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Abstract

We present our development of the multilin-
gual machine translation system for the large-
scale multilingual machine translation task
at WMT 2021. Starting form the provided
baseline system, we investigated several tech-
niques to improve the translation quality on the
target subset of languages.

We were able to significantly improve the
translation quality by adapting the system
towards the target subset of languages and
by generating synthetic data using the ini-
tial model. Techniques successfully applied
in zero-shot multilingual machine translation
(e.g. similarity regularizer) only had a minor
effect on the final translation performance.

1 Introduction

This paper describes Maastricht University’s par-
ticipation in the large-scale multilingual machine
translation task of WMT 2021. We participate in
Small Track #2. In this track, the task is to build
a translation system between English and 5 South-
east Asian languages. The evaluation is performed
on all 30 possible translation directions between
these languages. We are provided with parallel data
extracted from Wikipedia and other sources for all
language pairs, as well as a large-scale multilingual
machine translation model pretrained on 124 lan-
guages (Goyal et al., 2021) including the languages
in this task.

Starting from the provided baseline models, we
investigate several directions in order to improve
the performance on the 30 target language direc-
tions. As the first step, we focus on methods
to adapt the model to these language directions.
Specifically, we investigate different strategies to
fine-tune the model on the proposed parallel train-
ing data.

Since the provided parallel data is extremely lim-
ited for several translation directions, we investi-
gate the use of synthetic parallel data. We focus on

jv id ms tl ta en
su 44 243 137 440 108 904
jv 644 340 662 46 2,556
id 4,060 2,356 415 48,486
ms 1,174 297 12,023
tl 489 12,348
ta 1,864

Table 1: Number of sentences for each languages pair
after preprocessing (in thousand sentences).

using pivot languages in order to use well perform-
ing language direction to generate training data for
worse performing language directions.

Finally, we investigate the usefulness of tech-
niques to promote the similarity of representation
between different languages. While these tech-
niques were shown essential for models to perform
zero-shot machine translation (Arivazhagan et al.,
2019a; Pham et al., 2019; Liu et al., 2021), in our
experiments the impact of these methods is only
limited.

2 Data

We start by introducing the training data and pre-
processing steps.

2.1 Languages

As required for the small tracks, we only use the
data provided by the organizers. The covered lan-
guages are: Javanese (jv), Indonesian (id), Malay
(ms), Tagalog (tl), Tamil (ta), English (en). Al-
though Sundanese (su) is later excluded from the
evaluations, we still include it in the training data
because of its high relatedness to Javanese (jv), one
of the lowest-resource languages in this track.

2.2 Preprocessing

After de-duplicating, we remove sentences with
more than 50% punctuation marks or digits, and
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sentence pairs of length ratios beyond 1:5 in char-
acter count. We also apply frequency cleaning fol-
lowing M2M-100 (Fan et al., 2021). An overview
of the training data amount after preprocessing is
shown in Table 1.

3 Techniques

Our efforts to improve upon the provided baselines
can be categorized into three directions: finetun-
ing (subsection 3.1), utilizing synthetic data (sub-
section 3.2), encouraging similarities between lan-
guages (subsection 3.3).

3.1 Language Adaptation

While the provided baseline systems are trained on
over 100 languages, our target track focuses on 6
specific languages. Therefore, we investigate differ-
ent fine-tuning methods to adapt the model to the
target languages. In this framework, we initialize
from the pretrained baseline model and continue
training on different subsets of the given training
data. First (§3.1.1), we finetune on each of the lan-
guage pairs. Then (§3.1.2), we apply finetuning
on all the languages jointly. Finally (§3.1.3), in an
attempt to preserve model performance on all other
directions, we use adapter layers dedicated to the
languages of interest.

3.1.1 Language-Specific Adaptation

First, we adapt the model to each translation direc-
tion individually, resulting in 30 different transla-
tion systems. Each of the models is trained on a
single language pair from the provided translation
directions.

While this approach achieves good performance,
the main disadvantage is that we will have 30 indi-
vidual systems. Since all of the individual models
are fine-tuned from the same baseline model, we
hypothesize that the resulting models are relatively
similar. Therefore, we investigate the possibility
of checkpoint-averaging on all the models adapted
to individual language pairs, as successfully done
in previous evaluations of multilingual translation
(Pham et al., 2017).

3.1.2 Language-Independent Adaptation

Similar to the motivation for the checkpoint-
averaging described above, in order to preserve
one single model, we adapt the baseline system
to all the target language pairs jointly by continue
training on all the provided training data.

3.1.3 Adapter Layers

The approaches above update all parameters of the
pretrained baseline model during the fine-tuning
stage. As a result, the models would lose perfor-
mance on translation directions other than those in
the training data. To avoid this catastrophic forget-
ting, we take inspiration from the adapters (Bapna
and Firat, 2019) and insert feedfoward layers after
each encoder/decoder layer. When finetuning, we
only train these parameters while keeping the rest
of the model frozen. At test time, the model keeps
the adapter layers for the languages seen in train-
ing. When handling languages unseen in training,
the model drops the adapters and falls back to the
pretrained baseline.

A main difference to the multilingual adapters
(Bapna and Firat, 2019) is that our adapter layers
are not language-pair-specific. Instead, they are
shared among all the directions. A main reason
for sharing the adapters is that, when scaling to
more languages, a quadratic set of adapters would
be needed.

Due to resource constraints, in this work we only
train one set of adapter layers for the translation
directions in Small Track #2. Nevertheless, we
believe this approach could remain applicable when
scaling to more languages like in Large Track. This
could, for instance, be achieved by multiple sets
of adapter layers dedicated to different language
families.

3.2 Synthetic Data

Motivated by the strong improvements from syn-
thetic data in multilingual speech translation evalu-
ation (Anastasopoulos et al., 2021), we investigate
the creation of synthetic parallel data for all lan-
guage direction with limited available parallel data.
Based on the corpus statistics (Table 1), we select
all languages pairs with less than n parallel sen-
tences as low-resource directions. In the initial
experiments, we choose a threshold of n = 500K
sentences pairs. Following successful initial ex-
periments, we increase n to 2M sentences. For all
the language with k£ < n parallel sentences, we
generated n — k synthetic sentences. Consequently,
the final system is trained on at least n sentences
for each language pair.

While monolingual data was provided, as the
initial translation system performed poorly on low-
resource directions, we chose not to directly gen-
erate synthetic data from the monolingual data. In-
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stead, we create synthetic data based on parallel
data between the source and a pivot language. Syn-
thetic target-side data is created by translating out
of the pivot language. When selecting the pivot
language, we choose the source-pivot pair with the
highest BLEU scores. !

In this above-described scenario, as the source
sentences are human-generated and the synthetic
target sentences are automatically generated, we
hypothesize that the mistakes are concentrated on
the target side. This is normally addressed by using
back-translation and generating the translation in
the inverse directions. Since we aim to use the gen-
erated languages for both direction (source to target
and target to source) for the sake of efficiency, we
generate half of the sentences in the one direction
and the other half in the inverse direction.

3.3 Encouraging Similar Representations

As shown in the statistics in Table 1, our training
data is highly unbalanced. Extreme low-resource
pairs such as ta<+jv could be considered as few-
shot directions. We therefore explore several tech-
niques shown useful for zero-shot conditions, and
investigate their usefulness in this current scenario.

3.3.1 Similarity Regularization

First shown in (Arivazhagan et al., 2019a; Pham
et al., 2019), an auxiliary loss promoting similari-
ties between source and target languages facilitate
zero-shot translation. Given source sentence X and
target sentence Y, besides the translation loss, we
minimize the following auxiliary loss:

‘Csimilarity =X diSt(X, Y), (l)

where dist(-) is the Euclidean distance between
two meanpooled sentence embeddings, and ) is the
weight for this auxiliary loss.

3.3.2 Residual Removal

The residual removal approach was shown help-
ful to zero-shot translation by reducing the posi-
tional information from source sentences (Liu et al.,
2021). Specifically, the residual connections of a
middle encoder layer is removed to relax the strong
positional correspondence between input tokens
and encoder outputs.

'In the later experiments, the best-performing source-pivot
direction is always source-English.

4 Experimental Setup

4.1 Training Details

The provided M2M-100 models (Fan et al., 2021;
Goyal et al., 2021) cover over 100 languages and
have a vocabulary size of 256K. To accelerate train-
ing and reduce GPU memory usage, we trim away
the word embedding of those tokens that do not oc-
cur in our training data. After vocabulary trimming,
our vocabulary size is 165K. An exception where
we do not trim the vocabulary is when training with
adapters, since the goal is to preserve performance
on all languages.

To counteract the data imbalance among the lan-
guage pairs, following previous works (Arivazha-
gan et al., 2019b; Tang et al., 2020), we use a sam-
pling temperature of 5.0 which upsamples the low-
resource pairs.

For the model with similarity regularizer, we use
weight of 0.1 on the auxiliary loss. For the model
with residual removal, the residual layer is skipped
after the third encoder layer. For the adapters, we
use a bottleneck dimension of 256.

4.2 Decoding and Evaluation

When decoding we use a beam size of 5, and limit
the maximum output length to 1.3 * source length +
5. We report translation performance on the FloRes-
101 (Goyal et al., 2021) devtest set. The BLEU re-
ported scores are the spBLEU (Goyal et al., 2021)
variant based on sentencepiece (Kudo and Richard-
son, 2018) tokenization. The systems are also sub-
mitted to Dynabench (Kiela et al., 2021)? for eval-
uation on a blind test set.

5 Results

In this section, we report the results of the three
directions we explored: finetuning on the focus
languages (subsection 5.1), utilizing synthetic data
(subsection 5.2), and encouraging similarities be-
tween languages (subsection 5.3).

5.1 Language Adaptation
The results of adapting the model towards different

language pairs are shown in Table 2.

5.1.1 Language-Dependent and -Independent
Adaptation

We start with the small baseline model for faster
experiment iterations, with results summarized in

https://dynabench.org/flores
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System BLEU System jv-ta ta-jv
baseline small 11.5 baseline big 3.8 3.1
+ lang. dep. fine-tune 20.6 + parallel data 8.5 7.9
+ averaging 5.7 + syn. jv-ta data 10.0 8.2
+ lang. indep. fine-tune 19.6 + syn. ta-jv data 15.0 10.7
baseline big 154 + EOtE syn. gata bi }2(9) 1?;
+ lang. indep. fine-tune 27.4 + both syn. data big : :
+ shared adapter layers (rest frozen) 23.0

Table 2: Results of different fine-tuning approaches
from the baseline models. Language-dependent fine-
tuning achieves the strongest performance, but creates
individual models for each translation direction. Av-
eraging the models from the individual directions per-
forms poorly. Fine-tuning on all directions falls slightly
behind language-specific fine-tuning but preserves one
single model.

the upper section of Table 2. When adapting to
each language pair individually (lang. dep. fine-
tune), we see large gains with average BLEU score
increasing from 11.5 to 20.6. In contrast to previ-
ous work (Pham et al., 2017), we are not able to
preserve this gain by averaging all the individual
models into one single models. Instead, averaging
the models results in a low average BLEU score
of 5.7. This suggests the adapted individual mod-
els are relatively dissimilar and cannot be simply
averaged.

Nevertheless, by fine-tuning on all 30 language
directions together (lang. indep. fine-tune), we
achieve a comparable gain in performance, results
in a BLEU score of 19.6. Since this is achieved
by a single model instead of 30 individual models,
we continue with jointly training on all directions
in the upcoming experiments on the big baseline
model. Similar to findings on the small model, by
fine-tuning on all the languages, we were able to
improve the average BLEU score of the big base-
line model from 15.4 to 27.4.

5.1.2 Adapters

As shown in the lower section of Table 2, by insert-
ing adapters into the large baseline model and only
training these modules, we achieve 23.0 BLEU on
average. While the gain is less compared to full
parameter tuning, the model preserves performance
on the remaining tens of thousands directions.

As motivated previously (§3.1.3), the adapter
layers are shared across the language directions
rather than language-pair-specific. This could ex-

Table 3: Impact of synthetic data on jv<+ta, the lowest-
resource language pair in this task.

plain the performance gap to full parameter tuning.

5.2 Synthetic data

In the first set of experiments, we evaluate the in-
fluence of synthetic data only on the translations
between Javanese (jv) and Tamil (ta), since this
was the language pair with the least data (44K sen-
tences). The synthetic data was always produced
by the system fine-tuned on all the target language
directions. The results are summarized Table 3.
First, although the available parallel data is limited,
we see a clear improvement of the baseline model
when trained on the provided training data.

Adding the synthetic data (225K sentences for
jv-ta and ta-jv each) does improve the performance
compared to only using the parallel data. For both
directions, the data generated from ta-jv was per-
forming better than the other data. Since the combi-
nation of both directions performed the best for the
jv-ta direction and reasonable good for the other di-
rection and it is not clear how we should select the
direction without perfoming test for each langauge
pair, we continued the experiments by always using
synthetic data generated by both directions.

By increasing the amount of synthetic data, so
that the model is not trained on around 500k sen-
tences by 2M sentence, we see additional gains to
the best performance of 16.0 and 11.7 BLEU points
for both directions. This is an improvement nearly
by a factor of 3 compared to the baseline system.

Given the best system so far with 27.4 average
BLEU, we continue fine-tuning with the additional
synthetic data. This leads to an improvement to
27.9 BLEU on average. This improvement is sig-
nificantly lower than expected, considering the gen-
eral positive role of utilizing synthetic data. This
has two potential reasons. First, as all other lan-
guage directions have more data, the gains from
the additional data could be reduced. Furthermore,
the initial model is fine-tuned on the parallel data
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Directions # Sent. A BLEU
jvérta 46K +0.6
ms<->ta 297K +0.1
jvé>ms 340K +0.1
Overall 8OM +0.0

Table 4: The average change in BLEU after fine-tuning
with residual removal. There is no gain in overall
average BLEU, and limited gain in the top 3 lowest-
resource directions.

of all the language pairs and therefore performing
better.

5.3 Encouraging Similar Representations

Next we report the results of the approaches that
promote language similarity as motivated in sub-
section 3.3.

5.3.1 Similarity Regularizer

Based on the best system trained with synthetic
data (with 27.9 BLEU on average), we continue
fine-tuning with the similarity regularizer described
in §3.3.1. While we observe consistent increase in
the similarity scores on the dev set, fine-tuning with
the similarity regularizer alone does not improve
the system further, achieving 27.7 BLEU on aver-
age. Nevertheless, we see gains when combining
the similarity regularizer and the adapters described
in §3.1.3. As adding the adapter layers expands the
capacity of the existing model, we hypothesize the
similarity regularizer could help combat overfitting.
With this combination, we achieve an average of
28.1 BLEU.

5.3.2 Residual Removal

Based on the baseline big + fine-tune model (with
27.4 BLEU on average), we fine-tune once again
using the residual-removal architecture described
in §3.3.2. In Table 4, we summarize the average
change in BLEU after this additional fine-tuning
step. While there was no improvement in the over-
all average BLEU score, we observe some gain in
the lowest-resource direction of jv<+ta which has
46K parallel data. However, the gain falls largely
for the second and third lowest-resource directions.

5.4 Final System

The final system submitted to the evaluation is pre-
sented in Table 5. In a first step, we fine-tuned on
the provided parallel data. Using this model, we

System BLEU
baseline big 154
+ fine-tune 274

+ synthetic data 279

+ sim. regularizer + adapter 28.1

Table 5: Average BLEU scores on FLoRes-101 devtest
set on 30 directions of the final system.

created additional synthetic data. Fine-tuning the
previous model on the parallel data and the syn-
thetic data gave an additional improvement of 0.5
BLEU.

Finally, on top of the previous improvements,
our best system uses the additional similarity regu-
larization and adapters during training and further
improves the average BLEU by 0.2 points to 28.1.
The submitted system achieves 28.6 BLEU on av-
erage on the blind test set’.

6 Conclusion

This paper summarizes our participation in the
WMT 2021 large-scale multilingual translation
task. We focus on Small Track #2 for English and
5 Southeast Asian languages. Building upon the
provided baseline models, we achieved the largest
gain from fine-tuning on the parallel data of all di-
rections in this task. By further utilizing synthetic
data and a combination of similarity regularization
and adapters, we were able to further improve the
system.

References

Antonios Anastasopoulos, Ondfej Bojar, Jacob Bremer-
man, Roldano Cattoni, Maha Elbayad, Marcello Fed-
erico, Xutai Ma, Satoshi Nakamura, Matteo Negri,
Jan Niehues, Juan Pino, Elizabeth Salesky, Sebas-
tian Stiiker, Katsuhito Sudoh, Marco Turchi, Alexan-
der Waibel, Changhan Wang, and Matthew Wiesner.
2021. FINDINGS OF THE IWSLT 2021 EVALUA-
TION CAMPAIGN. In Proceedings of the 18th In-
ternational Conference on Spoken Language Trans-
lation (IWSLT 2021), pages 1-29, Bangkok, Thai-
land (online). Association for Computational Lin-
guistics.

Naveen Arivazhagan, Ankur Bapna, Orhan Firat,
Roee Aharoni, Melvin Johnson, and Wolfgang
Macherey. 2019a. The missing ingredient in zero-
shot neural machine translation. arXiv preprint
arXiv:1903.07091.

*https://dynabench.org/models/445

429


https://doi.org/10.18653/v1/2021.iwslt-1.1
https://doi.org/10.18653/v1/2021.iwslt-1.1
https://dynabench.org/models/445

Naveen Arivazhagan, Ankur Bapna, Orhan Firat,
Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,
Mia Xu Chen, Yuan Cao, George Foster, Colin
Cherry, et al. 2019b. Massively multilingual neural

Translation (Volume 1: Research Papers), pages 13—
23, Florence, Italy. Association for Computational
Linguistics.

machine translation in the wild: Findings and chal- ~ Ngoc-Quan Pham, Matthias Sperber, Elizabeth

lenges. arXiv preprint arXiv:1907.05019.

Ankur Bapna and Orhan Firat. 2019. Simple, scal-
able adaptation for neural machine translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the

Salesky, Thanh-Le Ha, Jan Niehues, and Alexander
Waibel. 2017. Kit’s multilingual neural machine
translation systems for iwslt 2017. In Proceedings
of the 14th International Workshop on Spoken
Language Translation (IWSLT 2017).

9th International Joint Conference on Natural Lan- ~ Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-

guage Processing (EMNLP-IJCNLP), pages 1538—
1548, Hong Kong, China. Association for Computa-
tional Linguistics.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep
Baines, Onur Celebi, Guillaume Wenzek, Vishrav
Chaudhary, et al. 2021. Beyond english-centric mul-
tilingual machine translation. Journal of Machine
Learning Research, 22(107):1-48.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’ Aurelio Ranzato, Francisco Guzman,
and Angela Fan. 2021. The flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. arXiv preprint arXiv:2106.03193.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-
shia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel,
Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mo-
hit Bansal, Christopher Potts, and Adina Williams.
2021. Dynabench: Rethinking benchmarking in
NLP. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4110-4124, Online. Association for
Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Danni Liu, Jan Niehues, James Cross, Francisco
Guzmdn, and Xian Li. 2021. Improving zero-shot
translation by disentangling positional information.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1259-1273, Online. Association for Computational
Linguistics.

Ngoc-Quan Pham, Jan Niehues, Thanh-Le Ha, and
Alexander Waibel. 2019. Improving zero-shot trans-
lation with language-independent constraints. In
Proceedings of the Fourth Conference on Machine

430

man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2020. Multilingual translation with exten-
sible multilingual pretraining and finetuning. arXiv
preprint arXiv:2008.00401.


https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2021.acl-long.101
https://doi.org/10.18653/v1/2021.acl-long.101
https://doi.org/10.18653/v1/W19-5202
https://doi.org/10.18653/v1/W19-5202

