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Abstract

This paper proposes a technique for adding
a new source or target language to an ex-
isting multilingual NMT model without re-
training it on the initial set of languages. It
consists in replacing the shared vocabulary
with a small language-specific vocabulary and
fine-tuning the new embeddings on the new
language’s parallel data. Some additional
language-specific components may be trained
to improve performance (e.g., Transformer lay-
ers or adapter modules). Because the param-
eters of the original model are not modified,
its performance on the initial languages does
not degrade. We show on two sets of exper-
iments (small-scale on TED Talks, and large-
scale on ParaCrawl) that this approach per-
forms as well or better as the more costly alter-
natives; and that it has excellent zero-shot per-
formance: training on English-centric data is
enough to translate between the new language
and any of the initial languages.

1 Introduction

Multilingual Neural Machine Translation models
are trained on multilingual data to translate from
and/or into multiple languages (Firat et al., 2016;
Johnson et al., 2017). Multilingual NMT is a com-
pelling approach in production, as one only needs
to train, deploy and maintain one model (instead
of 2 × N ones, where N is the number of lan-
guages). It has also been shown to improve MT
quality for low-resource languages (at the cost of
a slight degradation for high-resource languages)
and it can allow translation between languages that
have no aligned data (“zero-shot translation”).

However, such models can be costly to train, as
they usually involve larger architectures and large
datasets. Moreover, because they are trained jointly
on all the languages, they require to know in ad-
vance the full set of languages. Adding a new
language to an existing model usually means re-
training the model on the full multilingual dataset.

Naively fine-tuning the original model on the new
language’s data is not an option because of vocab-
ulary mismatch (the shared vocabulary needs to
be modified to include the new language’s tokens)
and catastrophic forgetting (the model will quickly
forget how to translate in the other languages).

In this paper, we study the problem of multilin-
gual NMT incremental training or continual learn-
ing and propose a novel way to efficiently add a
new source or target language.

Some desirable properties of an incremental
training method are:

• No degradation on the existing language pairs;
• Efficient training (e.g., no re-training on the

existing language pairs);
• Minimal amount of added parameters: the

approach should scale to many languages and
the model fit on a single GPU;

• Minimal degradation in inference speed;
• Good zero-shot performance: when training

with X-EN (or EN-X) data, where X is a new
language, we would like the model to be able
to translate from X to any known language Y
(resp. from Y to X).

We propose a novel technique for incrementally
adding a new source or target language, which con-
sists in substituting the shared embedding matrix
with a language-specific embedding matrix, which
is fine-tuned on the new language’s data only while
freezing the other parameters of the model. In some
cases (e.g., when the new language is on the target
size), a small number of additional parameters (e.g.,
adapter modules) have to be trained to match the
performance of the re-training baseline. We per-
form two sets of experiments, with a 20-language
Transformer Base trained on TED Talks, and a 20-
language Transformer Big (with deep encoder and
shallow decoder) trained on ParaCrawl; and show
that this approach is fast and parameter-efficient
and that it performs as well or better as the more
costly alternatives.
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2 Related work

Some previous works study how to adapt a multilin-
gual MT model to unseen low-resource languages,
but without seeking to maintain good performance
in the initial languages (Neubig and Hu, 2018;
Lakew et al., 2019). Garcia et al. (2021) introduce
a “vocabulary substitution” approach for adding
new languages to a multilingual NMT model. They
create a new shared BPE vocabulary that includes
the new language and initialize the embeddings of
the overlapping tokens with their previous values.
Then they fine-tune the entire model on the initial
model’s training data combined with parallel or
monolingual data in the new language. Contrary
to ours, their approach assumes access to the ini-
tial model’s training data and results in a small
performance drop in the existing languages.

Lyu et al. (2020) and Escolano et al. (2020, 2019,
2021) propose multi-decoder / multi-encoder archi-
tectures which they show to be compatible with
incremental training. To add a new target (resp.
source) language, one just has to freeze the model’s
encoder (resp. decoder) and train a new language-
specific decoder (resp. encoder). However, this
results in an enormous number of parameters.

Artetxe et al. (2020); Pfeiffer et al. (2021) incre-
mentally train language-specific embeddings for
cross-lingual transfer of BERT classification mod-
els. This approach consists of four stages: 1) train
a monolingual BERT on language L1; 2) train em-
beddings on language L2 using the masked LM
objective while freezing the other parameters; 3)
fine-tune the L1 BERT model on the desired classi-
fication task using labeled data in language L1; 4)
substitute the L1 embeddings with the L2 embed-
dings in the classification model and use it for L2-
language classification. Artetxe et al. (2020) also
combine their approach with L2-specific adapter
layers and position embeddings. While this algo-
rithm is close to ours, it is used on encoder-only
Transformers for classification tasks. Our work
extends this algorithm to encoder-decoder Trans-
formers for multilingual MT.

Also similar to our technique, Thompson et al.
(2018) do domain adaptation by freezing most of
the NMT parameters and only fine-tuning one com-
ponent (e.g., the source embeddings). Philip et al.
(2020) show that adapter modules can be used to
adapt an English-centric multilingual model to un-
seen language pairs, but whose source and target
languages are known. We wanted to go further and

use adapter layers to adapt a multilingual model to
unseen languages. However, we obtained the sur-
prising result that adapting the embedding matrix
is sometimes enough. In the other cases, adapter
modules can be used sparingly to match baseline
performance. Üstün et al. (2021) introduce “de-
noising adapters” which they show can be used to
incrementally adapt a multilingual MT model to
new languages using monolingual data only.

3 Techniques

Figures 1 and 2 illustrate our technique for a new
source and a new target language respectively.

The initial model is a many-to-many model
with a shared vocabulary and source-side language
codes (to indicate the target language).

3.1 New source language
To add a new source language (e.g., Greek), we
build a new (smaller) vocabulary for this language
only and replace the source embedding matrix with
a new embedding matrix corresponding to that vo-
cabulary. Note that some tokens may appear in both
vocabularies. Similarly to Pfeiffer et al. (2021);
Garcia et al. (2021), we initialize the new embed-
dings for those tokens with the existing embedding
values. We train this new embedding matrix on
Greek-English parallel data while freezing all the
other parameters. There is no loss in performance
in the existing languages as we do not modify the
original parameters. At inference, to translate from
the initial set of languages, we use the initial shared
vocabulary and embeddings. To translate from
Greek, we use the Greek embeddings and vocab.

To better adapt to the new source language, we
also try combining this language-specific embed-
ding matrix with other language-specific compo-
nents in the encoder. We either fine-tune the first
encoder layer while freezing the other layers, train
the full encoder, or plug in adapter modules after
encoder layers (Bapna and Firat, 2019) and train
these while freezing the Transformer parameters.

Data augmentation As we will show in the ex-
periments, source lang-specific parameters tend to
give poor zero-shot results, i.e., when training them
on Greek-English data, the resulting model might
have trouble translating into other languages than
English. For this reason, we try training such mod-
els on additional data. One solution is to use a
multi-aligned Greek corpus (i.e., Greek paired with
all the initial languages), but this might not always
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be possible. We experiment with tiny amounts
of such data (e.g., 1000 line pairs per initial lan-
guage); and with synthetic data: translate the En-
glish side of the Greek-English corpus into the
other languages with the initial model, then use the
resulting fake line pairs for training. We call this
approach “back-translation” (BT) even though it is
arguably closer to distillation than back-translation
because the synthetic text will be on the target side.

3.2 New target language
The same incremental training techniques can be
used to learn a new target language (e.g., Greek)
with some modifications. The decoder has a tar-
get embedding matrix and vocabulary projection
matrix, which are usually tied and shared with the
source embeddings (i.e., the same parameters are
used for all 3 purposes). We need to adapt both
the target embeddings and output projection to the
new Greek vocabulary. Like in the initial model,
we tie these two parameters. Additionally, the ini-
tial model does not have a “translate into Greek”
language code. We add this language code to the
source embedding matrix and freeze all source em-
beddings but this one. It is initialized with the “to
English” language code embedding of the initial
model. We combine this approach with language-
specific parameters (adapter modules or fine-tuned
Transformer layers) in the decoder and/or encoder.

3.3 New source and target languages
To translate between two new languages (e.g.,
Greek to Ukrainian), we train language-specific pa-
rameters for each of these languages separately, as
described previously. Then, at inference time, we
combine these parameters. This is done by taking
the new source Greek embedding matrix and target
Ukrainian embedding matrix (and vocabulary pro-
jection). The “translate into Ukrainian” language
code embedding is concatenated to the Greek em-
bedding matrix. Similarly, the combined model in-
cludes language-specific layers and adapters from
both models. When both models have adapter mod-
ules at the same layers (e.g., last encoder layer),
we stack them: the target-language adapters are
plugged in after the source-language adapters.

3.4 Baselines
We compare our incremental training techniques
with two types of baselines: bilingual models
trained from scratch with only the new language’s
parallel data; and re-training, i.e., training a new
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Figure 1: Adding a new source language with our incre-
mental training technique. The source embedding ma-
trix is replaced with the new language’s embeddings
and fine-tuned on the new language’s data, while the
other parameters are frozen.
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Figure 2: Adding a new target language with our in-
cremental training technique. The tied target embed-
ding matrix and output projection are replaced with the
new language’s embeddings. Some language-specific
parameters can be added in the decoder or encoder, and
a new language code is added in the source embedding
matrix. Everything is kept frozen except for these new
parameters.

multilingual model that includes the new language.
To save computation time, similarly to Garcia et al.
(2021), we start from the initial model and substi-
tute its vocabulary with a new vocabulary trained
with the same settings and data as before plus text
in the new language. This ensures a large overlap
between the old and new vocabularies. Then, we
initialize the embeddings of the overlapping tokens
with their previous values and fine-tune the full
model on the entire dataset.

Note that these baselines do not meet our criteria
for a good incremental training technique. Bilin-
gual models are parameter-inefficient and cannot
do zero-shot translation (except via pivot transla-
tion, which is twice as slow). Re-training assumes
access to the initial model’s training data and can
be very slow. It could also result in a drop in per-
formance in the initial languages.

4 TED Talks Experiments

We adapt a 20-language model trained on TED
Talks to Greek (EL), either on the source side or tar-
get side. We pick Greek as the new language as it is
from an unseen language family and uses an unseen
alphabet. We also do experiments with Ukrainian
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(UK), Indonesian (ID), or Swedish (SV) as the new
language,1 which are shown in Appendix.

4.1 Data and hyper-parameters
We use the TED Talks corpus (Qi et al., 2018) with
the same set of 20 languages as Philip et al. (2020);
Bérard et al. (2021).2 This corpus is multi-parallel,
i.e., it has training data for all 380 (20×19) lan-
guage pairs. It also includes official valid and test
splits for all these language pairs. Table 8 in Ap-
pendix shows the training data size per language.

The initial model is the “multi-parallel” base-
line from Bérard et al. (2021), a Transformer
Base (Vaswani et al., 2017) trained in two stages:
English-centric training (38 directions) for 120
epochs; then multi-parallel fine-tuning (380 direc-
tions) for 10 epochs.3 More hyper-parameters are
given in Appendix (Table 23).

The shared vocabulary is created using BPE
(Sennrich et al., 2016) with 64k merge operations
and inline casing (Bérard et al., 2019). Both BPE
and NMT training use temperature sampling with
T = 5 (Arivazhagan et al., 2019). Single char-
acters with a total frequency higher than 10 are
added to the vocabulary. The Greek vocabulary is
obtained with the same BPE settings but on Greek
monolingual data with 4k merge operations. The
bilingual baselines use a joint BPE model of size
8k and the same settings as in Philip et al. (2020).
Our re-training baselines are obtained by creating
a new shared BPE model of size 64k including all
20 initial languages plus Greek and fine-tuning the
multi-parallel model for 10 more epochs with this
vocabulary. Note that there is a vocabulary mis-
match with the initial model (which did not have
Greek). We initialize the known embeddings with
their previous values and the new ones at random
and reset the learning rate scheduler and optimizer.
We also do a re-training baseline that includes all
4 new languages. Note that contrary to our incre-
mental training approach, those models are trained
with the new language(s) on both sides and use
multi-aligned parallel data.

Finally, we train a model that follows more
closely Garcia et al. (2021): we fine-tune the multi-
parallel model for 10 epochs, by replacing the ini-

1They all use a known script (Latin or Cyrillic). Indonesian
is from an unseen language family.

2{en, ar, he, ru, ko, it, ja, zh_cn, es, fr, pt_br, nl, tr, ro, pl,
bg, vi, de, fa, hu}

3Note that an “epoch” when using multi-parallel data cor-
responds to approximately 9 English-centric epochs in terms
of updates.

Model →EN ←EN / EN
1 SOTA – bilingual 32.4 24.4 15.0
2 SOTA – multilingual 30.9 22.3 14.8
3 English-centric 31.8 24.2 13.5
4 (3) + multi-parallel 32.8 24.3 16.3
5 (4) + EL 33.3 24.3 16.6
6 (4) + {EL,UK,SV,ID} 33.2 24.0 16.5

Table 1: BLEU scores (average to English, from En-
glish, and between non-English languages) of the base-
line models on TED test. “SOTA” corresponds to the
bilingual and multi-parallel baselines of Philip et al.
(2020). (3) and (4) are from Bérard et al. (2021).

tial vocabulary with a vocabulary of the exact same
size that includes Greek, and whose new tokens are
initialized with the outdated embeddings from the
old model. Like Garcia et al. (2021), we upscale
the new data’s sampling frequency by a factor of 5.

4.2 Evaluation settings

The TED Talks models are evaluated on the pro-
vided multi-parallel validation and test sets. Since
those are already word-tokenized, we run Sacre-
BLEU with the --tok none option.4

We report BLEU scores from/into English and
average BLEU from/into the 19 other languages
than English (which correspond to a zero-shot
setting when the incremental training is done on
Greek-English only data). We also report chrF
scores obtained with SacreBLEU on the test and
validation sets in Appendix.5

4.3 Results and analysis

Table 29 in Appendix details the notations used in
this paper and the tables.

Baselines. Table 1 compares our initial models
and re-training baselines against the state of the art
on the initial set of 20 languages. In this instance,
fine-tuning the initial model with more languages
(5, 6) does not degrade BLEU. Appendix Table 9
shows valid and test chrF on more baselines, in-
cluding our implementation of the vocabulary sub-
stitution approach of Garcia et al. (2021).

New source language. Table 2 shows the test
BLEU scores of several incrementally-trained mod-
els with Greek as a new source language. More re-

4SacreBLEU signature: BLEU+c.mixed+#.1+
s.exp+tok.none+v.1.5.1

5chrF2+numchars.6+space.false+
version.1.5.1
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ID Model Params EL→ EN EL→ / EN
1 Bilingual baselines 35.7M 38.4 17.1
5 Re-training + EL – 40.4 19.4
6 Re-training + {EL,UK,SV,ID} – 40.2 19.4
7 Only embed 2.13M 38.9 18.8
8 (7) + random embed init 2.13M 38.8 18.7?

9 (7) + enc-norm + enc-biases 2.17M 39.5 17.7
10 (7) + enc-adapters-first (dim=64) 2.19M 39.3 0.6
11 (7) + enc-adapters-all (d=64) 2.53M 40.3 0.6
12 (7) + enc-adapters-all (d=512) 5.28M 41.0 0.6
13 (7) + enc-adapters-{1,2,3} (d=1024) 5.28M 41.0 0.6
14 (7) + enc-first-layer 5.28M 40.1 0.7
15 (7) + all-enc-layers 21.0M 40.4 0.6
16 (12) + EL multi-aligned 5.28M 40.5 19.5
17 (12) + EL multi-aligned (BT) 5.28M 40.2 19.0
18 (12) + 1k lines per lang 5.28M 40.9 18.2
19 (12) + 1k lines per lang (BT) 5.28M 41.2 17.8
20 (14) + 1k lines per lang (BT) 5.28M 40.3 18.9
21 (12) + 100 lines per lang (BT) 5.28M 40.9 17.4
22 (7) + {EL,UK,SV,ID} 8.30M 39.3 18.9
23 (14) + {EL,UK,SV,ID} 11.5M 39.9 2.9

Table 2: TED test BLEU scores of incremental training with Greek on the source side. “EL→ / EN” corresponds
to an average BLEU from Greek into all 19 non-English languages. “Params” gives the number of new parameters
introduced by each approach. The initial model (4) has 80.2M parameters in total. (?) obtained by using the
“translate into X" lang code embeddings from the initial model. The table is divided in 4 parts: baselines trained
with multi-aligned data; Greek-English incremental training; incremental training with multi-aligned data (i.e., line
pairs between Greek and all 20 languages); and multilingual English-centric incremental training (i.e., on 4 new
source languages at once).

sults on Greek, Ukrainian, Indonesian and Swedish
are given in Appendix (Tables 10, 11, 12, and 13).

Training the source embeddings only (7) outper-
forms the bilingual baselines (1) and comes close
to the costly re-training baselines (5, 6). In particu-
lar, it nearly matches the performance of the latter
in the zero-shot EL→ / EN directions, even though
the baselines have training data for those directions.
Initializing the known tokens in the new vocabulary
with their old embeddings does not improve final
performance (7 vs 8). But using language code em-
beddings from the initial model is necessary to be
able to translate into non-English languages. Fig-
ure 4 shows that such initialization improves final
performance under low-resource settings. Figure 7
in Appendix also shows that it speeds up training.

Training additional components in the encoder,
like adapter modules (11, 12, 13) or the first en-
coder layer (14) helps improve EL→ EN perfor-
mance and outperform all baselines, though it is
less useful when the new language is from a known
family (see Ukrainian and Swedish scores in Ap-

pendix Tables 11 and 13). However, this results
in abysmal zero-shot performance (EL → / EN).
As they only encounter the “to English” language
code during training, those models quickly forget
how to interpret the other lang codes. This catas-
trophic forgetting is illustrated by Figure 3, where
we see a plunge in EL → FR performance after
just a few epochs of training. Only tuning the en-
coder layer norm parameters and biases (9) gives
slightly higher EL → EN performance without
suffering from catastrophic forgetting in the other
languages. Note that language code forgetting is
less pronounced when the initial model is English-
centric (see Table 18 in Appendix). In this setting,
adapter modules do not hurt zero-shot translation.

The third quarter of Table 2 shows how multi-
aligned Greek data can be used to achieve excellent
performance in both EL → EN and EL → / EN
directions. The best tradeoff between EL → EN
and EL→ / EN performance is achieved by incre-
mentally training with the entire Greek dataset of
2.41M line pairs. However, such data might not
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ID Model Params EN→ EL / EN→ EL
1 Bilingual baselines 35.7M 32.2 18.3
5 Re-training + EL – 32.5 21.1
6 Re-training + {EL,UK,SV,ID} – 32.1 21.1

24 Only embed 2.13M 25.7 16.7
25 (24) + non-tied 4.25M 27.1 17.8
26 (24) + dec-adapters-all (dim=64) 2.53M 29.8 19.3
27 (24) + adapters-all (d=64) 2.93M 32.7 19.6
28 (24) + enc-adapters-last (d=1024) 3.18M 32.0 20.0
29 (26) + enc-adapters-last (d=1024) 3.58M 33.5 20.6
30 (24) + dec-last-layer 6.33M 32.6 20.5
31 (30) + enc-adapters-last (d=1024) 7.38M 34.0 20.8
32 (24) + adapters-all (d=430) 7.43M 34.0 18.2
33 (24) + dec-adapters-all (d=690) + enc-adapters-last (d=1024) 7.43M 33.8 20.8
34 (30) + adapters-all (d=90) 7.36M 34.2 19.8
35 (30) + enc-adapters-all (d=170) 7.38M 34.1 19.0
36 (31) + EL multi-aligned 7.35M 32.9 21.1
37 (31) + {EL,UK,SV,ID} 13.5M 33.0 20.4

Table 3: TED test BLEU scores of incremental training with Greek on the target side. “/ EN→ EL” corresponds
to an average BLEU from the 19 non-English languages to Greek. “Params” gives the number of new parameters
introduced by each approach.

always be accessible for the new language. Close
performance can be reached by training with the
same amounts of synthetic data instead (17). And
more interestingly, only a tiny amount of real (18)
or back-translated data (19, 20, 21) in the other
19 languages is needed to obtain good zero-shot
results without any loss in EL→ EN performance.

New target language. Table 3 shows test BLEU
scores when incrementally adding Greek on the
target side. Additional results on Greek, Ukrainian,
Indonesian and Swedish are provided in Appendix
(Tables 14, 15, 16, and 17).

With new target languages, only adapting the
embedding matrix (tied with vocabulary projec-
tion) is not enough and strongly underperforms the
baselines (24 vs 1, 5 and 6). Training decoder-side
adapter modules (26) gets us closer to baseline per-
formance; and tuning the last decoder layer (30)
bridges the gap with the baselines. However, the
most effective strategy is to train some components
in both the encoder and decoder (27, 29, 31, 32,
33, 34, 35). We observed that it was important for
the model to have a way to modify the output of
the encoder before it is read by frozen decoder
components. Interestingly, only having a large
adapter module after the last encoder layer (28)
is enough to match baseline performance. Adding
small adapters after each decoder layer (29) fur-

ther improves BLEU and brings the best parameter
count / performance tradeoff.

At the same parameter budget, training adapter
modules after every encoder layer (32, 34, 35)
gives worse / EN → EL performance than an
adapter at the last encoder layer combined with
decoder-side parameters (31, 33), which is likely
caused by the encoder overfitting to English.

In this setting, there is no clear advantage to
incremental training with multi-aligned Greek data
(36), as this hurts EN→ EL performance, without
any notable improvement for / EN→ EL. Finally,
multilingual incremental training (with 4 new target
languages at once) is entirely possible (37) and
gives competitive results to the baselines.

Table 25 in Appendix analyzes the usefulness of
learning a new language code, by comparing with
three other strategies: incremental training without
any language code; with the “to English” language
code; or with the language code of a similar lan-
guage. Interestingly, the more new parameters are
learned (esp. encoder-side), the less useful it is
to learn a new language code. Moreover, adapt-
ing to Swedish by using a fixed English language
code gives reasonable performance as the two lan-
guages are from the same family. And the proxy
“to Russian” language code gives the same results
as learning a new language code when adapting to
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Figure 3: TED validation BLEU on EL-EN and EL-FR while incrementally training with EL-EN data only (7, 9,
10, 11, 12, 14).

Source model Target model BLEU
1 Bilingual 14.9
1 Bilingual (pivot through English) 18.5
6 Re-training + {EL,UK,SV,ID} 22.0

7 Only embed
30 Dec-last-layer 21.1
31 Dec-last-layer + enc-adapters-last (d=1024) 21.0

14 Enc-first-layer
30 Dec-last-layer 20.7
31 Dec-last-layer + enc-adapters-last (d=1024) 21.3
31 Pivot through English? 21.6

20 Enc-first-layer + 1k (BT)
30 Dec-last-layer 21.2
31 Dec-last-layer + enc-adapters-last (d=1024) 21.3

19 Enc-adapters-all (d=512) + 1k (BT)
30 Dec-last-layer 20.4
31 Dec-last-layer + enc-adapters-last (d=1024) 20.7

Table 4: TED test BLEU scores on {EL,UK,SV,ID}→{EL,UK,SV,ID} (average over 12 directions) by combining
source-language and target-language incrementally-trained parameters. (?) instead of combining model parame-
ters, translate to English with (14), then to the target language with (31).

Ukrainian because both languages are very similar.

New source and target languages Table 4 com-
bines incrementally-trained parameters at inference
time to translate between two new languages. In-
terestingly, combining target-language parameters
with source-language parameters that had very poor
zero-shot performance (14) gives excellent results.
We hypothesize that the language code forgetting
issue is less pronounced here because solely activat-
ing some language-specific parameters will make
the model translate into that language.

Despite showing the best EL→ EN performance,
source-language encoder adapters (19) tend to per-
form more poorly when combined with target-
language parameters. While better performance is
obtained by pivot translation through English with
two incrementally trained models (14 and 31), com-
bining the parameters of these two models gives

close results at a faster inference speed.

Discussion Figure 4 shows final BLEU scores of
our techniques when training with smaller amounts
of data. We observe that incremental training is
more data-efficient than bilingual models and can
achieve decent performance even with tiny amounts
of training data, making it a good fit for adaptation
to low-resource languages.

Figure 7 in Appendix illustrates the training
speed of our approach compared to our implemen-
tation of Garcia et al. (2021). In addition to main-
taining the exact same performance on the previous
languages and needing only English-centric data,
our approach reaches higher performance in much
fewer updates than the alternatives. Note that re-
training might be an efficient solution if one wants
to add several languages at once and on both sides.

Finally, Tables 18 and 19 in Appendix show that
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Figure 4: TED validation BLEU from Greek (left) and to Greek (right) by training corpus size, with incremental
training (7, 8, 24, 27) versus bilingual baselines (1).

ID Model →EN ←EN / EN
38 M2M-124 32.4 31.9 25.7
39 Big 6-6 EN-centric 38.8 36.4 18.5
40 Big 12-2 EN-centric 39.6 37.1 21.1
41 (40) + pivot (EN) – – 27.6
42 (40) + multi-para. 39.0 36.2 27.6
43 (40) + {AR,RU,ZH} 39.6 36.6 21.0
44 (42) + {AR,RU,ZH} 39.0 35.8 27.5

Table 5: FLORES devtest spBLEU scores of the
ParaCrawl/UNPC baselines. Average to English (19
directions), from English (19 directions) and between
non-English languages (342 directions). (39, 40, 41,
42) are the same models as in (Bérard et al., 2021).

our incremental training approach can be applied to
English-centric initial models with similar results.

5 ParaCrawl Experiments

In this section, we test our approach in a more re-
alistic, large-scale setting: a 20-language Trans-
former Big initial model trained on ParaCrawl
(Bañón et al., 2020). The incremental training
experiments are done in three languages: Arabic
(AR), Russian (RU), and Chinese (ZH). Arabic and
Chinese are both from unseen language families
and use unseen scripts. Russian is close to a known
language (Bulgarian) and uses the same script. For
training on those languages, we use UNPC (Ziem-
ski et al., 2016).

5.1 Data and hyper-parameters

We download ParaCrawl v7.1 in the 19 highest-
resource languages paired with English.6 Then,

6{fr, de, es, it, pt, nl, nb, cs, pl, sv, da, el, fi, hr, hu, bg, ro,
sk, lt}

like Freitag and Firat (2020), we build a multi-
parallel corpus by aligning all pairs of languages
through their English side (effectively removing
any English duplicate). See Appendix Table 21 for
training data statistics. We create a shared BPE
vocab with 64k merge operations and inline casing,
by sampling from this data with T = 5 and include
all characters whose frequency is higher than 100.

Our initial model is the Transformer Big 12-2
(i.e., with a deep encoder and shallow decoder)
multi-parallel model of Bérard et al. (2021). Like
in the previous section, it was trained in two stages:
English-centric training (with T = 5) for 1M steps;
then multi-parallel fine-tuning (with T = 2) for
200k more steps. More hyper-parameters are given
in Appendix (Table 24).

Incremental training is done for 120k steps with
English-centric data from UNPC v1.0 (see Table 22
in Appendix for statistics), which we clean by re-
moving any line pairs where either side is detected
as being in the wrong language by langid.py
(Lui and Baldwin, 2012). We use monolingual BPE
models of size 8k. The Chinese data is tokenized
with Jieba7 before learning the BPE model.

The English-centric bilingual baselines are
Transformer Big 6-6 models trained on UNPC for
120k steps with joint BPE vocabularies of size 16k.
We do two “re-training” baselines, by fine-tuning
either the English-centric or multi-parallel model
on their initial ParaCrawl data plus UNPC data in
all three new languages. We sample UNPC line
pairs in each of the new directions with probabil-
ity 0.05. The remaining 0.7 probability mass is
distributed among the initial ParaCrawl directions
with T = 5. The new BPE vocabulary is trained

7https://github.com/fxsjy/jieba

https://github.com/fxsjy/jieba
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ID Model Params
AR RU ZH AR RU ZH

→ EN → / EN
38 M2M-124 (Goyal et al., 2021) – 25.5 27.5 20.9 19.6 24.0 18.7
45 Bilingual baselines (pivot through English) 193M 32.1 29.9 23.7 23.2 23.9 19.6
43 English-centric (40) + {AR,RU,ZH} – 30.0 31.7 22.6 14.6 16.9 11.8
44 Multi-parallel (42) + {AR,RU,ZH} – 31.0 31.6 23.1 19.2 23.5 15.9
50 (44) + pivot through English – – – – 22.2 24.5 19.1
46 Only embed 8.6M 24.2 30.8 20.5 16.5 23.8 15.6
47 (46) + enc-adapters-all (dim=512) 21.3M 31.7 31.3 23.5 1.0 1.5 1.5
48 (46) + enc-first-layer 21.2M 30.3 31.2 23.2 1.0 2.6 1.5
49 (48) + 20k lines per lang (BT) 21.2M 30.1 31.4 22.8 20.8 24.6 17.8

ID Model Params
EN→ / EN→

AR RU ZH AR RU ZH
38 M2M-124 (Goyal et al., 2021) – 17.9 27.1 19.3 13.8 23.0 16.6
45 Bilingual baselines (pivot through English) 193M 29.1 27.5 22.9 21.2 22.5 18.2
43 English-centric (40) + {AR,RU,ZH} – 26.5 26.8 18.4 15.7 19.3 11.3
44 Multi-parallel (42) + {AR,RU,ZH} – 28.3 27.3 20.6 16.6 21.6 13.1
50 (44) + pivot through English – – – – 20.2 21.8 16.3
51 Only embed 8.6M 11.6 19.7 14.0 9.3 15.8 11.5
52 (51) + enc-adapt-last + dec-adapt-all (1024) 14.9M 27.0 26.2 20.9 18.8 20.8 16.8
53 (51) + dec-last-layer 25.4M 26.5 26.9 21.5 19.1 20.9 17.4
54 (53) + enc-adapters-last (dim=1024) 27.5M 28.2 28.0 22.5 20.0 21.8 18.0
55 (54) without lang ID filtering 27.5M 18.0 19.0 13.6 5.2 10.3 5.0
56 (51) + all-dec-layers 42.2M 28.6 28.1 22.4 20.1 21.9 18.1

Table 6: FLORES devtest spBLEU scores of the ParaCrawl/UNPC incrementally-trained models. The top half
of each table corresponds to the baselines (SOTA, bilingual or re-training). “Params” gives the number of new
parameters introduced by each approach. The incremental training is always done on one language only (i.e., one
row can correspond to 3 different models). Note that the parameter counts given in this table are for Arabic (8.63M
embedding parameters). Russian and Chinese embeddings have respectively 8.51M and 13.60M parameters.

with the monolingual ParaCrawl/UNPC data in all
23 languages (with T = 5). The new embeddings
for the known tokens are initialized with their old
values and the other embeddings at random.8 Note
that contrary to the TED Talks experiments, we do
not have multi-aligned data for the new languages.

5.2 Evaluation settings

For validation, we use our own split from TED2020
(Reimers and Gurevych, 2020): 3000 random line
pairs for each translation direction. We report chrF
scores9 computed on these valid sets in Appendix.

As test sets, we use FLORES devtest (Goyal
et al., 2021). We report scores computed with their
new “spBLEU” metric,10 which runs BLEU on top
of a standardized multilingual BPE tokenization.

878% of the new tokens were in the initial vocabulary, and
84% of the old tokens are in the new vocabulary.

9chrF2+n.6+s.false+v.1.5.1
10BLEU+c.mixed+#.1+s.exp+tok.spm+v.1.5.1

(https://github.com/ngoyal2707/sacrebleu)

5.3 Results and analysis

Baselines. Table 5 compares our initial model
(42) with other baselines. Our multi-parallel model
beats the M2M-124 model of Goyal et al. (2021)
in all three settings. This is not so surprising, as
their model only has 615M parameters for 124
languages, compared to 255M parameters for our
20-language model. Last, we can observe that our
“re-training” baselines (43 and 44) perform almost
as well as the initial 20-language models (40, 42).

New source or target language. Training only
source embeddings (46) is a good strategy for
Russian, but underperforms the baselines in the
more linguistically distant Arabic and Chinese.
Learning more parameters (+8% per source lan-
guage) can match baseline performance in all 3 lan-
guages (47 and 48), but gives poor zero-shot perfor-
mance. Adding small amounts of “back-translated”
data (49) achieves close non-English performance

chrF2+n.6+s.false+v.1.5.1
https://github.com/ngoyal2707/sacrebleu


551

Source model Target model spBLEU
38 M2M-124 (Goyal et al., 2021) 15.0
45 Bilingual baselines (pivot through English) 18.3
44 Multi-parallel (42) + {AR,RU,ZH} 13.0
50 (44) + pivot through English 16.8

46 Only embed
53 Dec-last-layer 13.5
54 Dec-last-layer + enc-adapters-last (d=1024) 13.9

47 Enc-adapters-all (dim=512)
53 Dec-last-layer 13.0
54 Dec-last-layer + enc-adapters-last (d=1024) 13.8
54 Pivot through English 17.7

48 Enc-first-layer
53 Dec-last-layer 10.2
54 Dec-last-layer + enc-adapters-last (d=1024) 10.6

49 Enc-first-layer + 20k (BT)
53 Dec-last-layer 12.4
54 Dec-last-layer + enc-adapters-last (d=1024) 12.7

Table 7: FLORES devtest spBLEU scores of the ParaCrawl/UNPC models on {AR,RU,ZH}→{AR,RU,ZH} (av-
erage over 6 directions) by combining source-language and target-language incrementally-trained parameters.

to the pivot translation baselines without hurting
English-centric scores. For new target languages,
the best strategy is to train the last decoder layer
with an adapter module at the last encoder layer
(54), which matches the re-training baselines in
all 3 languages and gets close performance to the
parameter-inefficient bilingual baselines. Interest-
ingly, target-side incremental training is very sen-
sitive to training data noise. In a first iteration of
our experiments, we trained with unfiltered UNPC
data and observed catastrophic performance (55).
Simple language ID filtering solved this issue.

New source and target languages. Table 7
combines source-language with target-language
incrementally-trained parameters to translate be-
tween two new languages. The results are not
as good as in our TED Talks experiments. The
best combination in this setting (46 with 54)
performs considerably worse than pivot transla-
tion through English with the baselines. How-
ever, it outperforms the “re-training” baseline (44),
which has only seen English-centric data for the
new languages. And pivot translation with two
incrementally-trained models (47 with 54) gives
excellent results, close to the bilingual baselines.

6 Conclusion

We propose a new technique for incrementally
training multilingual NMT models on a new source
or target language. It consists in creating a new
monolingual BPE vocabulary for that language,
substituting the shared embedding matrix with
language-specific embeddings, and training those

while freezing the other model parameters. At in-
ference, translating in any of the initial languages
is done by using the initial shared embeddings,
and translating in the new language is done by us-
ing the newly trained embeddings. This approach
does not change performance on the initial lan-
guages as the initial parameters are kept aside
and not modified. For new source languages, it
can achieve close performance to the more costly
and less flexible bilingual and re-training baselines.
For new target languages, this technique can be
combined with language-specific parameters (fine-
tuned Transformer layers or adapter modules) to
match baseline performance at a small parameter
cost. We validate this technique on two sets of
experiments: small-scale on TED Talks and large-
scale on ParaCrawl; and show that it is compatible
with two architectures: Transformer Base 6-6 and
Big 12-2. We also show that incremental training
on data aligned with English is enough to learn
to translate between the new language and any of
the initial languages. Translation between a new
source and a new target language is also possible
by combining their respective parameters at infer-
ence. Finally, we provide supplementary material
to facilitate reproducibility.11

11https://europe.naverlabs.com/
research/natural-language-processing/
efficient-multilingual-machine-translation

https://europe.naverlabs.com/research/natural-language-processing/efficient-multilingual-machine-translation
https://europe.naverlabs.com/research/natural-language-processing/efficient-multilingual-machine-translation
https://europe.naverlabs.com/research/natural-language-processing/efficient-multilingual-machine-translation
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A Appendix

Language Code Family Script X-EN lines X-* lines
English en Germanic Latin 3.56M 3.56M
Arabic ar Semitic Arabic 214.1k 3.43M
Hebrew he Semitic Hebrew 211.8k 3.40M
Russian ru Slavic Cyrillic 208.5k 3.38M
Korean ko Koreanic Hangul 205.6k 3.35M
Italian it Romance Latin 204.5k 3.35M

Japanese ja Japonic Chinese + Kana 204.1k 3.31M
Mandarin Chinese zh_cn Sinitic Chinese 199.9k 3.30M

Spanish es Romance Latin 196.0k 3.23M
French fr Romance Latin 192.3k 3.19M

Brazilian Portuguese pt_br Romance Latin 184.8k 3.11M
Dutch nl Germanic Latin 183.8k 3.05M

Turkish tr Turkic Latin 182.5k 3.02M
Romanian ro Romance Latin 180.5k 3.06M

Polish pl Slavic Latin 176.2k 3.00M
Bulgarian bg Slavic Cyrillic 174.4k 2.95M

Vietnamese vi Vietic Latin 172.0k 2.81M
German de Germanic Latin 167.9k 2.90M
Persian fa Iranian Arabic 151.0k 2.41M

Hungarian hu Uralic Latin 147.2k 2.47M
Greek el Hellenic Greek 134.3k 2.41M

Ukrainian uk Slavic Cyrillic 108.5k 1.81M
Indonesian id Malayic Latin 87.4k 1.61M
Swedish sv Germanic Latin 56.6k 978.0k

Total all – – 7.11M 62.27M

Table 8: Size of the Top 20 TED Talks corpus. English has 253.3k unique lines.
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Figure 5: TED validation EN-EL BLEU by training corpus size, with incremental training (24, 27) with or without
known embedding initialization, versus bilingual baselines (1).

https://github.com/neulab/word-embeddings-for-nmt
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Figure 7: TED validation BLEU on EL-EN (left) and EN-EL (right) while training. Comparison of different
incremental training approaches with the Garcia et al. (2021) baseline.

ID Model
Valid chrF Test chrF

→EN ←EN / EN →EN ←EN / EN
1 Bilingual (pivot) .542 .484 .385 .542 .484 .385
3 English-centric .530 .487 .371 .529 .486 .370
4 (3) + multi-parallel training .541 .482 .395 .540 .482 .395

57 (3) + EL .528 .488 .372 .527 .488 .371
58 (3) + {EL, UK, ID, SV} .526 .485 .370 .526 .485 .370
5 (4) + EL .545 .481 .398 .545 .482 .398
6 (4) + {EL, UK, ID, SV} .545 .480 .398 .544 .481 .397

59 (4) + EL (Garcia et al., 2021) .539 .480 .394 .539 .479 .394
60 (59) @100k steps .537 .479 .393 .538 .478 .392

Table 9: TED valid and test chrF scores of the baseline models. (59) corresponds to the best checkpoint according
to validation loss (after 3 epochs, or 320k updates) and (60) is after just 100k updates.
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ID Model
Valid chrF Test chrF

EL→ EN EL→ / EN EL→ EN EL→ / EN
1 Bilingual baselines .577 .399 .583 .400
5 Re-training + EL .591 .426 .596 .425
6 Re-training + {EL,UK,SV,ID} .590 .425 .594 .424

59 Re-training + EL (Garcia et al., 2021) .587 .424 .594 .424
60 (59) @100k .582 .421 .587 .420
7 Only embed .577 .417 .581 .417
8 (7) + random embed init .577 .417? .580 .417?

9 (7) + enc-norm + enc-biases .582 .407 .587 .407
10 (7) + enc-adapters-first (d=64) .578 .102 .584 .100
11 (7) + enc-adapters-all (d=64) .587 .102 .593 .100
12 (7) + enc-adapters-all (d=512) .593 .102 .602 .100
13 (7) + enc-adapters-{1,2,3} (d=1024) .595 .103 .603 .101
14 (7) + enc-first-layer .590 .105 .595 .102
15 (7) + enc-all-layers .590 .102 .598 .100
16 (12) + EL multi-aligned .592 .427 .599 .428
18 (12) + 1k lines per lang .594 .412 .601 .413
19 (12) + 1k lines per lang (BT) .595 .411 .603 .411
20 (14) + 1k lines per lang (BT) .589 .422 .596 .422
21 (12) + 100 lines per lang (BT) .595 .405 .601 .406
22 (7) + {EL,UK,SV,ID} .582 .419 .585 .419
61 (12) + {EL,UK,SV,ID} .593 .103 .597 .100
23 (14) + {EL,UK,SV,ID} .587 .158 .592 .154

Table 10: TED valid and test chrF scores of incremental training with Greek on the source side. (?) obtained by
using the “translate into X" lang code embeddings from the initial model.

ID Model
Valid chrF Test chrF

UK→ EN UK→ / EN UK→ EN UK→ / EN
1 Bilingual baselines .484 – .494 –
6 Re-training + {EL,UK,SV,ID} .522 .402 .534 .402
7 Only embed .516 .397 .525 .395
9 (7) + enc-norm + enc-biases .518 .386 .526 .385

10 (7) + enc-adapters-first (d=64) .519 .100 .525 .099
11 (7) + enc-adapters-all (d=64) .520 .100 .529 .100
12 (7) + enc-adapters-all (d=512) .520 .100 .529 .099
13 (7) + enc-adapters-{1,2,3} (d=1024) .523 .100 .530 .100
14 (7) + enc-first-layer .521 .136 .529 .134
15 (7) + enc-all-layers .517 .100 .525 .099
16 (12) + UK multi-aligned .522 .402 .530 .401
18 (12) + 1k lines per lang .523 .389 .531 .387
19 (12) + 1k lines per lang (BT) .520 .384 .528 .382
20 (14) + 1k lines per lang (BT) .522 .397 .528 .396
21 (12) + 100 lines per lang (BT) .520 .382 .527 .382
22 (7) + {EL,UK,SV,ID} .518 .398 .526 .396
61 (12) + {EL,UK,SV,ID} .524 .101 .532 .100
23 (14) + {EL,UK,SV,ID} .522 .132 .527 .130

Table 11: TED valid and test chrF scores of incremental training with Ukrainian on the source side.
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ID Model
Valid chrF Test chrF

ID→ EN ID→ / EN ID→ EN ID→ / EN
1 Bilingual baselines .516 – .533 –
6 Re-training + {EL,UK,SV,ID} .541 .397 .554 .404
7 Only embed .533 .390 .548 .399
8 (7) + random embed init .529 .385? .547 .395?

9 (7) + enc-norm + enc-biases .537 .379 .551 .389
10 (7) + enc-adapters-first (d=64) .535 .100 .551 .101
11 (7) + enc-adapters-all (d=64) .540 .101 .557 .102
12 (7) + enc-adapters-all (d=512) .541 .101 .558 .102
13 (7) + enc-adapters-{1,2,3} (d=1024) .545 .101 .558 .102
14 (7) + enc-first-layer .540 .101 .554 .102
15 (7) + enc-all-layers .535 .100 .552 .101
16 (12) + ID multi-aligned .540 .397 .556 .405
18 (12) + 1k lines per lang .541 .383 .556 .390
19 (12) + 1k lines per lang (BT) .542 .382 .558 .388
20 (14) + 1k lines per lang (BT) .536 .389 .553 .399
21 (12) + 100 lines per lang (BT) .542 .380 .557 .389
22 (7) + {EL,UK,SV,ID} .530 .388 .547 .397
61 (12) + {EL,UK,SV,ID} .543 .101 .560 .102
23 (14) + {EL,UK,SV,ID} .539 .125 .553 .126

Table 12: TED valid and test chrF scores of incremental training with Indonesian on the source side. (?) obtained
by using the “translate into X" lang code embeddings from the initial model.

ID Model
Valid chrF Test chrF

SV→ EN SV→ / EN SV→ EN SV→ / EN
1 Bilingual baselines .577 – .579 –
6 Re-training + {EL,UK,SV,ID} .611 .424 .615 .426
7 Only embed .601 .417 .607 .420
8 (7) + random embed init .596 .414? .605 .417?

9 (7) + enc-norm + enc-biases .604 .413 .613 .415
10 (7) + enc-adapters-first (d=64) .606 .100 .613 .102
11 (7) + enc-adapters-all (d=64) .610 .100 .617 .102
12 (7) + enc-adapters-all (d=512) .608 .100 .613 .102
13 (7) + enc-adapters-{1,2,3} (d=1024) .612 .100 .619 .102
14 (7) + enc-first-layer .608 .102 .617 .104
15 (7) + enc-all-layers .601 .099 .605 .101
16 (12) + SV multi-aligned .609 .421 .615 .424
18 (12) + 1k lines per lang .606 .408 .613 .410
19 (12) + 1k lines per lang (BT) .607 .406 .611 .409
20 (14) + 1k lines per lang (BT) .605 .417 .613 .420
21 (12) + 100 lines per lang (BT) .605 .402 .611 .405
22 (7) + {EL,UK,SV,ID} .601 .417 .605 .418
61 (12) + {EL,UK,SV,ID} .616 .100 .620 .102
23 (14) + {EL,UK,SV,ID} .607 .164 .615 .172

Table 13: TED valid and test chrF scores of incremental training with Swedish on the source side. (?) obtained by
using the “translate into X" lang code embeddings from the initial model.
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ID Model
Valid chrF Test chrF

EN→ EL / EN→ EL EN→ EL / EN→ EL
1 Bilingual baselines .551 .421 .570 .432
5 Re-training + EL .551 .452 .569 .460
6 Re-training + {EL,UK,SV,ID} .550 .451 .568 .460
59 Re-training + EL (Garcia et al., 2021) .553 .449 .570 .458
60 (59) @100k .553 .450 .572 .459
24 Only embed .504 .415 .518 .423
25 (24) + non-tied .517 .423 .530 .432
26 (24) + dec-adapters-all (d=64) .533 .435 .551 .444
27 (24) + adapters-all (d=64) .556 .440 .574 .449
28 (24) + enc-adapters-last (d=1024) .555 .445 .571 .455
29 (26) + enc-adapters-last (d=1024) .560 .450 .580 .459
30 (24) + dec-last-layer .556 .449 .576 .458
31 (30) + enc-adapters-last (d=1024) .566 .452 .585 .461
32 (24) + adapters-all (d=430) .566 .426 .585 .436
33 (24) + dec-ad-all (690) + enc-ad-last (1024) .566 .451 .584 .461
34 (30) + adapters-all (d=90) .565 .442 .585 .453
35 (30) + enc-adapters-all (d=170) .567 .435 .586 .444
62 (24) + dec-all-layers .562 .448 .577 .457
36 (31) + EL multi-aligned .554 .451 .573 .462
37 (31) + {EL,UK,SV,ID} .558 .449 .578 .458

Table 14: TED valid and test chrF scores of incremental training with Greek on the target side.

ID Model
Valid chrF Test chrF

EN→ UK / EN→ UK EN→ UK / EN→ UK
1 Bilingual baselines .441 – .440 –
6 Re-training + {EL,UK,SV,ID} .460 .401 .459 .394
24 Only embed .446 .386 .445 .380
25 (24) + non-tied .452 .390 .449 .384
26 (24) + dec-adapters-all (d=64) .457 .394 .453 .387
27 (24) + adapters-all (d=64) .466 .397 .465 .391
28 (24) + enc-adapters-last (d=1024) .464 .400 .463 .393
29 (26) + enc-adapters-last (d=1024) .469 .402 .465 .394
30 (24) + dec-last-layer .468 .402 .464 .394
31 (30) + enc-adapters-last (d=1024) .471 .403 .467 .395
32 (24) + adapters-all (d=430) .470 .386 .468 .380
33 (24) + dec-ad-all (690) + enc-ad-last (1024) .468 .402 .466 .394
34 (30) + adapters-all (d=90) .469 .400 .467 .393
35 (30) + enc-adapters-all (d=170) .470 .393 .469 .387
62 (24) + dec-all-layers .468 .400 .463 .391
36 (31) + UK multi-aligned .460 .400 .458 .393
37 (31) + {EL,UK,SV,ID} .467 .402 .465 .395

Table 15: TED valid and test chrF scores of incremental training with Ukrainian on the target side.
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ID Model
Valid chrF Test chrF

EN→ ID / EN→ ID EN→ ID / EN→ ID
1 Bilingual baselines .568 – .579 –
6 Re-training + {EL,UK,SV,ID} .579 .498 .591 .504
24 Only embed .562 .483 .575 .491
25 (24) + non-tied .569 .487 .582 .496
26 (24) + dec-adapters-all (d=64) .579 .492 .591 .501
27 (24) + adapters-all (d=64) .585 .489 .599 .498
28 (24) + enc-adapters-last (d=1024) .586 .493 .600 .501
29 (26) + enc-adapters-last (d=1024) .589 .495 .602 .504
30 (24) + dec-last-layer .588 .496 .598 .503
31 (30) + enc-adapters-last (d=1024) .587 .496 .601 .503
32 (24) + adapters-all (d=430) .589 .480 .599 .489
33 (24) + dec-ad-all (690) + enc-ad-last (1024) .586 .494 .599 .502
34 (30) + adapters-all (d=90) .588 .493 .603 .502
35 (30) + enc-adapters-all (d=170) .589 .489 .602 .496
62 (24) + dec-all-layers .588 .497 .600 .506
36 (31) + ID multi-aligned .579 .496 .589 .502
37 (31) + {EL,UK,SV,ID} .584 .493 .597 .501

Table 16: TED valid and test chrF scores of incremental training with Indonesian on the target side.

ID Model
Valid chrF Test chrF

EN→ SV / EN→ SV EN→ SV / EN→ SV
1 Bilingual baselines .557 – .557 –
6 Re-training + {EL,UK,SV,ID} .568 .453 .567 .455
24 Only embed .547 .436 .548 .438
25 (24) + non-tied .552 .441 .556 .443
26 (24) + dec-adapters-all (d=64) .569 .451 .572 .453
27 (24) + adapters-all (d=64) .584 .444 .589 .448
28 (24) + enc-adapters-last (d=1024) .583 .451 .586 .455
29 (26) + enc-adapters-last (d=1024) .587 .452 .590 .457
30 (24) + dec-last-layer .580 .452 .584 .458
31 (30) + enc-adapters-last (d=1024) .589 .454 .590 .458
32 (24) + adapters-all (d=430) .587 .437 .597 .443
33 (24) + dec-ad-all (690) + enc-ad-last (1024) .584 .452 .587 .457
34 (30) + adapters-all (d=90) .587 .449 .590 .453
35 (30) + enc-adapters-all (d=170) .588 .443 .591 .449
62 (24) + dec-all-layers .583 .452 .586 .457
36 (31) + SV multi-aligned .570 .454 .569 .456
37 (31) + {EL,UK,SV,ID} .589 .455 .591 .459

Table 17: TED valid and test chrF scores of incremental training with Swedish on the target side.
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ID Model
Valid chrF Test chrF

EL→ EN EL→ / EN EL→ EN EL→ / EN
1 Bilingual baselines (pivot) .577 .407 .583 .407
57 Re-training + EL (pivot) .575 .408 .578 .408
58 Re-training + {EL,UK,SV,ID} (pivot) .572 .405 .573 .404
7 Only embed .571 .402 .579 .403
9 (7) + enc-norm + enc-biases .574 .403 .581 .403
10 (7) + enc-adapters-first (d=64) .575 .404 .582 .404
11 (7) + enc-adapters-all (d=64) .581 .401 .587 .401
12 (7) + enc-adapters-all (d=512) .584 .386 .589 .387
13 (7) + enc-adapters-{1,2,3} (d=1024) .584 .403 .591 .404
14 (7) + enc-first-layer .581 .114 .588 .111
15 (7) + enc-all-layers .579 .102 .590 .100
18 (12) + 1k lines per lang .581 .394 .589 .393
19 (12) + 1k lines per lang (BT) .583 .396 .588 .396
20 (14) + 1k lines per lang (BT) .579 .404 .587 .404
21 (12) + 100 lines per lang (BT) .583 .391 .590 .391

Table 18: TED valid and test chrF scores of incremental training with Greek on the source side when the initial
model is English-centric (3).

ID Model
Valid chrF Test chrF

EN→ EL / EN→ EL EN→ EL / EN→ EL
1 Bilingual baselines (pivot) .551 .435 .570 .444
57 Re-training + EL (pivot) .557 .430 .577 .440
58 Re-training + {EL,UK,SV,ID} (pivot) .556 .428 .573 .438
24 Only embed .518 .401 .534 .409
25 (24) + non-tied .529 .407 .545 .416
26 (24) + dec-adapters-all (d=64) .545 .415 .561 .424
27 (24) + adapters-all (d=64) .564 .414 .584 .423
28 (24) + enc-adapters-last (d=1024) .562 .420 .581 .429
29 (26) + enc-adapters-last (d=1024) .568 .424 .586 .432
30 (24) + dec-last-layer .565 .427 .585 .435
31 (30) + enc-adapters-last (d=1024) .571 .426 .589 .435
32 (24) + adapters-all (d=430) .573 .408 .591 .416
33 (24) + dec-ad-all (690) + enc-ad-last (1024) .568 .425 .589 .434
34 (30) + adapters-all (d=90) .573 .420 .592 .428
35 (30) + enc-adapters-all (d=170) .572 .417 .594 .426
62 (24) + dec-all-layers .566 .426 .583 .434
36 (31) + EL multi-aligned .553 .441 .570 .450

Table 19: TED valid and test chrF scores of incremental training with Greek on the target side when the initial
model is English-centric (3).
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Source model Target model Valid Test
1 Bilingual .384 .388
1 Bilingual (pivot through English) .428 .437
6 Re-training + {EL,UK,SV,ID} .461 .470

7 Only embed
30 Dec-last-layer .456 .465
31 Dec-last-layer + enc-ad-last (d=1024) .457 .466

14 Enc-first-layer
30 Dec-last-layer .453 .463
31 Dec-last-layer + enc-ad-last (d=1024) .461 .470
31 Pivot through English? .460 .469

20 Enc-first-layer + 1k (BT)
30 Dec-last-layer .459 .468
31 Dec-last-layer + enc-ad-last (d=1024) .461 .470

19 Enc-adapters-all (d=512) + 1k (BT)
30 Dec-last-layer .451 .459
31 Dec-last-layer + enc-ad-last (d=1024) .453 .462

Table 20: TED valid and test chrF scores on {EL,UK,SV,ID}→{EL,UK,SV,ID} (average over 12 directions) by
combining source-language and target-language incrementally-trained parameters. (?) instead of combining model
parameters, translate with (14) to English, then to the target language with (31).

Language Code Family X-EN lines X-* lines
English en Germanic 450.30M 450.30M
French fr Romance 95.43M 215.63M
German de Romance 76.49M 192.67M
Spanish es Romance 72.97M 191.71M
Italian it Romance 38.05M 136.11M

Portuguese pt Romance 29.18M 117.68M
Dutch nl Germanic 27.36M 104.35M

Norwegian nb Germanic 15.38M 65.37M
Czech cs Slavic 12.92M 65.55M
Polish pl Slavic 12.88M 69.27M

Swedish sv Germanic 10.97M 60.16M
Danish da Germanic 9.79M 61.28M
Greek? el Hellenic 8.92M 48.29M
Finnish fi Uralic 6.83M 47.62M
Croatian hr Slavic 6.34M 30.47M

Hungarian hu Uralic 6.29M 42.53M
Bulgarian? bg Slavic 6.10M 36.84M
Romanian ro Romance 5.79M 40.52M

Slovak sk Slavic 4.56M 36.39M
Lithuanian lt Baltic 4.03M 30.21M

Total all – 900.60M 2.043B

Table 21: Size of the Top 20 ParaCrawl corpus. English has 271.85M unique lines. (?) all languages use the
Latin script, except for Greek and Bulgarian (Cyrillic).

Language Code Family X-EN lines
Russian ru Slavic 25.17M
Arabic ar Semitic 20.04M

Mandarin Chinese zh Sinitic 17.45M

Table 22: Size of the UNPC corpus.

https://paracrawl.eu/v7-1
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Parameter name Parameter value
share_all_embeddings True / False5,6

share_decoder_input_output_embed True
arch transformer

lr_scheduler inverse_sqrt
optimizer adam

adam_betas 0.9,0.999
fp16 True

clip_norm 0.0
lr 0.0005 / 0.00014

warmup_updates 4000
warmup_init_lr 1e-07

criterion label_smoothed_cross_entropy
label_smoothing 0.1

dropout 0.3 / 0.12,3,4

max_tokens 4000
max_epoch 1201,5 / 102,4 / 203,6

save-interval 1 / 55

validate-interval 1 / 55

update_freq? 4
reset_* True

lang_temperature† 5

Table 23: fairseq v0.10.2 hyper-parameters of the TED Talks models. (?) we normalize this value by the number of GPUs
to have a constant batch size. For instance, models trained on 4 GPUs use update_freq=1. (1) English-centric training
stage of the initial model; (2) multi-parallel training stage; (3) our re-training approach; (4) our implementation of Garcia
et al. (2021); (5) English-centric incremental training; (6) multi-aligned incremental training. The bilingual baselines use the
transformer_iwslt_de_en architecture and are trained for 25k steps with validation every 500 steps and patience 3. (†)
we implement an on-the-fly data loading pipeline that builds heterogeneous batches by sampling language pair k with probability:
pk = D

1/T
k /(

∑
D

1/T
i ) where T is the temperature and Dk is the total number of line pairs for that language pair (Aharoni

et al., 2019).

Parameter name Parameter value
max_source_positions 256
max_target_positions 256
share_all_embeddings True / False5

share_decoder_input_output_embed True
arch transformer_vaswani_wmt_en_de_big

encoder_layers 12 / 64

decoder_layers 2 / 64

lr_scheduler inverse_sqrt
optimizer adam

adam_betas 0.9,0.98
fp16 True

clip_norm 1.0
lr 0.0005

warmup_updates 4000
warmup_init_lr 1e-07

criterion label_smoothed_cross_entropy
label_smoothing 0.1

dropout 0.1
max_tokens 8000
max_update 10000001 / 2000002 / 3600003 / 1200004,5

save_interval_updates 20000 / 100004 / 50005

validate_interval_updates 20000 / 100004 / 50005

update_freq? 32
reset_* True

lang_temperature† 5 / 22,3

Table 24: fairseq hyper-parameters of the ParaCrawl/UNPC models. (?) (†) see Table 23. (1) English-centric training stage of
the initial model; (2) multi-parallel training stage; (3) our re-training approach; (4) bilingual baselines; (5) incremental training.
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ID Model Lang code
EN→ / EN→

EL UK ID SV EL UK ID SV

24 Embed only
None -17 -18 -19 -10 -15 -18 -18 -8
EN -18 -19 -17 -5 -14 -16 -17 -7

Proxy -6 -2 -2 -13 -3 +0 -2 -6

30 (24) + dec-last-layer
None -2 -4 -3 +3 -4 -6 -3 -1
EN +0 -2 -1 +5 -3 -5 -3 +0

Proxy +3 +1 -1 +4 +0 +1 -1 +2
31 (30) + enc-adapters-last (d=1024) None -1 -4 +2 -6 -2 -5 -3 -2
32 Enc-adapters-all (dim=430) None +2 -1 -1 +1 -8 +1 +1 -3

33 (24) + enc-adapters-last (d=1024)
None -1 -1 1 -1 -2 -4 -1 -4

+ dec-adapters-all (d=690)

Table 25: TED valid chrF delta (×1000) of target-side incremental learning techniques with fixed language codes,
compared to models with learned language codes. “None” corresponds to training and decoding without any
language code. “EN” trains and decodes with the pre-trained (and frozen) “to English” language code. “Proxy”
uses the closest pre-trained language code (RU for UK, BG for EL, DE for SV and VI for ID). This is an oracle,
obtained by computing the Euclidean distance between trained language codes in (6).

ID Model →EN ←EN / EN
39 Big 6-6 English-centric .582 .571 .400
40 Big 12-2 English-centric .587 .577 .435
42 (40) + multi-parallel training .583 .573 .486
41 (40) + pivot through English – – .488
43 (40) + {AR,RU,ZH} .585 .574 .433
44 (42) + {AR,RU,ZH} .580 .569 .486

Table 26: TED2020-valid chrF scores of the ParaCrawl/UNPC baselines.
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ID Model
AR RU ZH AR RU ZH

→ EN → / EN
45 Bilingual baselines (pivot through English) .499 .460 .430 .429 .423 .381
43 English-centric (40) + {AR,RU,ZH} .488 .480 .430 .372 .385 .337
44 Multi-parallel (42) + {AR,RU,ZH} .494 .479 .430 .395 .418 .345
50 (44) + pivot through English – – – .424 .433 .382
46 Only embed .447 .469 .416 .378 .425 .365
63 (46) without lang ID filtering .447 .469 .416 .378 .425 .365
47 (46) + enc-adapters-all (d=512) .502 .478 .434 .154 .157 .152
48 (46) + enc-first-layer .491 .474 .428 .154 .168 .152
64 (48) without lang ID filtering .488 .474 .427 .154 .158 .151
49 (48) + 20k lines per lang (BT) .492 .474 .427 .417 .433 .376
65 (49) without lang ID filtering .433 .457 .385 .148 .158 .148

ID Model
EN→ / EN→

AR RU ZH AR RU ZH
45 Bilingual baselines (pivot through English) .423 .437 .187 .358 .400 .156
43 English-centric (40) + {AR,RU,ZH} .412 .439 .179 .295 .384 .115
44 Multi-parallel (42) + {AR,RU,ZH} .423 .443 .182 .300 .402 .126
50 (44) + pivot through English – – – .356 .402 .153
51 Only embed .314 .398 .158 .277 .364 .134
66 (51) without lang ID filtering .282 .395 .130 .224 .301 .084
52 (51) + enc-adapters-last + dec-adapters-all (d=1024) .417 .437 .187 .348 .397 .153
53 (51) + dec-last-layer .412 .441 .187 .348 .401 .154
54 (53) + enc-adapters-last (d=1024) .426 .446 .192 .356 .404 .156
55 (54) without lang ID filtering .312 .363 .107 .072 .185 .037
56 (51) + dec-all-layers .426 .446 .193 .357 .404 .159

Table 27: TED2020-valid chrF scores of the ParaCrawl/UNPC incrementally-trained models.

Source model Target model chrF
45 Bilingual baselines (pivot through English) .274
44 Multi-parallel (42) + {AR,RU,ZH} .237
50 (44) + pivot through English .271

46 Only embed
53 Dec-last-layer .248
54 Dec-last-layer + enc-adapters-last (d=1024) .252

47 Enc-adapters-all (d=512)
53 Dec-last-layer .242
54 Dec-last-layer + enc-adapters-last (d=1024) .251
54 Pivot through English? .274

48 Enc-first-layer
53 Dec-last-layer .223
54 Dec-last-layer + enc-adapters-last (d=1024) .234

49 Enc-first-layer + 20k (BT)
53 Dec-last-layer .243
54 Dec-last-layer + enc-adapters-last (d=1024) .251

Table 28: TED2020-valid chrF scores of the ParaCrawl/UNPC models on {AR,RU,ZH}→{AR,RU,ZH} (average
over 6 directions) by combining source-language and target-language incrementally-trained parameters. (?) instead
of combining model parameters, translate to English with (48), then to the target language with (54).
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English-centric Denotes a parallel corpus that only has alignments with English
(i.e., 38 language pairs in our settings). Also denotes many-to-many
models that are trained with such data. In this setting, translation
between non-English language pairs is called “zero-shot.”

Multi-parallel Denotes a parallel corpus that has alignments between all possible
language pairs (380 in our case), and by extension, models that are
trained with such data (AKA “complete multilingual NMT”, Freitag
and Firat, 2020).

Enc-adapters-X (d = N ) Train adapter modules of bottleneck dimension N after the encoder
layer X .

Enc-adapters-all (d = N ) Train adapter modules of bottleneck dimension N after all encoder
layers.

Enc-layer-X Fine-tune the Xth Transformer encoder layer.
Enc-norm + enc-biases Fine-tune the layer norm parameters and all the biases in the Trans-

former encoder.
+ random embed init Initialize the new language-specific embeddings at random, instead of

initializing the embeddings of the known tokens with their previous
values.

+ non-tied Train separate target embeddings and output projection matrix (by
default they are tied, i.e., they correspond to the same parameter).

+ EL multi-aligned Train with multi-aligned EL data: not just paired with English, but
with all of the 20 languages (2.41M lines pairs instead of 134k).

+ EL multi-aligned (BT) Like above, but the non-EN data is obtained by translating the English
side of the EL-EN corpus to the other 19 languages with (3). For
better comparison with the above method, we back-translate the same
number of lines per language as in the multi-aligned EL corpus.

+ N lines per lang Append to the EL-EN training data N line pairs for each of the 19
non-English languages.

+ N lines per lang (BT) Like above, but the N line pairs per language are obtained by trans-
lating the English side of the EL-EN corpus with (3).

/ EN 19 non-English languages in the initial model. As a column header,
it means an average score over all 342 non-English translation direc-
tions.

→ EN Average score over all 19 X→ EN translation directions.
← EN Average score over all 19 EN→ Y translation directions.
Re-training + {L1, L2 . . .} Fine-tune the initial model with an updated BPE vocabulary and

embedding matrix that include the new languages (L1, L2, etc.), and
on the multi-aligned data of all the 20 initial languages plus the new
ones.

(K) + {L1, L2 . . .} Use the incremental training technique K, but on several languages
at once (L1, L2, etc.) This means that a single shared BPE is trained
for all these languages (whose size is multiplied by the number of
languages) and the newly-trained parameters are shared between
them.

Table 29: Summary of the notations used in this paper.


