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Abstract

Many works proposed methods to improve

the performance of Neural Machine Transla-

tion (NMT) models in a domain/multi-domain

adaptation scenario. However, an understand-

ing of how NMT baselines represent text

domain information internally is still lack-

ing. Here we analyze the sentence repre-

sentations learned by NMT Transformers and

show that these explicitly include the infor-

mation on text domains, even after only see-

ing the input sentences without domains la-

bels. Furthermore, we show that this inter-

nal information is enough to cluster sentences

by their underlying domains without supervi-

sion. We show that NMT models produce clus-

ters better aligned to the actual domains com-

pared to pre-trained language models (LMs).

Notably, when computed on document-level,

NMT cluster-to-domain correspondence nears

100%. We use these findings together with an

approach to NMT domain adaptation using au-

tomatically extracted domains. Whereas previ-

ous work relied on external LMs for text clus-

tering, we propose re-using the NMT model

as a source of unsupervised clusters. We per-

form an extensive experimental study compar-

ing two approaches across two data scenar-

ios, three language pairs, and both sentence-

level and document-level clustering, showing

equal or significantly superior performance

compared to LMs.

1 Introduction

Neural machine translation (NMT, Bahdanau et al.,

2015; Vaswani et al., 2017b) heavily depends on

training data and the text domains covered in it.

Full-scale NMT Transfomer models (Vaswani et al.,

2017b) are usually trained on a mix of corpora from

several domains (Barrault et al., 2020). However,

the field lacks an understanding of how these NMT

models represent the training data domains in their

inner vector spaces.

∗Equal contribution

This paper consists of two main parts. First,

we analyze domain representations learned by the

NMT Transformer. We consider sentence-level as

well as document-level representations via mean

pooling of token contextual embeddings. Our anal-

ysis shows that NMT models explicitly learn to

include the domain information in their representa-

tional spaces across layers. Furthermore, we show

that text representations preserve enough domain-

specific information to reveal the underlying do-

mains with Principal Component Analysis and k-

means clustering without supervision. In the case

of document-level clustering, the result of k-means

matches the original corpora almost perfectly. In

the case of sentence-level clustering, we observe

some deviation between automatic clusters and the

original corpora that the sentences belong to, show-

ing corpus heterogeneity on the sentence level.

Aharoni and Goldberg (2020) previously re-

vealed that a similar property exists in pre-trained

language models (LMs). We compare LMs with

NMT Transformers in how well we can extract un-

supervised domain clusters from them and show

the superiority of NMT models.

In the second part of the paper, we show how

to effectively utilize our analysis to improve an ex-

isting approach to NMT domain adaptation which

uses automatically extracted domains (Tars and

Fishel, 2018; Currey et al., 2020). This method tar-

gets the case when training domain labels are not

precise (e.g. Currey et al., 2020) or missing overall,

as in case of heterogeneous corpora (e.g. Paracrawl,

Esplà et al., 2019). This framework has so far been

used with external models for clustering, which

automatically makes us rely on clusters not neces-

sarily aligned with the objectives of translation or

target data domains.

We propose exploiting clusters extracted from

the NMT baseline (already trained as a part of the

framework) to improve translation quality without

relying on external language models. We test our
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Figure 1: PCA plots of sentence representations extracted from all layers of the 60th checkpoint of the trained base-

line NMT model. Representations are computed with English sentences. The dots, denoting sentences, are colored

according to the domain the corresponding sentences come from. The model learns to distinguish between domains

in its hidden space, despite not being explicitly provided with any information about domains. L0 corresponds to

fixed encoder embeddings, L1–L6 are encoder layers’ representations, L7 shows fixed decoder embeddings and

L8–L13 – the decoder layers’ representations. The figure shows that representations from the same domain cluster

together.

proposal empirically, covering three language pairs

and two data settings: a mix of corpora with known

domain labels and a heterogeneous corpus without

such labels. We show that fine-tuning the NMT

models to the automatically discovered clusters on

average matches or surpasses tuning to the original

corpus labels (when available) and deep LM-based

clusters.

Our contributions are thus two-fold:1

• we analyze the NMT encoder’s representa-

tions, showing their ability to automatically

discover inherent text domains and cluster

unlabelled corpora, testing both sentence-

level and document-level representations (Sec-

tion 3);

• we utilize findings from our analysis to im-

prove an existing Automatic Domains for

NMT approach (Section 4) and perform an

extensive experimental study, showing the su-

periority of our method (Section 5);

2 Related Work

Aharoni and Goldberg (2020) found that BERT

(Devlin et al., 2019) produces meaningful unsu-

pervised domain clusters and used this finding

for NMT data selection. In this work we analyse

(sentence-level and document-level) hidden repre-

sentations produced by a baseline NMT model and

find that it learns superior unsupervised clusters by

itself.

In NMT, domain-specific information on the

word level was recently analyzed by Jiang et al.

1We release our code at https://github.com/

TartuNLP/inherent-domains-wmt21

(2020) in the context of domain mixing in a joint

modular multi-domain NMT system. They found

that representations contain domain-specific infor-

mation related to the multiple domains in different

proportions on the word level. We analyze rep-

resentation on the sentence and document level,

revealing that domain-specific information in rep-

resentations converges to the one specific domain

with a broader context.

Currey et al. (2020) used contextual embeddings

and mean-pooled representation clustering for do-

main adaptation. We compare our approach to

Currey et al. (2020), however in their case the

representations were extracted from multilingual

BERT (mBERT). We cluster based on the NMT

encoder’s representations directly and also experi-

ment with document-level representations in addi-

tion to sentence-level ones.

Before Currey et al. (2020), the automatic do-

mains framework has been used in NMT only with

external models for clustering as well. Tars and

Fishel (2018) used fixed embeddings from Fast-

Text (Bojanowski et al., 2017) for clustering mean-

pooled sentence representations and then either tun-

ing NMT systems to these clusters or supplying the

cluster identity to the NMT system as additional

input for multi-domain translation.

3 Analysis

In this section, we perform an analysis of inherent

domain representations in translation transformers.

We reveal how well the domain-specific informa-

tion in text representations is preserved in NMT

models. We focus on "out-of-the-box" NMT sys-

tems without any changes and explore the extent

https://github.com/TartuNLP/inherent-domains-wmt21
https://github.com/TartuNLP/inherent-domains-wmt21
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to which we can use their internal representations

to match the original text domains using Principal

Component Analysis (PCA) and k-means cluster-

ing. We also measure the effect of using broader

document-level representations.

Additionally, we compare NMT representations

to the ones extracted from a pre-trained language

model, for which Aharoni and Goldberg (2020)

revealed a high degree of domain-specific informa-

tion.

3.1 Models and Data

In our analysis, we start by following Currey et al.

(2020) and similarly to them use a multilingual

LM (XLM-R, Conneau et al., 2020) to obtain clus-

ters. XLM-R is a multilingual masked language

modeling transformer covering 100 languages.

We then train Transformer-base (Vaswani et al.,

2017a) NMT models, which have ∼97M param-

eters each. We train the models on parallel

data covering four corpora/text domains: parlia-

ment speeches (Europarl, Koehn, 2005), medical

(EMEA, Tiedemann, 2012), subtitles (OpenSubti-

tles, Lison and Tiedemann, 2016) and legal (JRC-

Acquis, Steinberger et al., 2006). We sub-sampled

the larger corpora in order to balance the size of

training data across domains. The NMT models

were trained for 60 epochs. A detailed descrip-

tion of the setup, models, and data is provided in

Appendix B.

We focus on sentence-level and document-

level representations, and two language

pairs: English→Estonian (EN-ET) and

German→English (DE-EN).

3.2 Dimensionality Reduction

We start by unsupervised dimensionality reduction

using PCA to visualize domain placement. We

take the development set data, extract token embed-

dings from each model’s layer, and average them

to obtain sentence representations. Then we apply

cosine-based PCA and t-SNE dimensionality reduc-

tion to the representations to visualize the data in

a 2D space, and post factum color each data point

(sentence) according to its corresponding domain.

We show the resulting visualizations in Figure 1

(best viewed in color) for ET-EN (and in Figure 4

for t-SNE in the Appendix A, which mirrors the

PCA result).

Figure 1 shows that NMT partitions the domains

quite well at all encoder hidden layers and deep

decoder layers. Encoder layer 0 corresponds to the

fixed embeddings, and the latent space is not well

partitioned there yet; however, as we go deeper into

the network, the separation increases. Layer 7 is

the decoder’s embedding layer, and there the same

logic applies. While the encoder learns to partition

the hidden space based on domains from scratch,

the decoder has access to the encoder hidden states

via encoder-decoder attention, which might sim-

plify its task.

In summary, Figure 1 is our initial evidence that

the NMT encoder places the domains separably.

3.3 Clustering

Our primary method, however, is unsupervised k-

means clustering. We consider four data clustering

setups: sentence-level XLM-R clusters, sentence-

level NMT clusters, document-level XLM-R clus-

ters, and document-level NMT clusters. The first

one is the baseline clustering approach investigated

by Aharoni and Goldberg (2020) while the remain-

ing three are our original contributions.

3.3.1 Per-layer Clustering Purity

Metric In our analysis, we estimate how well the

NMT model preserves domain-specific informa-

tion in its internal text representations. To do that,

we measure the goodness-of-fit between unsuper-

vised clusters and oracle domains. Specifically, we

follow Aharoni and Goldberg (2020) and use the

clustering purity metric. To compute clustering

purity, we align domains and clusters by the high-

est overlap in numbers of sentences. The number

of overlapping data points for each cluster-domain

pair gives us the number of ’correctly predicted’

examples. Then, the sum of all ’correctly predicted’

examples divided by the total number of examples

will be the clustering purity score.

Embedding and Clustering We first take the

concatenation of a small subset of sentences (3k)

from each of the four domains and try to partition

them into four clusters based on the representations

from each layer of XLM-R and NMT Transformer.

We only use source sentences since we do not have

targets at runtime in NMT. Specifically, we follow

the steps below for each layer of each of the two

models:

1. For each sentence in the dataset, we extract

contextualized token embeddings from a layer

of the model.

2. We use the average of contextualized token

embeddings as sentence representations.
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Figure 2: Sentence-level clustering purity between

clusters obtained with k-means over 3k of EN-ET de-

velopment set sentences and actual data domains. Rep-

resentations extracted from XLM-R, NMT Baseline af-

ter epoch 1, and NMT Baseline after training has fin-

ished (epoch 60). While XLM-R is relatively poor in its

ability to rediscover original domains, representations

extracted from the trained NMT model largely outper-

form it at layers 1-6. Layers 1-6 are the encoder and

7-12 the decoder. The results are for the best clustering

(with least variance) over 10 k-means runs.

3. We apply k-means clustering to sentence rep-

resentations to assign a cluster label to each

sentence.

4. We compute clustering purity for predicted

labels and oracle domains.

We perform ten random restarts of k-means cluster-

ing, selecting the iteration with the smallest within-

cluster variance.

Results Figure 2 shows per-layer clustering pu-

rity computed for sentence representations for

XLM-R and two NMT Baseline checkpoints (after

the first epoch and after the 60th epoch of train-

ing). Figure 2 shows that NMT surpasses the lan-

guage model in its ability to rediscover domains.

About 3.5x higher performance at the encoder lay-

ers shows that the encoder is the part that learned to

be very aware of the input domains (in an unsuper-

vised way). Figure 2 also shows that the checkpoint

saved after the 1st training epoch rediscovers clus-

ters slightly better then 60th checkpoint. However,

this does not suggest that an NMT model should be

trained for one epoch since the translation quality

is suboptimal early on. Instead, we assume that

the model quickly learns domain-specific informa-

tion (perhaps due to the common lexical statistics)

and then slightly "moves away" towards a higher

level of abstraction as training progresses. This

abstraction is necessary to successfully learn a task

as complex as NMT.

EN-ET DE-EN

train dev test train dev test

sentence
XLM-R 53.47 52.9 50.07 44.04 49.2 48.6
NMT 67.21 72.56 70.7 66.32 70.02 72.28

document
XLM-R 85.77 72.89 70.14 97.64 91.74 95.23
NMT 99.61 100.0 99.1 99.21 97.58 99.78

Table 1: Clustering purity. We trained the NMT model

on about 2m EN-ET or DE-EN sentences from multi-

ple corpora and used pre-trained XLM-R Base model.

Based on the Figure 2, we used the 4th layer to extract

source representations from the NMT model and 8th

layer for XLM-R. The results are for the best clustering

(with least variance) over 10 k-means runs. Both NMT

and XLM-R rediscover inherent data domains when

document level representations are used, and seem to

produce more customized separations when clustered

based on sentence-level. NMT tends to be better at re-

discovery.

3.3.2 Large-scale Clustering

Next, we repeat the same steps for the entire train-

ing dataset and include a second language pair.

Specifically, we pick one of the best performing

layers (4th for NMT and 7th for XLM-R) based

on the experiment above and use it to cluster the

training part of the multi-domain machine transla-

tion training set (about 500k examples per domain,

2M in total). We then predict cluster labels for the

training examples and use the same model to clus-

ter unseen examples from the development and test

set.

We also extend our analysis to the document-

level scenario. Specifically, we average over sen-

tence representations to get document embeddings

and cluster-based on them. Then, we assign the

predicted label for each document to each sentence

in that document.2

Results We present large-scale clustering confu-

sion matrices in Figure 3 and clustering purity in

Table 1. These show that sentence-level NMT is

generally better than sentence-level XLM-R at re-

discovering domains. However, they both show

quite modest results for both language pairs. At the

same time, document-level clusters are much better

at rediscovering original domains.

2Sentence pairs coming from the same XML file were
considered to belong to the same document. The training,
development and test sets in all experiments were constructed
in such a way that a document is always included in one set in
its entirety.
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Figure 3: Corpus-cluster confusion tables for about 2M sentences for EN-ET for (a) the training and (b) test sets.

The numbers are percentages for each domain (column). NMT document clusters almost perfectly match original

data domains. On the sentence level, however, both NMT and XLMR learn a more customized notion of clusters,

with NMT being more aligned with original domains.

The reason for that might be that sentence-level

clustering largely relies on the more shallow infor-

mation in the text. For example, we observed that

both sentence-level NMT and XLM-R produced a

cluster responsible for extremely short sentences

(the average sentence length is about four tokens for

these clusters). On the other hand, document-level

representations factor out these shallow stylistic

features by averaging over sentence representations.

Therefore, the models are inclined to cluster by

topics. An alternative explanation is that domain-

specific lexical statistics, which not all sentences

might preserve, get more robust as we average sen-

tence embeddings to get a document embedding.

Even though sentence-level clustering maintains

a general idea about oracle domains, they split

sentences into clusters quite freely. For example,

JRC-Acquis consistently gets mixed with Europarl,

which both belong to legal domains. We can see it

from NMT SENT for both language pairs.

For documents, the rediscovery trend is common

and pronounced for both language pairs, and sepa-

ration is generally consistent between train and test.

However, for EN-ET XLM-R DOC we can observe

that EMEA and JRC-Acquis got split between two

clusters in the training set. Considering that we

perform ten random k-means restarts and choose

the best iteration, this suggests that XLM-R may

become inconsistent (as a source of sentence repre-

sentations on the document level) in some cases.

Figure 5 in Appendix A shows similar heatmaps

for DE-EN. DE-EN is consistent with what we ob-

serve for EN-ET apart from XLM-R DOC, where

the DE-EN diagonal is cleaner.

4 Practical Application

Our analysis in Section 3 revealed that NMT mod-

els represent domains in their embedding space

separately, similarly to what pre-trained language

models do (Aharoni and Goldberg, 2020). We

demonstrated that simple clustering on NMT repre-

sentations allows recovering original data domains

to a large degree.

This section proposes to utilize this finding to im-

prove an existing framework of automatic domain

generation for NMT. In this framework, related

work first clusters the training data using represen-

tations from an external encoder, and then the base-
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line NMT model is adapted (fine-tuned) on each

cluster separately. We propose to re-use the NMT

baseline itself as the encoder in this framework.

Representations extracted from translation Trans-

formers are specific to the task of translation. We

hypothesise that it might result in clusters most

suitable for downstream translation tasks like fine-

tuning to specific domains/clusters.

Moreover, an advantage of our scenario is that

we cluster the same data (with our NMT model)

that we use for NMT model training. It is a frequent

multi-domain NMT setup, where multiple target

domains are available in training. In the pre-trained

language model setup, the data will be more out-

of-domain, despite the model’s generality.

4.1 Existing Framework (Background)

In this subsection we describe an existing frame-

work which uses automatic domains (clusters) to

perform NMT domain adaptation (Tars and Fishel,

2018). Recent work (Currey et al., 2020) employs

large pretrained language models as part of the

framework. It consists of several steps.

In step 1.1, we begin with a single heteroge-

neous dataset ("Original Dataset") and train a

baseline NMT model on it. At the same time

(step 1.2), we pass this dataset through the exter-

nal pre-trained XLM-R model to extract hidden

sentence/document representations for the whole

dataset. In step 2, we use the extracted sen-

tence/document representations to train a k-means

clustering model. In step 3, we use this k-means

model to separate the original dataset into sub-

datasets corresponding to the clusters. Lastly, we

use the cluster-specific datasets to fine-tune the

baseline NMT model from step 1.1 on each dataset

separately, resulting in a set of specialized models.

We use the k-means model at runtime to determine

which NMT model to use to translate a new sen-

tence/document. If we only use sentence clusters,

the approach is equivalent to the one proposed by

Currey et al. (2020). Refer to Figure 6 from Ap-

pendix A for the illustration of the steps described

above.

4.2 Improved Framework (Ours)

In this subsection we describe our modification to

the existing automatic domains pipeline presented

in Section 4.1.

We propose reusing an NMT baseline to produce

sentence representations for the clustering step in-

stead of using an external encoder. Specifically, in

step 1, we train a baseline NMT model just like in

the existing framework. However, we found we can

omit using the XLM-R model (step 1.2). Instead, to

extract sentence/document representations for step

2, we reuse the trained NMT baseline. The rest of

the pipeline remains the same. Figure 7 (Appendix

A) illustrates the updated framework.

Moreover, to produce clusters in both frame-

works, we additionally study text representations

on the level of documents.

5 Experiments

In this section we perform an extensive experimen-

tal study comparing performance of the existing

automatic domains framework (Section 4.1) with

our proposed version (Section 4.2). We experiment

with both sentence-level and document-level rep-

resentations as a basis for k-means algorithm on

three language pairs and two data scenarios.

We first train baseline Transformer NMT models

on concatenated data from all domains (same base-

line as in Section 3) and then cluster the training,

development, and test data using either this same

baseline or XLM-R. Next, we fine-tune3 our base-

line models to the different obtained data partitions

(clusters) and compare the translation quality of

resulting fine-tuned (adapted) models.

5.1 Setup

We explore two data scenarios. First, we perform

experiments on a mixture of distinct corpora. For

these experiments, we reuse the data and concat

baseline NMT model (Transformer-base) described

in Section 3 (EN-ET and DE-EN). In this set-

ting, we can compare the performance of models

fine-tuned to automatically discovered domains to

that of oracle models (fine-tuned using known do-

mains/datasets). We also randomly partition the

data (into equal parts) and fine-tune the baseline

models to them to get our lower bound estimates.

Second, we explore a scenario with a single

corpus, which is highly heterogenous, and thus

may contain multiple domains which are unknown.

In this setting, we use the ParaCrawl (Esplà

et al., 2019) parallel corpus4, which consists of

diverse documents crawled from the web. We use

three language pairs: English→Estonian (EN-ET),

German→English (DE-EN), and English→Czech

3We use the terms "fine-tuning" and "NMT domain adap-
tation" interchangeably.

4https://paracrawl.eu/
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(EN-CS). We use ∼3M sentence pairs for all lan-

guages for training, and ∼3,000 sentence-pairs for

development and testing. The exact experimental

setup with data sizes, training and preprocessing

details can be found in in Appendix B.

For our concat baselines we follow the setup

from Section 3.1 (described in more detail in Ap-

pendix B). In the mixture of corpora experiments,

baseline fine-tuning is performed for 50 epochs,

and in the single heterogenous corpus experiments

for 25 epochs (fine-tuning hyperparameters can be

found in Appendix B). For comparison, we also

continue training the baseline models for longer

as suggested by Gururangan et al. (2020) (concat-

cont). We continue training for the same number of

epochs fine-tuning is done for in the corresponding

experiment.

For each of the models, we evaluate the check-

point which shows the highest BLEU score on the

particular model’s development set, and translate

the test sets with beam size set to 5. We use the

BLEU score (Papineni et al., 2002), specifically,

the sacreBLEU implementation (Post, 2018) to as-

sess the models’ translation performance. To test

for statistical significance, we use paired bootstrap

resampling (Koehn, 2004).

5.2 Labelled Domain Mix Experiments

In this section we consider a scenario which can

be practically interesting in cases where the data

consists of several distinct domains with the labels

unavailable or corrupted as in Currey et al. (2020).

Moreover, it serves as an oracle experiment show-

ing how well automatic domains perform compared

to the golden labels. This way we have a better idea

what to expect when applying them to unlabeled

data as in Section 5.3.

Table 2 shows the results for DE→EN. We see

that, for all corpora except Europarl, at least one

model of the two that are based on document-level

clustering always manages to surpass the oracle

performance obtained by fine-tuning to known do-

mains, and on Europarl the document-level mod-

els perform comparably to oracle. In most cases,

document-level models show significantly better

translation quality than XLM-R sentence-level

models, which have been used in previous work,

while NMT sentence-level models closely match

the performance of XLM-R sentence ones. When

scores are averaged over all four domains, docu-

ment clustering obtained from the NMT encoder is

EP OS JRC EMEA avg

concat 37.2 21.7 52.3 73.8 46.25
concat-cont 37.2 22.3 52.4 73.7 46.40
oracle 37.4 22.6 53.4 74.7 47.03

sentence
XLM-R 36.6 22.4 52.8 73.9 46.43
NMT 36.6 22.3 52.8 74.0 46.43

document
XLM-R 37.3** 22.9* 53.0 75.0** 47.05
NMT 37.3** 22.5 53.7** 75.4** 47.23

random 36.8 22.4 51.7 73.3 46.05

Table 2: BLEU scores of the DE-EN baseline mod-

els, models fine-tuned to known corpora (oracle), to

the proposed automatic domains, and to a random par-

titioning of the data. EP, JRC, EMEA and OS stand

for Europarl, JRC-Acquis, EMEA and OpenSubtitles

test sets, respectively. Statistically significant improve-

ments of our proposed methods over sentence-level

XLM-R clustering are marked with * (p ≤ 0.05) or

** (p ≤ 0.01). Document-level clustering matches and

slightly surpasses the performance of fine-tuning on or-

acle domains.

the overall winner.

Table 3 shows results for the EN→ET language

pair. While fine-tuning on oracle domains yields an

average improvement of 0.8 BLEU points over the

baseline, fine-tuning on unsupervised document

clusters obtained from the NMT encoder allows

us to match that performance. However, for the

EMEA test set XLM-R sentence clusters turn out

to be the most successful approach, showing sig-

nificantly higher BLEU scores than all other auto-

matic partitions and outperforming the oracle by

1.2 BLEU points, while document-level NMT clus-

tering also manages to surpass the oracle perfor-

mance, albeit slightly. For OpenSubtitles and JRC-

Acquis, oracle shows the highest overall scores,

with document-level NMT clustering a close sec-

ond, outperforming XLM-R sentence clustering by

a noticeable margin. For OpenSubtitles, however,

none of the automatic domain approaches manage

to improve the baseline performance (and neither

does continued training of the baseline), and even

the oracle partition does not manage to do so by

a statistically significant degree. For Europarl, all

automatic domain approaches yield comparable

BLEU scores, with none being significantly better

or worse than XLM-R sentence clusters.

Document-level XLM-R automatic domains

have a low average score due to underperforming

on the EMEA test set. We see from Figure 3 that

this is a case of train-test mismatch: the EMEA
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EP OS JRC EMEA avg

concat 28.7 19.1 47.3 47.8 35.725
concat-cont 28.8 18.5 48.4 48.5 36.050
oracle 28.7 19.2 50.0 48.2 36.525

sentence
XLM-R 29.0 18.6 48.9 49.4 36.475

NMT 29.1 18.7 49.0 48.1†† 36.225
document

XLM-R 29.2 18.6 47.9†† 39.2†† 33.725

NMT 29.1 19.0* 49.8** 48.4†† 36.575

random 28.5 18.5 47.1 47.0 35.275

Table 3: BLEU scores of the EN-ET baseline mod-

els, models fine-tuned to known corpora (oracle), to

the proposed automatic domains, and to a random par-

titioning of the data. EP, JRC, EMEA and OS stand

for Europarl, JRC-Acquis, EMEA and OpenSubtitles

test sets, respectively. Statistically significant improve-

ments of our proposed methods over sentence-level

XLM-R clustering are marked with * (p ≤ 0.05) or

** (p ≤ 0.01), daggers mark results which are signif-

icantly lower than for sentence-level clustering based

on XLM-R († and †† denote p ≤ 0.05 and p ≤ 0.01,

respectively). Document-level clustering as well as

XLM-R based sentence-level clustering match the per-

formance of the fine-tuning on oracle domains.

test set is mostly translated by the model fine-tuned

on cluster 1, whose training set predominantly con-

sists of Europarl data. Cluster 0, which sees the

most EMEA examples during fine-tuning, is not

used to translate the test set at all, as we see from

Figure 3.

5.3 Heterogeneous Corpus Experiments

In this subsection we present results for our method

applied to the Paracrawl dataset, which consti-

tutes a heterogeneous corpus of data crawled from

the web with no training-time domain information

known.

EN-ET We first experiment on the EN-ET lan-

guage pair. While in the multi-corpus setup we

chose the number of clusters to match the num-

ber of different corpora in our training set, in the

ParaCrawl experiments we do not have a prede-

fined number of domains. Therefore, we experi-

ment with separating the dataset into 3, 4, 5, and 8

clusters.

The resulting BLEU scores for EN-ET are shown

in Table 4. Fine-tuning based on NMT and XLM-R

clustering of the data outperforms a strong concat-

cont baseline by 0.2-1.6 BLEU points depending

on the choice of embedding model and clustering

N of clusters 3 4 5 8

concat 46.1 46.1 46.1 46.1
concat-cont 46.6 46.6 46.6 46.6

sentence
XLM-R 47.0 46.8 47.1 47.0
NMT 46.9 47.1 47.6** 47.4*

document
XLM-R 46.8 47.2* 47.3 47.6**
NMT 46.8 47.0 47.2 48.2**

random 46.1 45.9 45.5 45.3

Table 4: BLEU scores of models trained on EN-ET

ParaCrawl and fine-tuned to different numbers of au-

tomatic clusters and to a random partitioning of the

data. Statistically significant improvements of our pro-

posed methods over sentence-level XLM-R clustering

are marked with * (p ≤ 0.05) or ** (p ≤ 0.01).

For different numbers of clusters different approaches

score best, but the best result overall is obtained with

document-level NMT and 8 clusters.

level. The best result overall is achieved by our

document-level NMT clustering, which also out-

performs all other approaches with 8 clusters by at

least 0.6 BLEU. Both document-level approaches

improve their performance with a growing number

of clusters. With 3 clusters, all clustering methods

show comparable results, with none being signifi-

cantly better or worse than sentence-level XLM-R.

Document-level XLM-R and sentence-level NMT

significantly outperform sentence-level XLM-R

with 4 and 5 clusters, respectively.

EN-CS & DE-EN As separating the data into

8 clusters yields the highest BLEU score among

all fine-tuning scenarios for EN→ET, we choose

this number of clusters for experiments on other

language pairs. Table 5 shows the BLEU scores

for EN→ET, EN→CS, and DE→EN models fine-

tuned to automatic domains.

For EN-CS, only the NMT sentence-level cluster-

ing manages to outperform the baseline, noticeably

surpassing all other automatic domain extraction

methods as well.

For DE-EN, none of the approaches outper-

form the baseline model by a considerable margin.

Sentence-level clustering based on XLM-R per-

forms comparably to the baseline. Document-level

NMT clustering shows a slightly lower score, but

the difference is not statistically significant. At the

same time, document XLM-R and sentence NMT

perform worse than sentence XLM-R.
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EN-ET EN-CS DE-EN

concat 46.1 44.4 48.2
concat-cont 46.6 44.3 48.1

sentence
XLM-R 47.0 44.2 48.3

NMT 47.4* 44.9** 48.0†

document

XLM-R 47.6** 44.2 47.9††

NMT 48.2** 44.2 48.0

random 45.3 43.6 47.5

Table 5: BLEU scores of models trained on ParaCrawl

and fine-tuned to automatic clusters and to a random

partitioning of the data on three language pairs. For

each language pair we use ~3M training examples and

split the data into 8 clusters. Statistically significant

improvements of our proposed methods over sentence-

level XLM-R clustering are marked with * (p ≤ 0.05)

or ** (p ≤ 0.01), Daggers mark results which are

significantly lower than for sentence-level clustering

based on XLM-R († and †† denote p ≤ 0.05 and

p ≤ 0.01, respectively).

5.4 Additional Exploration

While automatic domains demonstrate reasonable

performance for EN-ET and EN-CS language pairs,

DE-EN does not seem to benefit from either XLM-

R or NMT-based clustering. In this section we

perform additional experiments with DE-EN data

to see whether there are conditions under which

automatic domains could be beneficial in this case.

Data Size and Number of Clusters First, we in-

crease the training data size and vary the number of

clusters. Specifically, we use 10M parallel sentence

pairs for training instead of 3M, and partition the

dataset into 4 and 12 clusters instead of 8.

The resulting BLEU scores for DE-EN are

shown in Table 6. We do not observe any signifi-

cant improvement over the concat-cont baseline for

any of the methods. With the data separated into

12 clusters, sentence-level NMT clustering signifi-

cantly outperforms sentence-level XLM-R, but still

does not beat continued training of the baseline.

Model Size It is also possible that NMT needs

different model capacity for handling different lan-

guage pairs, so we experiment with decreasing the

model size. We use the same number of layers,

but decrease the width of the model (4 attention

heads, embeddings of size 160, dimension of the

feed-forward layer 320) so that the total number

of parameters decreases five-fold. We compute

NMT clusters based on the new, smaller baseline

N of clusters 4 12

concat 50.6 50.6
concat-cont 50.9 50.9

sentence
XLM-R 50.9 50.6
NMT 51.0 50.9*

document
XLM-R 51.1 50.8
NMT 51.1 50.8

random 50.2 49.8

Table 6: BLEU scores of models trained on 10M sen-

tence pairs from DE-EN ParaCrawl and fine-tuned to

4 and 12 automatic clusters. The data size is increased

compared to the previous experiments, the NMT model

size remains the same. We see an improvement in base-

line performance, but no improvement in the perfor-

mance of fine-tuned models. Statistically significant

improvements of our proposed methods over sentence-

level XLM-R clustering are marked with * (p ≤ 0.05).

model. Our motivation for this is to understand

whether automatic domains are not useful for DE-

EN ParaCrawl at all, or could aid a weaker baseline.

The results are shown in Table 7. The smaller

baseline does benefit from adaptation to automatic

domains (clusters). While NMT clusters are gener-

ated by a model which is 5 times as small, XLM-R

and NMT show equivalent performance.

6 Discussion

Our analysis is implicit inductive evidence for the

high degrees of domain-specific information in sen-

tence and document NMT representations. How-

ever, it is still open to what kind of information is

preserved (topical/stylistic/lexical).

For example, our approach could result in clus-

ters by domain/dataset due to standard lexical statis-

tics and not sentence semantics. However, on the

practical side, we show that adapting NMT to these

types of clusters is just as good or better as to other

possible types of clusters since it benefits the base-

line performance. Moreover, previous work that

uses pre-trained language models to obtain the clus-

ters is likely to suffer from the same issue.

Moreover, while XLM-R is a general-purpose

encoder, NMT models are only that helpful for

domains we train them on. However, the data con-

stitutes all domains of interest by definition for a

multi-domain NMT (the task we tackle). Thus,

NMT models are a perfect fit that simplifies and

outperforms an existing approach.
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Model size Base Small

concat 48.2 44.2
concat-cont 48.1 44.8

sentence
XLM-R 48.3 45.2

NMT 48.0† 45.4
document

XLM-R 47.9†† 45.1
NMT 48.0 45.4

random 47.5 44.0

Table 7: BLEU scores of models trained on 3M sen-

tence pairs from DE-EN ParaCrawl and fine-tuned to 8

automatic clusters. The Base NMT model has the same

configuration as in previous experiments (Transformer-

base), while the Small model has 5 times fewer param-

eters. The smaller model benefits from fine-tuning to

automatic domains, but does so starting from a weaker

baseline performance. Daggers mark results which are

significantly lower compared to sentence-level cluster-

ing based on XLM-R († and †† denote p ≤ 0.05 and

p ≤ 0.01, respectively).

7 Conclusion

In this work, we made a two-fold contribution. The

first is to the field of NMT interpretation and anal-

ysis. We have shown that a baseline Transformer

NMT encoder preserves enough domain-specific in-

formation to distinguish between oracle domains in

a mixed corpus without supervision. We showed an

evolution of this property across the Transformer

layer using PCA and k-means clustering on the

level of sentences and documents. Comparison

to XLM-R based clusters demonstrated that both

sentence-level and document-level NMT clusters

show higher cluster purity (similarity to original

text domains).

Next, we utilized our analysis insights to im-

prove an existing practical cluster-based multi-

domain NMT approach (Tars and Fishel, 2018;

Currey et al., 2020). In a setting with preset do-

mains (i.e., available corpus/domain labels), tuning

to NMT clusters on average matches or surpasses

XLM-R clusters. Additionally, NMT cluster-based

tuning mostly matches the translation quality when

tuning to original corpus labels, with some excep-

tions that we also analyze and explain.

Finally, in the case of a heterogeneous corpus

(ParaCrawl), the performance of fine-tuned NMT

models depends on the number of clusters, lan-

guage pairs, and other parameters. We see signif-

icant improvement for EN-ET and EN-CS trans-

lation when comparing XLM-R and NMT-based

clusters (on both sentence and document levels).

For DE-EN, the domain tuning results depend on

the NMT model’s capacity for learning each lan-

guage pair’s translation.
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Marta R. Costa-jussà, Christian Federmann, Yvette
Graham, Roman Grundkiewicz, Barry Haddow,
Matthias Huck, Eric Joanis, Tom Kocmi, Philipp
Koehn, Chi-kiu Lo, Nikola Ljubešić, Christof
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A Analysis

A.1 Additional Figures

Figures 4 and 5 support our analysis in Section 3

while Figures 6 and 7 illustrate frameworks from

Section 4.

Figure 6: Existing automatic domains framework (pre-

vious approach).

Figure 7: Updated automatic domains framework

(ours).

A.2 Language Model

XLM-R Base Our model of choice from the fam-

ily of BERT-like models is the Base version of the

XLM-R (Conneau et al., 2020). It is a single multi-

lingual model covering about 100 languages, which

is very useful when dealing with machine transla-

tion systems, where for different language pairs

we may not have a separate monolingual BERT

for each source language. We choose XLM-R as

opposed to the multilingual BERT (Devlin et al.,

2019) since it is a more recent and better perform-

ing (Hu et al., 2020) model. We choose the Base

version because it is most compatible to our NMT

baseline in terms of capacity.

B Experiments Setup

B.1 Data

For multi-domain fine-tuning (Section 5.2) we

experiment on German→English (DE-EN) and

English→Estonian (ET-EN), and for the heteroge-

nous corpus task (Section 5.3) we also evaluate on

English→Czech (EN-CS).

We use Europarl (proceedings of the European

Parliament) (Koehn, 2005), JRC-Acquis (legal

documents of the European Union) (Steinberger

et al., 2006), EMEA (documents of the European

Medicines Agency) (Tiedemann, 2012) and Open-

Subtitles (movie and TV subtitles) (Lison and

Tiedemann, 2016)6 in the multidomain fine-tuning

experiments. Data from the four corpora was ap-

proximately balanced. Around 500,000 training

sentence pairs were taken from each of the corpora

(except for EN-ET EMEA, where only 400,000 sen-

tence pairs were available after cleaning), making

the total size of the training set 1.9M sentence pairs

for EN-ET and 2M for DE-EN. Development and

test sets contain at least 3,000 sentences per corpus.

The exact sizes of training, development and test

sets can be found in Table 9. We test sentence-

level and document-level clustering of the texts.

For Europarl, JRC-Acquis, EMEA and OpenSub-

titles, sentence pairs coming from the same XML

file were considered to belong to the same docu-

ment. The training, development and test sets in

all experiments were constructed in such a way

that a document is always included in one set in

its entirety (hence the irregular sizes of the train,

development and test sets).

For the single heterogeneous corpus experi-

ments we use v.7.1 of publicly available7 Paracrawl

dataset for all three language pairs. The training set

sizes are 3M for all sentence pairs unless otherwise

noted. Development and test sets contain at least

3,000 sentences per corpus in all experiments. The

exact sizes of training, development and test sets in

each of the experiments can be found in Tables 8, 9,

6https://opus.nlpl.eu/
7https://paracrawl.eu/
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Figure 4: t-SNE plots of sentence representations extracted from all layers of the 60th checkpoint of the trained

baseline NMT model. The dots, denoting sentences, are colored according to the domain the corresponding sen-

tences come from. The model learns to distinguish between domains in its hidden space, despite not being explicitly

provided with any information about domains. The figure shows that representations from the same domain cluster

together.

and 10. In the ParaCrawl experiments, documents

were matched by the source sentence URLs. The

dataset is separated into webpage-based documents

which we use to compile document-based clusters

of representations produced by the baseline NMT

and XLM-R models. The training, development

and test sets in all experiments were constructed in

such a way that a document is always included in

one set in its entirety.

Several basic cleaning steps were applied to the

corpora. Sentence pairs were discarded if:

• either the source or the target side was an

empty string;

• either the source or the target side contained

more than 100 tokens;

• one of the sentences in the pair contained at

least 9 times as many tokens as the other;

• more than half of the characters in either

the source or the target sentence were non-

alphabetic characters (noisy source or target)

In some corpora there are many sentence pairs

that occur multiple times. Therefore, to avoid un-

fairly inflating the test scores, sentence pairs that

also occur in the training set were removed from

the development and test sets for BLEU score cal-

culation in the multi-corpus experiments.

The data was split into subwords using Senten-

cePiece (Kudo and Richardson, 2018) with vocab-

ulary size set to 32,000. No other pre-processing

steps were applied.

B.2 NMT Training

We train Transformer machine translation models

using the Fairseq toolkit (Ott et al., 2019). The mod-

els have a standard configuration, mostly follow-

ing the Transformer-base settings (Vaswani et al.,

2017a): 6 encoder and 6 decoder layers, embed-

ding dimension 512, feed-forward layer dimension

2048. The initial learning rate was set to 5× 10
−4,

with inverse square root learning rate scheduler

with 4,000 warm-up updates. The loss function is

label-smoothed cross entropy with label smooth-

ing α equal to 0.1. We use Adam optimizer, with

β1 = 0.9 and β2 = 0.98. Dropout probability is

set to 0.3. The source and target vocabularies are

shared. Model checkpoints are saved at the end of

each epoch.

When fine-tuning, we pre-train the model with-

out any explicit domain specific information, and

then initialize each model with the parameters of

the baseline’s checkpoint from the 60th epoch. In

the mixture of corpora experiments, fine-tuning

is performed for 50 epochs, and in the single het-

erogenous corpus experiments for 25 epochs (our

experiments show that for the overwhelming ma-

jority of models the checkpoint which has the best

BLEU score on the development set occurs be-

fore 25 epochs of fine-tuning). Fine-tuning was

performed with initial learning rate 1.25 × 10
−4,

reducing by a factor of 0.5 every time the devel-

opment loss has not improved for 3 consecutive

epochs. For comparison, we also continue training

the baseline model for the same number of epochs

fine-tuning is done for. For each of the models, the

translation is done with the checkpoint which has

the highest BLEU score on the particular model’s

development set.

We use the BLEU score (Papineni et al., 2002),

specifically, the sacreBLEU implementation (Post,

2018) to assess the models’ translation perfor-

mance. To test for statistical significance, we use
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(a) DE-EN Train
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Figure 5: Corpus-cluster confusion tables for about 2M sentences for DE-EN for the training (a) and test (b) sets.

Document clusters rediscover original domains and NMT while sentence clusters tend to learn more customized

notion of clusters. In general, NMT is more aligned to the oracle domains then BERT.

Europarl JRC-Acquis OpenSubtitles EMEA total

train 500,697 (910) 500,207 (8,874) 501,510 (620) 500,070 (941) 2,002,484 (11,345)

dev 3,566 (2) 3,106 (78) 4,306 (6) 3,406 (10) 14,384 (96)

test 3,265 (12) 3,008 (65) 3,063 (3) 5,908 (18) 15,244 (98)

Table 8: Number of sentence pairs (and documents) from each corpus (Europarl, JRC-Acquis, OpenSubtitles,

EMEA) in the training, development and test sets of the DE-EN model trained on a mixture of known corpora

Europarl JRC-Acquis OpenSubtitles EMEA total

train 500,166 (1,979) 500,020 (8,877) 500,876 (563) 410,540 (732) 1,911,602 (12,151)

dev 3,716 (7) 3,005 (91) 3,044 (3) 3,348 (10) 13,113 (111)

test 3,107 (16) 3,190 (91) 3,085 (4) 3,315 (12) 12,697 (123)

Table 9: Number of sentence pairs (and documents) from each corpus (Europarl, JRC-Acquis, OpenSubtitles,

EMEA) in the training, development and test sets of the EN-ET model trained on a mixture of known corpora

EN-ET EN-CS DE-EN 3M DE-EN 10M

train 3,163,124 (366,120) 3,000,000 (777,448) 3,000,013 (546,015) 10,000,000 (1,819,571)

dev 3,064 (400) 3,019 (737) 3,018 (618) 3,018 (618)

test 3,130 (300) 3,011 (770) 3,007 (563) 3,007 (563)

Table 10: Number of sentence pairs (and documents) in the training, development and test sets of the EN-ET,

EN-CS, and DE-EN models trained on data from one heterogenous corpus (ParaCrawl)
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paired bootstrap resampling (Koehn, 2004).

The models were pre-trained and fine-tuned ei-

ther on one NVIDIA V100 GPU with 32GB of

RAM with maximum batch size 15,000 tokens per

node or on two NVIDIA V100 GPU’s with 16GB

of RAM with maximum batch size 7,500 tokens per

node. The only exception is the DE-EN ParaCrawl

model with 10M training sentence pairs, which has

the largest volume of training data, and was pre-

trained on 4 NVIDIA V100 GPU’s with 32GB of

RAM with maximum batch size 15,000 tokens per

node.


