
Proceedings of the Sixth Conference on Machine Translation (WMT), pages 795–798
November 10–11, 2021. ©2021 Association for Computational Linguistics

795

TenTrans High-Performance Inference Toolkit for WMT2021
Efficiency Task

Kaixin Wu, Bojie Hu, Qi Ju∗

TencentMT Oteam
{danielkxwu, bojiehu, damonju}@tencent.com

Abstract

The paper describes the TenTrans’s submis-
sions to the WMT 2021 Efficiency Shared
Task. We explore training a variety of smaller
compact transformer models using the teacher-
student setup. Our model is trained by our
self-developed open-source multilingual train-
ing platform TenTrans-Py1. We also release
an open-source high-performance inference
toolkit2 for transformer models and the code
is written in C++ completely. All additional
optimizations are built on top of the inference
engine including attention caching, kernel fu-
sion, early-stop, and several other optimiza-
tions. In our submissions, the fastest system
can translate more than 22,000 tokens per sec-
ond with a single Tesla P4 while maintaining
38.36 BLEU on En-De newstest2019. Our
trained models and more details are available
in TenTrans-Decoding competition examples3.

1 Introduction

We participate in the GPU throughput track of the
Workshop on Machine Translation (WMT) 2021
Efficiency Shared Task. The efficiency task aims at
exploring the different techniques for training and
optimizing GPU models for high throughput while
preserving the highest possible accuracy. While we
do not pay more attention to training techniques,
we apply a variety of optimizations to improve the
computation efficiency of our GPU models in the
inference phase.

In terms of the training phase, we trained a va-
riety of smaller compact student models using the
common teacher-student training approach (Hinton
et al., 2015; Kim and Rush, 2016) on our open-
source multilingual training platform TenTrans-

∗ Corresponding author.
1https://github.com/TenTrans/TenTrans
2https://github.com/TenTrans/

TenTrans-Decoding
3https://github.com/TenTrans/

TenTrans-Decoding/blob/master/examples/
WMT21-Efficiency.md

Py. All of them are based on the deep trans-
former which has proven more effective and has
lower training costs than the wide transformer mod-
els (Wang et al., 2019). For the inference phase,
our strategy for the shared task includes attention
caching, kernel fusion, early-stop, and several other
optimizations. All of these optimizations are em-
ployed in a high-optimized and C++-based infer-
ence engine TenTrans-Decoding.

The paper is structured as follows: Section 2
describes the data preparation and the training de-
tails, then Section 3 presents the variety of ours
optimizations to improve decoding efficiency. The
detailed accuracy and efficiency results are shown
in Section 4. Finally, we conclude our work in
Section 5.

2 Teacher-student Training

To train smaller compact student models, the
teacher-student training approach (Hinton et al.,
2015; Kim and Rush, 2016) is adopted. First, a
large model (the teacher) is trained on all avail-
able bilingual data, included synthetic data gener-
ated by the back-translation (Sennrich et al., 2015a)
method. Multiple model ensembles are also typi-
cally used to build stronger teacher systems. Then,
all our small optimized models (the student) are
created using sequence-level knowledge distilla-
tion (Kim and Rush, 2016) and trained on data
generated from the teacher model. The sequence-
level knowledge distillation is a common technique
that has proven successful for reducing the size of
neural models, especially in NMT tasks.

2.1 Deep Transformer

Transformer networks (Vaswani et al., 2017) are
the current state-of-the-art in many machine trans-
lation tasks, and the deep transformer (Wang et al.,
2019) which simply stacks more encoder layers
has been proved to further enhance the accuracy
of the model. To stabilize the training of the deep

https://github.com/TenTrans/TenTrans
https://github.com/TenTrans/TenTrans-Decoding
https://github.com/TenTrans/TenTrans-Decoding
https://github.com/TenTrans/TenTrans-Decoding/blob/master/examples/WMT21-Efficiency.md
https://github.com/TenTrans/TenTrans-Decoding/blob/master/examples/WMT21-Efficiency.md
https://github.com/TenTrans/TenTrans-Decoding/blob/master/examples/WMT21-Efficiency.md


796

Transformer Nenc Ndec h dmodel dff param. BLEU
Teacher-base-20_6 (2xFFN) 20 6 8 512 4096 160M 39.97
Student-base-20_1 20 1 8 512 2048 88M 39.93
Student-base-10_1 10 1 8 512 2048 58M 39.30
Teacher-tiny-20_1 20 1 8 256 1024 28M 38.36

Table 1: Transformer model configurations and SacreBLEU (Post, 2018) scores on newstest2019.

model, we use the Pre-Norm strategy (Wang et al.,
2019). The layer normalization (Ba et al., 2016)
is applied to the input of every sub-layer which
the computation sequence could be expressed as:
layer normalization−→multi-head attention / feed-
forward −→ residual-add. All of our models are
based on deep transformer architecture.

2.2 Teacher & Student Models

The different model configurations for both teacher
and student models are presented in Table 1. We
train a teacher model and three student model vari-
ant with a different number of encoder layers Nenc,
decoder layers Ndec, hidden size dmodel, and feed-
forward network size dff . We adopt a deep encoder
and a shallow decoder architecture of all student
models, and the number of decoder layers is set to 1
by default. All of our models tie source embedding,
target embedding, and softmax weights.

2.3 Data and Training Details

Dataset Following the shared task setup, we
limit our training data to the WMT 2021 English-
German translation task. The bilingual data used
in the English-German task includes all the avail-
able corpora provided by WMT 2021: Europarl
v10, ParaCrawl v7.1, News Commentary, Wiki Ti-
tles v3, Tilde Rapid corpus and WikiMatrix. For
monolingual data, we only use NewsCrawl2020,
Europarl v10, and News Commentary for back-
translation.
Data preprocessing Then, we normalize punc-
tuation and tokenize all data with the Moses tok-
enizer (Koehn et al., 2007). For the bitext datasets,
we remain sentences no longer than 200 words as
well as sentence pairs with a source / target length
ratio between 0.3 and 2.0. The fast-align tools
(Dyer et al., 2013) are applied to further obtain a
cleaned and high-quality parallel corpus. For the
monolingual dataset, the sentences with words be-
tween 4 and 200 are remained. See Table 2 for
details on the bitext and monolingual dataset sizes.
After that, we use joint byte pair encodings (BPE)

En-De De (mono.)
No filter 49.2M 57.0M
+ length filter 46.9M 55.2M

+ fast-align 41.2M -

Table 2: Number of sentences in bitext and monolin-
gual datasets for different filtering schemes.

with 32K split operations for subword segmenta-
tion (Sennrich et al., 2015b).
Student training First, we train the teacher
model on all available bilingual data, including
synthetic data through the back-translation method,
and we use English-German newstest2019 as the
development set. We ensemble four best models
for building a stronger teacher. Then, the English
part of the bilingual data is translated by the teacher
model and the resulting synthesized parallel data
is used to train the student models. Table 1 shows
their evaluation scores on newstest2019 of different
models. The results correlate well with the expec-
tation that more model parameters lead to better
performance. Our distillation student models show
strong competitiveness even when the number of
parameters is greatly reduced.

3 GPU Inference Optimizations

3.1 Implementation: TenTrans-Decoding

TenTrans-Decoding is an open-source high-
optimized inference engine for transformer mod-
els and the code is written in C++. TenTrans-
Decoding’s goal is to offer a lightweight and rapid
deployment of high-performance service solutions
for executing models. All additional optimizations
are built on top of the inference engine.

3.2 Attention Caching

We apply the common technique of caching linear
projections in Transformer decoder layers. More
specifically, we cache the linear transformations
for keys and values before cross-attention layers
and each step of decoder self-attention layers.



797

3.3 Kernel Fusion
To reduce kernel launching overhead and enhance
the GPU computation efficiency, we implement
many kernel fusion techniques for our Transformer
models.

• Add_bias_residual_layerNormalization For
the layer normalization between two General
Matrix Multiplications (GEMMs), we reor-
ganize the AddBias kernel, residual network,
and LayerNormalization kernel into a single
one.

• Add_bias_ReLU In the Feed-Forward network
layers of the Transformer model, the AddBias
kernel and ReLU kernel are fused into one.

• Add_bias_residual For the output of every en-
coder or decoder layer, we fuse the AddBias
kernel and residual network.

• Fused_multihead_attention In addition to the
fusion techniques above, we also fuse the at-
tention layer by packing GEMMs and bias to
further improve the computation efficiency.

Figure 1 details the kernel fusion techniques of a
transformer decoder layer. The computation graph
of a transformer can be reorganized into a more
compact graph by fusing all the kernels between
two GEMMs into a single one.

layer normalization (input)

masked multi-head attention

add bias + residual +  
layer  normalization

cross multi-head attention

add bias + residual +  
layer  normalization

GEMM8

add bias + ReLU

GEMM9

add bias + residual

GEMM3

x weightQ/K/V  ->  Q / K / V 
(GEMM 0, 1, 2)

 add bias to Q / K / V 
softmax(QK / sqrt(size_per_head)) x V

x weightQ  ->  Q 
encoder_output x weightK/V  ->  K / V 

(GEMM 4, 5, 6)

 add bias to Q / K / V 
softmax(QK / sqrt(size_per_head)) x V

GEMM7

Figure 1: Kernel fusion of a transformer decoder layer.
The part in darker color represent using the kernel fu-
sion technique.

Speed Ratio BLEU
TenTrans-Py 696.5 1.00x 38.91
TenTrans-Decoding 1822.4 2.62x 38.91

+ kernel fusion 2565.4 3.68x 38.82
+ early-stop 2682.5 3.85x 38.82

+ sorted batch 5034.8 7.23x 38.98

Table 3: The decoding speed (source tokens per
second) and SacreBLEU scores on newstest2019 for
student-tiny-20_1. The speed is measured by a single
Tesla P4 GPU and the beam size is 4.

3.4 Early-stop

In batch decoding, the number of decoding ending
steps between sentences is different. The early-stop
strategy which optimizes kernel function is adopted
to avoid redundant computation. For sentences that
have been decoded in batch, there is no additional
computation for these sentences until the whole
batch has been decoded.

3.5 Sorted Batch & Greedy Search

In addition to the methods above, we sort all input
sentences from shortest to longest, and the batch
size is 128 in our settings. The sorting makes the
batches contain sentences of similar sizes which
reduces the amount of padding and increases the
computation efficiency. During decoding, we use
greedy search instead of beam search since we find
the distillation model are insensitive to the beam
size. We skip the final softmax layer and simply
get the maximum from the output logits.

4 Optimization Results

Table 3 shows the impact of different inference op-
timizations when decoding the Student-tiny-20_1
student transformer model. TenTrans-Decoding
leads to a 2.62x speedup than the TenTrans-Py base-
line without any inference optimizations. Combine
all the inference optimizations mentioned above, it
can achieve a 7.23x speedup with no accuracy loss
over the baseline.

Table 4 presents all of our submissions and we
only participate in the GPU-throughput track. As
details in Table 4, we report our model configu-
ration, model size, and metric for translation, in-
cluding SacreBLEU scores on newstest2019 and
the real translation time cost. All of our systems
are tested on a single Tesla P4 GPU. All student
models follow a deep encoder and a shallow de-
coder architecture, the number of decoder lay-



798

transformer Model size Speed (tokens/s) Ratio Time Cost (s) BLEU
Teacher-base-20_6 (2xFFN) 642MB 6274.0 1.00x 9.80 39.97
Student-base-20_1 354MB 12128.1 1.93x 5.07 39.93
Student-base-10_1 234MB 15900.3 2.53x 3.87 39.30
Student-tiny-20_1 113MB 22481.8 3.58x 2.74 38.36

Table 4: Results of all submissions. Time Cost in seconds to translate newstest2019 and BLEU scores are reported
using SacreBLEU. The newstest2019 contains 1997 sentences. All systems were executed on a single Tesla P4
GPU with greedy search.

ers is 1 by default. All student models training
with sequence-level distillation show a competitive
performance. The Student-base-20_1 transformer
achieves a 1.93x speedup over the teacher base-
line with almost no accuracy loss, and the amount
of parameters is greatly reduced. Compared with
the teacher baseline, the Student-base-10_1 trans-
former has a speedup of 2.53x times and a slight
decrease of only 0.67 BLEU. The Student-tiny-
20_1 transformer, our fastest system, which has
one-sixth parameters of the teacher model, achieves
38.36 BLEU on newstest2019 and speeds up the
teacher baseline by 3.58x.

In this version, we do not pay more attention to
the model size, memory footprint, and low preci-
sion inference (e.g., FP16). All operations on the
model are based on FP32 floating-point numbers.
In the future version, we plan to optimize these
points mentioned above.

5 Conclusion

This work presents the TenTrans’s submissions
to the 2021 Efficiency Shared Task of WMT. We
show the deep encoder and shallow decoder student
models that training with sequence-level distilla-
tion can achieve a competitive performance both in
speed and accuracy compared with the teacher base-
line. To further improve computation efficiency,
we combine several optimizations including atten-
tion caching, kernel fusion, early-stop and sorted
batch. Finally, our fastest student model achieves a
speedup of 3.58x times, while only has one-sixth
parameters of the teacher baseline.

In the future, we will apply low-precision in-
ference (e.g., FP16) and more kernel fusion tech-
niques to improve the computation efficiency of
our GPU systems. Furthermore, we will continue
to explore a more efficient teacher-student training
approach to obtain compact student models with
competitive performance both in quality and speed.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Chris Dyer, Victor Chahuneau, and Noah A Smith.
2013. A simple, fast, and effective reparameteriza-
tion of ibm model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–648.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. arXiv preprint
arXiv:1606.07947.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the associ-
ation for computational linguistics companion vol-
ume proceedings of the demo and poster sessions,
pages 177–180.

Matt Post. 2018. A call for clarity in reporting bleu
scores. arXiv preprint arXiv:1804.08771.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015a. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015b. Neural machine translation of rare
words with subword units. arXiv preprint
arXiv:1508.07909.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F Wong, and Lidia S Chao.
2019. Learning deep transformer models for ma-
chine translation. arXiv preprint arXiv:1906.01787.


