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Abstract

This paper illustrates our approach to the
shared task on large-scale multilingual ma-
chine translation in the sixth conference on
machine translation (WMT-21). In this work,
we aim to build a single multilingual trans-
lation system with a hypothesis that a uni-
versal cross-language representation leads to
better multilingual translation performance.
We extend the exploration of different back-
translation methods from bilingual translation
to multilingual translation. Better perfor-
mance is obtained by the constrained sam-
pling method, which is different from the find-
ing of the bilingual translation. Besides, we
also explore the effect of vocabularies and the
amount of synthetic data. Surprisingly, the
smaller size of vocabularies perform better,
and the extensive monolingual English data
offers a modest improvement. We submit-
ted to both the small tasks and achieve the
second place. The code and trained models
are available at https://github.com/
BaohaoLiao/multiback.

1 Introduction

Bilingual neural machine translation (NMT) sys-
tems have achieved decent performance with the
help of Transformer (Vaswani et al., 2017). One of
the most exciting recent trends in NMT is training a
single system on multiple languages at once (John-
son et al., 2017b; Aharoni et al., 2019a; Zhang
et al., 2020; Fan et al., 2020). This is a power-
ful paradigm for two reasons: simplifying sys-
tem development and deployment, and improving
the translation quality on low-resource language
pairs by transferring similar knowledge from high-
resource languages.

This paper describes our experiments on the task
of large-scale multilingual machine translation in
WMT-21. We primarily focus on the small tasks, es-
pecially on Small Task 2 which has a small amount
of training data. Small Task 1 contains five Cen-

tral/East European languages and English, having
30 translation directions. Similarly, Small Task
2 contains five South East Asian languages and
English, also having 30 translation directions.

In this work, we mainly concentrate on different
back-translation methods (Sennrich et al., 2016a;
Edunov et al., 2018; Graça et al., 2019) for multi-
lingual machine translation, including beam search
and other sampling methods. Along with it, we also
explore the effect of different sizes of vocabularies
and the effect of various amounts of synthetic data.
On this large-scale multilingual machine transla-
tion task, we achieved the second place for both
small tasks, obtaining 34.96 and 33.34 average sp-
BLEU scores (Goyal et al., 2021) on the hidden
test set for the Small Task 1 and 2, respectively.

2 Related Work

Multilingual Neural Machine Translation has
received increasing attention recently. Since Dong
et al. (2015) extended the traditional bilingual NMT
to one-to-many translation, there has been a mas-
sive increase in work on MT systems that involve
more than two languages (Dabre et al., 2017; Choi
et al., 2018; Chu and Dabre, 2019). The recent
research on multilingual NMT can be split into two
directions: developing language specific compo-
nents (Kim et al., 2019; Escolano et al., 2020) and
training a single model with extensive training data,
including parallel and monolingual data (Fan et al.,
2020). Here, we continue to explore the second
research direction, trying to built a single multilin-
gual NMT model for simple industrial deployment.

Back-translation (Sennrich et al., 2016a) has
been proven as a powerful technique to leverage
monolingual data for improving low-resource lan-
guage pairs. Edunov et al. (2018) and Graça
et al. (2019) explore different sampling methods for
bilingual back-translation, including beam search,
constrained and unconstrained sampling. Con-
strained sampling randomly predicts the next word

https://github.com/BaohaoLiao/multiback
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within some candidates that have higher prediction
probability. And unconstrained sampling randomly
predicts the next words from the whole vocabulary
without caring for the output distribution. In this
paper, we extend their exploration to the realm of
multilingualism, where similar languages affect the
results.

3 Experimental Setup

3.1 Data

The organizer offers parallel and monolingual data
for Small Task 1 and 2. Table 1 shows the size of
the data in terms of the number of sentences for
each language. There are five extra sets for evalu-
ation, i.e. dev, devtest, hidden dev, hidden devtest
and test sets. The dev set with 997 parallel sen-
tences among all language pairs and the devtest set
with 1,012 parallel sentences are public. Whereas,
the hidden dev and hidden devtest sets are invisible
to the participants and used for the first submission
period. The hidden test set is also invisible and
used for the final ranking.

Pre-processing is done by a regular Moses toolkit
(Koehn et al., 2007) pipeline that involves tokeniza-
tion, byte pair encoding and removing long sen-
tences. We borrow the 256K vocabularies from
the organizer’s pretrained model and the 128K vo-
cabularies from M2M_100 (Fan et al., 2021), one
shared vocabularies among all languages. Our sub-
missions only use the 256K vocabularies, and the
128K vocabularies is used for ablation experiments.

We also perform back-translation on the mono-
lingual data, and only accept the synthetic sen-
tence pair whose length is less than 250 words, and
whose length ratio between the source and target
sentence length is less than 1.8. In order to balance
the volume across different languages, we apply
temperature sampling D̃i = (Di/

∑
j Dj)

1/T with
T = 5 over the dataset, where Di is the number of
sentences in the ith language.

3.2 Model

All our models are built using the fairseq implemen-
tation (Ott et al., 2019) of the Transformer archi-
tecture (Vaswani et al., 2017). Multilingual models
are built using the same technique as Johnson et al.
(2017a) and Aharoni et al. (2019b), namely adding
a language label to the target sentence.

We apply three types of architectures, i.e.
Trans_small, Trans_base and Trans_big. The de-
tailed settings of these architectures are shown in

Small Task 1 Small Task 2
Language #sent. Language #sent.

en-et 35.7M en-id 54.1M
en-hr 63.7M en-jv 3.0M
en-hu 83.9M en-ms 13.4M
en-mk 2.7M en-ta 2.1M
en-sr 48.3M en-tl 13.6M
et-hr 13.6M id-jv 780.1K
et-hu 21.5M id-ms 4.9M
et-mk 3.1M id-ta 500.8K
et-sr 11.3M id-tl 2.7M
hr-hu 31.2M jv-ms 434.7K
hr-mk 4.4M jv-ta 66.0K
hr-sr 28.4M jv-tl 817.1K
hu-mk 4.1M ms-ta 372.6K
hu-sr 31.2M ms-tl 1.4M
mk-sr 4.2M ta-tl 563.3K
en 126.4M en 126.4M
et 3.0M id 5.5M
hr 3.1M jv 405.8K
hu 9.2M ms 1.9M
mk 1.9M ta 2.1M
sr 4.7M tl 414.1K

Table 1: Number of sentences of the parallel and mono-
lingual data used for two small tasks. The monolingual
English data for the two small tasks are the same.

Table 2. The parameters of all architectures are in
the half-precision floating-point format.

All our submissions on the shared task leader-
board are Trans_base, due to the memory and time
limit of the evaluation system. Trans_small is
mainly used for the ablation experiments. And the
pretrained Trans_big from M2M_100 (Fan et al.,
2021) is finetuned on the parallel corpus to generate
high-quality synthetic sentences.

3.3 Optimization and Evaluation

The following hyper-parameter configuration is
used: Adam optimizer with β1 = 0.90, β2 = 0.98,
a weight-decay of 0.0001, the label smoothed cross-
entropy criterion with a label smoothing of 0.1,
an initial learning rate of 0.0003 with the inverse
square root lr-scheduler and warmup updates of
2,500 steps. The batch size (the number of tokens)
is 4096 × 32 for Trans_small, and 2048 × 64 for
Trans_base and Trans_big.

For ablation experiments, we continue to train
the pretrained Trans_small offered by the organizer
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Model Trans_small Trans_base Trans_big

#vocabularies 256K 256K 128K
Word representation size 512 1,024 1,024

Feed-forward layer dimension 2,048 4,096 8,192
#prenormed encoder/ decoder layer 6 12 24

#attention head 16 16 16
Dropout rate 0.1 0.1 0.1

Layer dropout rate 0.05 0.05 0.05
#parameters 175M 615M 1.2B

Table 2: Settings of different pretrained models. Pretrained Trans_small and Trans_base are provided by the
organizer. And pretrained Trans_big is from Fan et al. (2021).

on the given parallel dataset for one epoch. When
combining both parallel and synthetic data, we fur-
ther train the model finetuned on the parallel data
for another one epoch. For the final submissions,
we train a pretrained Trans_base for two epochs
instead of one epoch. Pretrained Trans_big from
M2M_100 is only further trained on parallel data
for two epochs to generate high-quality synthetic
data. Even though we only train these models for
a few epochs, they seems converged quite well ac-
cording to the spBLEU curve during validation.

The model is validated every 3,000 steps on
the dev set and saved. We use the beam search
with a beam size of five, and stop translation when
ltgt = 1.5 ∗ lsrc + 20, where lsrc and ltgt are the
source and target sentence length, respectively. The
evaluation metric is BLEU based on sentence piece
tokenization (spBLEU) (Goyal et al., 2021). We
submit the average checkpoint of the last 15 check-
points to the evaluation system. While for the abla-
tion experiment, we use the best performed model
on the dev set.

4 Results

4.1 The Role of Vocabularies
There are two pretrained vocabularies, the one with
the size of 256K from the organizer and the one
with the size of 128K from M2M_100 (Fan et al.,
2021). To evaluate which vocabulary is the bet-
ter one, we train two Trans_smalls with these two
vocabularies from scratch on the parallel data of
Small Task 2 for five epochs. To make the parame-
ter sizes of these two models comparable, we set
the following hyper-parameter for the model with
the 128K vocabularies: 5 pre-normed encoder and
decoder layers with a word representation size of
768 and a feed-forward layer dimension of 3072,

Model Ave. spBLEU

128K Trans_small (scratch) 23.14
256K Trans_small (scratch) 21.65
256K Trans_small (pretrained) 23.72

Table 3: Average spBLEU on the devtest set of Small
Task 2 for the models with different vocabularies.

Model Ave. spBLEU

1st finetuned on parallel data 28.27
2nd finetuned on synthetic data 32.16
3rd finetuned on synthetic data 33.01

Table 4: Average spBLEU on the devtest set of Small
Task 2 for Trans_base on different finetuning steps.
These three models are iteratively trained. Trans_base
is first finetuned on the parallel data, and then fine-
tuned on the combination of the parallel data and the
synthetic data generated by Trans_big, and finally fine-
tuned on the combination of the parallel data and the
synthetic data generated by the 2nd step Trans_base.

resulting to 181M parameters. The other settings
stay the same with Trans_small (with 256K vocab-
ularies).

Table 3 shows the performance with different vo-
cabularies. It is obvious that the 128K vocabulary
outperforms the 256K vocabulary, 23.14 vs 21.65
spBLEU. However, if we finetune the pretrained
Trans_small with the 256K vocabulary, 0.58 score
improvement is achieved compared to the 128K
Trans_small. In a word, 128K vocabulary is a better
choice for training from scratch, while pretrained
model offers us more gain.
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Model Ave. spBLEU

1st finetuned on parallel data 32.46
2nd finetuned on synthetic data 34.73

Table 5: Average spBLEU on the devtest set of Small
Task 1 for Trans_base on different steps. These two
models are iteratively trained. Trans_base is first fine-
tuned on the parallel data, and then finetuned on the
combination of the parallel data and the synthetic data
generated by the previous step Trans_base.
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Figure 1: Average spBLEU on the devtest set of Small
Task 2 for different back-translation methods with vari-
ous amount of synthetic data. 80M synthetic data cov-
ers only 6M monolingual English data and all other
monolingual data. We increase the amount of mono-
lingual English data with a interval of 6M for the last
two experiments.

4.2 Different Back-translation Methods

Similar to Edunov et al. (2018), we explore three
types of back-translation methods, i.e. beam search
with the beam size of five (Sennrich et al., 2016a),
unconstrained sampling (Edunov et al., 2018) and
sampling constrained to the most 10 likely words
(Graves, 2013; Ott et al., 2018; Fan et al., 2018).
Unconstrained sampling predicts the next word
from the whole vocabulary without caring for the
model distribution. Whereas constrained sampling
predicts the next words within some candidates that
have the highest prediction probabilities. Both con-
strained and unconstrained sampling can be consid-
ered as adding uncertainty to the greedy search.

Figure 1 shows the back-translation results on
the devtest set of Small Task 2. We combine three
different amount of synthetic data and parallel data
to further train our Trans_smalls after finetuned
on parallel data. 80M synthetic sentences cover
only 6M monolingual English data and all other

monolingual data. In addition to the 80M syn-
thetic sentences, we further increase the amount of
monolingual English data to verify the model per-
formance with respect to the amount of synthetic
English data on the target side. The reason for this
implementation is there are too many monolingual
English sentences compared to other languages.
We try to check whether it is necessary to use all
monolingual English sentences.

As seen in Figure 1, little improvement is ob-
tained with increasing the number of monolingual
English sentences after 6M. Besides, in contrast to
the results in Edunov et al. (2018) where the un-
constrained sampling offers the best performance
among these three methods, the constrained sam-
pling method gives us the best score.

Beam search is the worst among these three
methods. We hypothesize this is because beam
search focuses only on the high probability words,
while both constrained sampling and unconstrained
sampling methods offer rich translations on the
source side. With the diverse synthetic data gen-
erated from the sampling methods, model can be
trained with more generalization.

In contrast to the bilingual translation (English-
German) in Edunov et al. (2018) where uncon-
strained sampling outperforms constrained sam-
pling, multilingual translation of Small Task 2
contains similar languages. We argue that uncon-
strained sampling might result in generating syn-
thetic sentences with a mix of similar languages,
which damages the quality of synthetic data, while
constrained sampling gives us some restriction,
to some extent avoiding the mix of different lan-
guages.

The reason for the slight effect of the synthetic
English (on the source side) data after 6M might be
that English is dissimilar to the other five South
East Asian languages. Less similar knowledge
could be transferred from this synthetic English
(on the source side) data to other languages.

4.3 Final Submissions

Section 4.1 suggests us to employ a pretrained
model with the 128K vocabulary. M2M_100 (Fan
et al., 2021) offers multiple pretrained models with
the 128K vocabularies 1. Their sizes are 418M,
1.2B and 12B, respectively. Considering our lim-
ited GPU budget, we finetune the 1.2B model, i.e.

1https://github.com/pytorch/fairseq/
tree/master/examples/m2m_100

https://github.com/pytorch/fairseq/tree/master/examples/m2m_100
https://github.com/pytorch/fairseq/tree/master/examples/m2m_100
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Small Task devtest hidden dev hidden devtest hidden test

#1 34.73 35.12 35.39 34.96
#2 33.01 33.74 33.51 33.34

Table 6: Average spBLEU on different test sets for both small tasks. The hidden sets are invisible to the participants.
The final ranking is based on the model performance on the hidden test set.
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Figure 2: The spBLEU scores of different language pairs for both small tasks on the devtest set from our final
submissions.

Trans_big, on parallel data of Small Task 2, obtain-
ing 28.78 spBLEU on the devtest set. Whereas,
training a Trans_base on the same data only pro-
vides 28.23 spBLEU. Even though Trans_big out-
performs Trans_base, we only train it for generat-
ing high-quality synthetic data, since it is too large
for the evaluation system.

Section 4.2 advises us to use the constrained sam-
pling method on partial monolingual English data.
With the constrained sampling method, we gener-
ate synthetic sentences with Trans_big that is first
finetuned on the parallel data. Instead of using all
monolingual English data, we synthesize en-id, en-
jv, en-ms, en-ta and en-tl with all, 15M, 60M, 10M
and 60M monolingual English sentences, respec-
tively, a ratio of about 5 : 1 between the number of
parallel sentences and synthetic sentences if there
are enough monolingual data.

Table 4 shows the results for iterative finetuning.
Except for finetuing Trans_base on the combina-
tion of the parallel data and the synthetic data gener-
ated by Trans_big, we use the finetuned Trans_base
to generate the synthetic data secondly and finetune
it again. Finally, it offers us 33.01 spBLEU on the
devtest set for Small Task 2.

Due to time and resource limit, we only conduct

one trial on Small Task 1. We first finetune the
pretrained Trans_base on parallel data. Then we
use this Trans_base to generate synthetic data with
only 20M monolingual English sentences and all
other monolingual sentences. Table 5 shows the
corresponding results. Different with Small Task
2, large amount of monolingual English data might
be helpful for Small Task 1, since Central/East Eu-
ropean languages are more similar to English than
Asian languages. Finally, We leave this exploration
to the future work.

Table 6 summarizes the results of our submis-
sions on different evaluation sets for both small
tasks. And Figure 2 lists the spBLEU scores for all
language pairs of both small tasks on the devtest
set. Finally, our submissions achieve the second
place for both small tasks.

5 Conclusion

We demonstrate that a pretrained model with the
smaller size of vocabularies is a better choice. Be-
cause of the memory and time limit of the evalua-
tion system, we can only apply a 1.2B model with
the smaller vocabularies to generate high-quality
synthetic data. Besides, we have a different obser-
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vation than previous research for bilingual back-
translation: the constrained sampling method per-
forms the best among all three back-translation
methods, including the beam search and the un-
constrained sampling. Finally, we also show that
extensive monolingual English data offers a modest
improvement. Combining these three findings, we
iteratively train our models on partial high-quality
synthetic data, achieving the second place for both
small tasks.

References
Roee Aharoni, Melvin Johnson, and Orhan Firat.

2019a. Massively multilingual neural machine trans-
lation. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
3874–3884, Minneapolis, Minnesota. Association
for Computational Linguistics.

Roee Aharoni, Melvin Johnson, and Orhan Firat.
2019b. Massively multilingual neural machine
translation. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL-HLT 2019), page 3874–3884.

Gyu Hyeon Choi, Jong Hun Shin, and Young Kil
Kim. 2018. Improving a Multi-Source Neural Ma-
chine Translation Model with Corpus Extension for
Low-Resource Languages. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Chenhui Chu and Raj Dabre. 2019. Multilingual multi-
domain adaptation approaches for neural machine
translation. CoRR, abs/1906.07978.

Raj Dabre, Fabien Cromierès, and Sadao Kurohashi.
2017. Enabling multi-source neural machine trans-
lation by concatenating source sentences in multiple
languages. CoRR, abs/1702.06135.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1723–1732, Beijing,
China. Association for Computational Linguistics.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 489–500.

Carlos Escolano, Marta R. Costa-jussà, José A. R.
Fonollosa, and Mikel Artetxe. 2020. Training mul-
tilingual machine translation by alternately freez-
ing language-specific encoders-decoders. CoRR,
abs/2006.01594.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Man-
deep Baines, Onur Celebi, Guillaume Wenzek,
Vishrav Chaudhary, Naman Goyal, Tom Birch, Vi-
taliy Liptchinsky, Sergey Edunov, Edouard Grave,
Michael Auli, and Armand Joulin. 2020. Be-
yond english-centric multilingual machine transla-
tion. CoRR, abs/2010.11125.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep
Baines, Onur Celebi, Guillaume Wenzek, Vishrav
Chaudhary, et al. 2021. Beyond english-centric mul-
tilingual machine translation. Journal of Machine
Learning Research, 22(107):1–48.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzman,
and Angela Fan. 2021. The flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. arXiv preprint arXiv:2106.03193.

Miguel Graça, Yunsu Kim, Julian Schamper, Shahram
Khadivi, and Hermann Ney. 2019. Generalizing
back-translation in neural machine translation. In
Proceedings of the Fourth Conference on Machine
Translation (Volume 1: Research Papers), pages 45–
52.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
et al. 2017a. Google’s multilingual neural machine
translation system: Enabling zero-shot translation.
Transactions of the Association for Computational
Linguistics, 5:339–351.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernanda Viégas, Martin Wattenberg, Greg Cor-
rado, Macduff Hughes, and Jeffrey Dean. 2017b.
Google’s Multilingual Neural Machine Translation
System: Enabling Zero-Shot Translation. Transac-
tions of the Association for Computational Linguis-
tics, 5:339–351.

Yunsu Kim, Yingbo Gao, and Hermann Ney. 2019.
Effective cross-lingual transfer of neural machine

https://doi.org/10.18653/v1/N19-1388
https://doi.org/10.18653/v1/N19-1388
http://arxiv.org/abs/1906.07978
http://arxiv.org/abs/1906.07978
http://arxiv.org/abs/1906.07978
http://arxiv.org/abs/1702.06135
http://arxiv.org/abs/1702.06135
http://arxiv.org/abs/1702.06135
https://doi.org/10.3115/v1/P15-1166
https://doi.org/10.3115/v1/P15-1166
http://arxiv.org/abs/2006.01594
http://arxiv.org/abs/2006.01594
http://arxiv.org/abs/2006.01594
http://arxiv.org/abs/2010.11125
http://arxiv.org/abs/2010.11125
http://arxiv.org/abs/2010.11125
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.18653/v1/P19-1120


424

translation models without shared vocabularies. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1246–
1257, Florence, Italy. Association for Computational
Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the associ-
ation for computational linguistics companion vol-
ume proceedings of the demo and poster sessions,
pages 177–180.

Myle Ott, Michael Auli, David Grangier, and
Marc’Aurelio Ranzato. 2018. Analyzing uncer-
tainty in neural machine translation. In Inter-
national Conference on Machine Learning, pages
3956–3965. PMLR.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Conference of the As-
sociation for Computational Linguistics (ACL).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Biao Zhang, Philip Williams, Ivan Titov, and Rico Sen-
nrich. 2020. Improving massively multilingual neu-
ral machine translation and zero-shot translation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1628–
1639, Online. Association for Computational Lin-
guistics.

https://doi.org/10.18653/v1/P19-1120
https://doi.org/10.18653/v1/2020.acl-main.148
https://doi.org/10.18653/v1/2020.acl-main.148

