,
three metrics proposed in Alam et al. (2021) are
employed in this task – Exact-Match Accuracy,
Window Overlap, and Terminology-biased Trans-
lation Edit Rate (TERm). The suggested metrics
complement general translation accuracy measured
by standard MT metrics (BLEU, chrF, BERTscore,
COMET) by validating whether terms are trans-
lated faithfully according to the dictionary.

Specifically, human-labeled COVID-19 related
term dictionaries are released in four language
directions (En→Fr, En→Zh, En→Ko, En→Ru),
with around 600 terms for each direction. Excep-
tionally, the dictionary for Cs→De is constructed
automatically and consists of 5,601 parallel terms.

1.2 Related work

Word- or phrase-level constraints have often been
introduced to NMT via constrained decoding to
reinforce specific tokens in the output sequence.
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Combined with terminology dictionaries, con-
strained decoding integrates the target side terms as
decoding-time constraints (Hokamp and Liu, 2017;
Anderson et al., 2017; Post and Vilar, 2018).

Subsequent work has shown that adding inline
annotations to the source sentence as soft con-
straints can improve performance and time com-
plexity when employed with additional source fac-
tor streams (Dinu et al., 2019; Bergmanis and Pin-
nis, 2021). Similarly, a merging approach by adding
markers without modifying the model has also
proven to be effective (Wang et al., 2019).

2 Data

2.1 Cleaning

Both monolingual and parallel corpora of all lan-
guages are preprocessed according to the follow-
ing pipeline. First, we remove non-utf8 or non-
printable characters. Second, we unescape HTML
characters such as &gt;. Finally, we normalize
variations in spaces and punctuation marks. All
cleaning steps are done with Moses scripts (Koehn
et al., 2007). We also use the Moses tokenizer, but
only for European languages (En, Fr, Cs, De) since
Asian languages (Zh, Ko) require language-specific
tokenizers that consider the characteristics of each
language.

2.2 Filtering

Web-crawled data are notorious for being noisy.
To prevent defective data from undermining per-
formance, we filter both parallel and monolingual
data with diverse methods.

Bi-text We filter the provided parallel data with
several heuristics. We first eliminate pairs that con-
tain empty lines or identical content in both source
and the target side. We filter pairs that contain
overly long sentences (250 words) or excessively
long words (50 characters). The pairs that have
a word count ratio larger than four are also omit-
ted. We refer to previous literature to set statisti-
cal thresholds of each rule. Lastly, we only use
pairs of which both sides are identified as the cor-
rect language with a language identification tool.
Specifically, we use fastText (Joulin et al., 2016,
2017).

In addition, for En→Ko, we filter out mislabeled
bi-text which we found manually, that seemed
as byproducts of web-crawl in the source or tar-
get side. For instance, the pattern “YYYY년 MM

En-Fr En-Zh En-Ko Cs-De

Parallel 158M 62M 13M 15M
+ Filter 149M - 12M 13M

Table 1: Dataset sizes of parallel corpora before and
after filtering in each language pair. For En-Zh, we did
not apply rule-based filtering.

월 DD일에확인함 ”, which means “Confirmed in
YYYY/MM/DD”, was found instead of the correct
labels in 20,909 samples. The final dataset sizes are
shown in Table 1.

Mono-text We used monolingual text for two
language pairs (En→Ko, En→Fr) to augment exist-
ing parallel corpora via back-translation (Sennrich
et al., 2016a). The back-translation procedure is
described in Section 3.2.

For En→Ko, we do not apply any filtering
schemes as the size of the Korean monolingual
corpus is small (14M sentences).

On the contrary, for En→Fr, using the en-
tire French monolingual corpora (8.5B) for back-
translation is unwieldy, considering the time and
computation required to infer all samples. Hence,
we filter the corpus and select in-domain, COVID-
19 related data to maintain a reasonable size for
inference and training.

We filter French monolingual data in three steps.
First, we roughly filter the data with rule-based
methods that are similar to those of bi-text filtering.
Second, we choose sentences that contain terms in
the terminology dictionary (8.5B → 725M). Lastly,
we use the Moore and Lewis (Moore and Lewis,
2010) method to find samples that are more sim-
ilar to the term-related samples. Specifically, we
train an in-domain language model with sentences
that contain terminologies from the En-Fr paral-
lel corpus. A general-domain language model is
also trained with samples chosen randomly from
the En-Fr parallel corpus. For both models, we use
KenLM (Heafield, 2011) to train 5-gram language
models with modified Kneser-Ney smoothing. Fi-
nally, top-k sentences with the highest scores are
chosen (725M → 160M).

3 Approaches

3.1 Baseline

We explore two baseline approaches that differ by
their training data. First, models are trained with
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solely the parallel data described in 2.2. This base-
line does not utilize the terminology dictionary.

Second, we take a naïve approach to leverage the
term dictionary – including the provided terms as
additional parallel data to train the model. For 1 :
N mappings of term translations, we flatten them
into N distinct pairs. We refer to this approach as
the “explicit” model in the following sections as
we “explicitly” augment the training dataset with
terminology dictionaries.

3.2 Back-translation

We incorporate back-translated monolingual data
for two language directions: En→Fr and En→Ko.1

We train reverse translation models (Fr→En,
Ko→En) with the same parallel corpora and train-
ing configuration used to train our baseline models
covered in Section 4.2. Back-translated samples
are inferred with beam search of beam size 4, and
a length penalty of 0.6.

For En→Fr, we use back-translated corpora for
Exact Target Annotation fine-tune. We revisit the
details of this procedure in Section 3.4.

For En→Ko, we train the back-translation
model from scratch using both parallel and back-
translated text. During training, we upsample the
parallel corpus twice as frequently as the back-
translated text.

3.3 Target Lemma Annotation

To integrate terminology constraints, we employ
Target Lemma Annotation (TLA) of Bergmanis
and Pinnis (2021), which helps the model learn
how to copy-and-inflect inline annotations. At train-
ing time, we randomly select target lemmas and
inject them into the source sentence behind the
corresponding source word(s).

Specifically, we adopt a simple approach where
we modify the input data but not the model. This
differs from the method described in Bergmanis
and Pinnis (2021), which uses additional input
streams to denote the annotated tokens. In detail,
we introduce three special tokens <b>, <t>, and
</t> which respectively indicate the start of anno-
tated source tokens, the start of target lemma tokens
and the end of target lemma tokens. An example is
shown in Table 2.

Following the training data annotation procedure
of Bergmanis and Pinnis (2021), we first lemma-

1We do not incorporate back-translated corpora of Cs-De
and En-Zh due to time constraints.

Original Source EN and are you having any of
the following symptoms with
your chest pain?

Annotated Source EN and are you having any of
the following <b> symptoms
<t> symptômes </t> with
your chest pain?

Target FR et avez-vous l’un de
symptômes suivants en
plus de vos douleurs tho-
raciques ?

Table 2: An example of using special tokens for inline an-
notations. Inline annotations are marked in bold. <b>, <t>,
</t> denote the start of the annotated source tokens, the start
of the target lemma tokens, and the end of the target lemma
tokens.

Figure 1: The steps in our TLA pre-train → ETA fine-
tune approach and the objective of each phase.

tize and mark part-of-speech tags of the target sen-
tences, using spaCy (Honnibal et al., 2020) instead
of the pre-trained Stanza model (Qi et al., 2020)
due to the time complexity. We then obtain word
alignments using fast_align (Dyer et al., 2013) and
randomly annotate verbs or nouns with their cor-
responding target lemma. To set annotation thresh-
olds, we refer to Bergmanis and Pinnis (2021) –
[0.6, 1.0) for sentence-level and [0.0, 1.0) for word-
level. The annotated and original data are fed into
the model with a proportion of 1:1.

At test time, we provide soft terminology con-
straints by annotating source terms with their cor-
responding target terms retrieved from the termi-
nology dataset. Terminology entries are identified
with the longest word-sequence match in the source
sentence. If there exist several target terms for one
source term, we randomly select one candidate.

3.4 Exact Target Annotation (Fine-tune)
We adopt Exact Target Annotation (ETA) designed
by Dinu et al. (2019) to fine-tune the TLA model
pre-trained as in Section 3.3. ETA injects the exact
target-side translation of a terminology entry into
the source sentence using inline annotations. Note
that we utilized the whole terminology dataset dur-
ing training, unlike Dinu et al. (2019), since the
task allows the use of the terminology dataset at
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training time.
While TLA learns to copy-and-inflect general

words, our terminology dataset is domain-specific.
We aim to fill the domain gap by constructing
fine-tuning data in which terminology entries are
present on both the source and target sides. As a re-
sult, 750K samples from the parallel data and 10M
samples from the back-translated data are selected.
We upsample the parallel corpus by eight times.

Another discrepancy between training and test
time annotation in TLA is that TLA engages a
single target word to the corresponding source
word(s), whereas many of the actual terms are
multi-word expressions in both source and target
sides. We expect ETA fine-tune to alleviate the
problem since ETA annotates target terms in verba-
tim. The pretrain-finetune phases are outlined with
their motivation in Figure 1.

Specifically, we follow the annotation strategy
of Dinu et al. (2019), where we annotate only when
both the source side term ts and the target side
term tt are present. When a sentence contains mul-
tiple matches overlapping each other, we keep the
longest match.

The difference between Dinu et al. (2019) and
our method is that we annotate with three special
tokens as described in Section 3.3. Instead of ran-
domly deciding whether to annotate or not, we an-
notate all matches. We then combine the annotated
data with its original data and use it for training
with a proportion of 1:1. The annotation procedure
at test time is also equivalent to Section 3.3.

4 Experiments

4.1 Evaluation setting

Evaluation of the models is done using the eval-
uation script 2 and the development dataset, both
provided by the task organizers. We select the best
models by considering all metrics provided by the
evaluation script.

For evaluation, we tokenize our outputs so that
they resemble the tokenization setup of the devel-
opment dataset. For En→Fr and Cs→De, we use
the Moses toolkit (Koehn et al., 2007). For En→Zh,
we apply the Jieba tokenizer.3

Before submitting the test set translations, we
handle rare target-side tokens decoded as <unk>
by simple substitutions, which we found to work

2https://github.com/mahfuzibnalam/
terminology_evaluation

3https://github.com/fxsjy/jieba

well during evaluation even without incorporating
external methods such as word alignments. When
the number of <unk> tokens are equal on both
sides, we copy the original source-side tokens to the
target slots in the same order. After replacing rare
tokens, outputs are detokenized using the Moses
toolkit (Koehn et al., 2007).

4.2 Experimental details

For En→Fr and Cs→De, we pre-tokenize the data
using the Moses toolkit (Koehn et al., 2007). We
use sentencepiece (Kudo and Richardson, 2018) to
learn a joint byte pair encoding (BPE) with vocab-
ulary size 40K (En→Fr) and 32K (Cs→De). For
En→Ko, We pre-tokenize Korean sentences with
Mecab (Kudo, 2005) without space tokens as sug-
gested in Park et al. (2021) and use sentencepiece
to learn a BPE model with vocabulary size 32K for
each language side. For En→Zh, we first convert
characters possibly in traditional Chinese to simpli-
fied Chinese text using hanziconv 4 and. Then, we
pre-tokenize the data using the Jieba tokenizer 3.
We then use subword-nmt (Sennrich et al., 2016b)
to train BPE on combined Chinese and English
corpus and build separated vocabularies. The final
vocabulary size is 44K for Chinese and 32K for
English.

For all language directions, we employ the Trans-
former architecture (Vaswani et al., 2017) imple-
mented in fairseq (Ott et al., 2019). The specific
training and generation configurations can be found
in Appendix A.

Since TLA relies on the word-aligner’s perfor-
mance, we did not apply TLA pre-training and
ETA fine-tuning for En→Ko and En→Zh. Given
that both are linguistically distant language pairs,
we assumed that the word-aligner’s performance
would not be sufficient enough to guarantee im-
provements from TLA.

We start ETA fine-tuning from the TLA check-
point saved at 750,000 steps for En→Fr and
200,000 steps for Cs→De, chosen based on BLEU
scores and Exact Match Accuracy. To evaluate the
TLA and ETA fine-tuned models, we run annota-
tion using the terminology tags provided with the
development dataset, which is different from the
test annotations described in 3.3.

For En→Ko and Cs→De, we use an ensemble of
models that utilize back-translation, explicit train-
ing, and data augmentation. The exact ensemble

4https://github.com/berniey/hanziconv

https://github.com/mahfuzibnalam/terminology_evaluation
https://github.com/mahfuzibnalam/terminology_evaluation
https://github.com/fxsjy/jieba
https://github.com/berniey/hanziconv
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System BLEU Exact Match
Window Overlap

(Window 2/3)
1-TERm

En-Fr
Baseline 47.83 0.882 0.31/0.301 0.628
TLA 47.07 0.915 0.282/0.275 0.611
TLA w/o annotation 47.84 0.881 0.305/0.297 0.617
TLA + ETA fine-tune (bi-text only) 47.47 0.932 0.298/0.289 0.615
TLA + ETA fine-tune 48.16 0.929 0.307/0.30 0.631

En-Zh
Baseline 29.08 0.803 0.192/0.194 0.418
Explicit 29.81 0.805 0.192/0.197 0.431

En-Ko
Baseline 12.04 0.412 0.038/0.037 0.129
Baseline + BT 14.14 0.417 0.039/0.037 0.172
Explicit 12.27 0.42 0.034/0.032 0.151
Explicit + BT 14.24 0.464 0.04/0.04 0.184
Ensemble 14.56 0.454 0.043/0.042 0.178

Cs-De
Baseline 30.95 0.832 0.41/0.398 0.434
Explicit 30.77 0.833 0.408/0.396 0.433
Ensemble 32.47 0.848 0.429/0.416 0.445
TLA 28.46 0.924 0.281/0.272 0.395
TLA + ETA fine-tune (bi-text only) 30.14 0.889 0.353/0.342 0.417

Table 3: Evaluation results for each task language pair. Highest scores are boldfaced. Rows in gray indicate our
submitted systems for test evaluation.

configurations are detailed in Appendix B.

5 Results

Table 3 reports the evaluation results of the four
language pairs that we participated in.

5.1 English→French

The TLA model improves Exact Match Accuracy
but shows deteriorated performance on all other
metrics compared to the baseline. Notably, the
degradation stems from the test-annotation method
– test scores are comparable to the baseline when
tested with raw text (without test-annotation) on
the same TLA model.

On the other hand, under the same test-
annotation condition, the ETA fine-tuned model
recovers the performance loss and even boosts the
BLEU score, Exact Match Accuracy, and the 1-
TERm score compared to both the baseline and
the TLA model. TLA + ETA fine-tune outperforms
the baseline by 0.33 points, 4.65%, and 0.24% on
BLEU, Exact Match, and 1-TERm, respectively.

In addition, we run a simple ablation experiment
by using only bi-text data during ETA fine-tuning:
TLA + ETA fine-tune (bi-text only). The results
are indistinguishable from the original TLA + ETA
fine-tune, which is fine-tuned with data from both
bi-text and mono-text. This result supports that the
performance gain stems not only from the use of
monolingual data, which was unseen during TLA
pre-training.

5.2 English→Chinese

We compare two approaches – baseline and ex-
plicit, and observe that adding the term pairs explic-
itly to training improves both general translation
performance (+0.73 BLEU) and term consistency
(+2.29% 1-TERm) compared to the baseline.

5.3 English→Korean

Back-translation yields performance gains across
all metrics with considerable improvements, partic-
ularly in BLEU and 1-TERm. The explicit model
also brings modest improvements to Exact Match
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Language
COMET Exact Match Accuracy Number of

Ours Best Rank Ours Best Rank Submissions

En-Fr 0.781 - 1 0.95 0.974 4-6 22

En-Zh 0.229 0.716 8 0.645 0.886 7-8 8

En-Ko 0.581 - 1 0.569 - 1 1

Cs-De 0.694 - 1 0.866 0.871 1-2 2

Table 4: Official task results of our submitted systems. Scores, where our system ranked 1st, are bold-faced. In
other cases, the best scores from other submissions are shown for comparison.

Accuracy and 1-TERm. Finally, our ensemble
model that combines these approaches demon-
strates the best performance across all metrics, rais-
ing the BLEU score by 2.52 points, Exact Match
Accuracy by 4.2%, Window Overlap by 0.43% and
0.54% for windows 2 and 3 respectively, and 1-
TERm by 4.88 points.

5.4 Czech→German
We discover that the explicit model does not bring
significant gains compared to the baseline model.
This trend contradicts other language directions,
where we observed at least modest improvements
over their respective baselines. We suspect the dif-
ferences lie in how the terminologies are generated;
Cs→De terminologies are constructed automati-
cally, whereas, for other language directions, the
terminologies were annotated manually.

Our ensemble model improves upon the baseline
model by 1.5 BLEU points, 1.6% Exact Match
Accuracy, 1.84% and 1.74% Window Overlap for
window sizes 2 and 3, and 1.1 points in 1-TERm.

We also attempted to apply TLA pre-training
+ ETA fine-tuning to Cs→De as done in En→Fr.
In our preliminary experiments, while some met-
rics improved, we observed Exact Match Accuracy
deteriorate after 1,000 steps of TLA training, un-
like En→Fr, possibly due to the automatic creation
pipeline of Cs→De terminologies. Therefore, we
did not further explore this direction during our task
participation. However, subsequent experiments af-
ter the deadline revealed that TLA, when followed
by ETA fine-tuning, has its advantages in finding a
balance between BLEU and Exact Match Accuracy,
supporting our findings in En→Fr.

5.5 Official task results
We present our official submission results in Ta-
ble 4. Despite the trade-off between general trans-
lation quality (COMET) and term consistency (Ex-

act Match Accuracy), our approach strikes at the
right balance between the two criteria for En→Fr.
Out of 22 submissions in this direction, our system
ranks 1st in COMET. According to Exact Match
Accuracy, our system performs roughly compara-
ble to the best system, ranking 4-6th. For En→Zh,
our system ranks 8th in both metrics out of 8 sub-
missions. For En→Ko, our submission is the only
submission. For Cs→De, our submission ranks 1st
in terms of COMET and 1st-2nd for Exact Match
Accuracy out of 2 submissions.

6 Conclusion

We participate in four language directions for the
shared task WMT21 Machine Translation Termi-
nologies. To this end, we explore various tech-
niques, including back-translation, explicitly train-
ing with term pairs along with other parallel data,
and in-domain data selection to improve translation
performance in the COVID-19 domain.

In particular, for En→Fr and Cs→De, we find
that TLA outperforms the baseline in terms of Ex-
act Match Accuracy by leveraging terminology con-
straints. However, all other metric scores (BLEU, 1-
TERm) plummeted, implying that the overall trans-
lation quality was compromised. We recover this
performance loss by introducing a new technique –
fine-tuning with ETA, and achieve significant im-
provements in both general translation quality and
terminology consistency. We leave it to future work
to validate our approach in other languages and
reveal the factors behind the benefits of ETA fine-
tuning precisely, hopefully, to discover a more suit-
able design to impose terminology constraints.
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A Training configuration
fairseq-train

task : translation
arch : transformer_wmt_en_de_big
lr : 0.0005
lr-scheduler : inverse_sqrt
warmup-updates : 4000
warmup-init-lr : 1e-07
optimizer : adam
adam-betas : (0.9, 0.98)
update-freq : 8
dropout : 0.1
weight-decay : 0
criterion : label_smoothed_cross_entropy
label-smoothing : 0.1
fp16 : True

fairseq-train (ETA fine-tune)
lr : 1e-06
lr-scheduler : fixed
warmup-updates : 0

fairseq-generate
beam : 4
lenpen : 0.6

B Ensemble Configuration

For En→Ko, we use an ensemble of four models
trained with different configurations:

• Baseline + Back-translation

• Baseline + Back-translation + Rule-based fil-
tering

• Baseline + Back-translation + Explicit

• Baseline + Back-translation + Explicit (Paral-
lel corpus upsampling with ratio 2)

For Cs→De, we use an ensemble of four mod-
els trained with different configurations. The third
model concatenates the previous and next sentence
for additional context with probability of 0.1:

• Baseline

• Baseline + Rule-based filtering

• Baseline + Two sentences concatenation (0.1)

• Baseline + Explicit


