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Abstract

We describe Facebook’s multilingual model
submission to the WMT2021 shared task on
news translation. We participate in 14 lan-
guage directions: English to and from Czech,
German, Hausa, Icelandic, Japanese, Russian,
and Chinese. To develop systems covering
all these directions, we focus on multilingual
models. We utilize data from all available
sources — WMT, large-scale data mining, and
in-domain backtranslation — to create high
quality bilingual and multilingual baselines.
Subsequently, we investigate strategies for
scaling multilingual model size, such that one
system has sufficient capacity for high quality
representations of all eight languages. Our fi-
nal submission is an ensemble of dense and
sparse Mixture-of-Expert multilingual transla-
tion models, followed by finetuning on in-
domain news data and noisy channel reranking.
Compared to previous year’s winning submis-
sions, our multilingual system improved the
translation quality on all language directions,
with an average improvement of 2.0 BLEU. In
the WMT2021 task, our system ranks first in
10 directions based on automatic evaluation.

1 Introduction

We participate in the WMT2021 shared task on
news translation and submit a multilingual transla-
tion system. In recent years, multilingual transla-
tion has gained significant interest as an alternative
to developing separate, specialized systems for dif-
ferent language directions (Firat et al., 2016; Tan
et al., 2019; Aharoni et al., 2019; Zhang et al.,
2020; Tang et al., 2020; Arivazhagan et al., 2019).
Multilingual systems have great potential for sim-
plicity and consolidation, making them attractive
options for the development and maintenance of
commercial translation technologies. From a re-
search standpoint, studies of transfer learning be-
tween related languages and developing methods
that incorporate low-resource languages are strong

motivators for grouping languages together in one
system (Dabre et al., 2019; Fan et al., 2021).

Despite such motivations, existing multilingual
translation systems have been unable to show that
the translation quality of multilingual systems sur-
passes that of bilingual. Several works compare to
bilingual baselines, but these baselines do not in-
corporate standard techniques used across the field
— such as backtranslation or dense model scaling.
Further, multilingual translation systems are often
developed on non-standard training datasets and
use different evaluation datasets. These factors
make it difficult to assess the performance of multi-
lingual translation, particularly when compared to
the most competitive bilingual models.

In this work, our aim is to demonstrate against
the winning WMT2020 models and our bilingual
WMT2021 systems that multilingual translation
models have stronger performance than bilingual
ones. We focus on 14 language directions: En-
glish to and from Czech, German, Hausa, Icelandic,
Japanese, Russian, and Chinese. We create an un-
constrained system that utilizes both WMT dis-
tributed and publicly available training data, apply
large-scale backtranslation, and explore dense and
mixture-of-expert architectures. We compare the
impact of various techniques on bilingual and multi-
lingual systems, demonstrating where multilingual
systems have an advantage. Our final multilingual
submission improves the translation quality on av-
erage +2.0 compared to the WMT2020 winning
models, and ranks first in 10 directions based on au-
tomatic evaluation on the WMT2021 leaderboard.

2 Data

We participate in translation of English to and from
Czech (cs), German (de), Hausa (ha), Icelandic (is),
Japanese (ja), Russian (ru), and Chinese (zh). We
describe our bitext and monolingual data sources,
including additional mined data created for Hausa,
and our preprocessing pipeline.
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2.1 Bitext Data

For all directions, we use all available bitext data
from the shared task . For language directions such
as English to German or English to Russian, this
provides millions of high-quality bitext. However,
for low to mid resource languages, such as Hausa
and Icelandic, we incorporate additional sources
of data from freely available online sources such
as ccMatrix (Schwenk et al., 2019), ccAligned (EI-
Kishky et al., 2020), and OPUS (Tiedemann, 2012).
We utilize all available data sources to develop the
best quality translation model possible.

For English-Hausa (and Hausa-English), we also
mined extra parallel data from the provided mono-
lingual data. We use LaBSE (Feng et al., 2020) to
embed Hausa and English sentences into the same
embedding space. We then use the margin function
formulation (Artetxe and Schwenk, 2019) based
on K -nearest neighbors (KNN) to score and rank
pairs of sentences from the two languages. Using
the mining strategy from Tran et al. (2020), we
mined an additional one million pairs of parallel
sentences for English-Hausa.

Data Processing. The majority of available bi-
text represents noisy alignment rather than the out-
put of human translations. We apply several steps
of preprocessing to filter noisy data. First, we apply
language identification using fasttext (Joulin
et al., 2017) and retain sentences predicted as the
desired language'. We then normalize punctuation
with moses. Subsequently, we removed sentences
longer than 250 words and with a source/target
length ratio exceeding 3.

2.2 Monolingual Data

Previous work (Ng et al., 2019) shows that using in-
domain monolingual data provides the most quality
improvement when used for large-scale backtrans-
lation. For high resource languages such as En-
glish and German, there are sufficiently large quan-
tities of in-domain data available in Newscrawl,
and we do not utilize additional monolingual data.
For the remaining languages, the data available
in Newscrawl is not sufficient and we follow the
strategy in Moore and Lewis (2010); Ng et al.
(2019) to examine large quantities of general-
domain monolingual data from Commoncrawl’

"Note: for Hausa, the language identification system was
unreliable, so we did not utilize it.
“http://data.statmt.org/cc-100/

Language Bitext Monolingual
Czech 185M 140M
German 571M 237M
Hausa 1.7M ™
Icelandic 28.2M 101M
Japanese 145.7M 218M
Russian 297M 163M
Chinese 166M 123M
English — 430M

Table 1: Amount of Data per Language. The bitext
data includes data distributed by the WMT Shared Task,
the OPUS repository, ccMatrix, ccAligned, and newly
mined data for Hausa. The monolingual data includes
data distributed by the WMT Shared Task and CC100.

and identify a subset that is most similar to the avail-
able in-domain news data. For each language, we
train an n-gram language model (Heafield, 2011)
on all available news-domain data (Newscrawl)
and a n-gram language model on a similarly
sized sample from general-domain data (Common-
crawl). For each sentence s in Commoncrawl,
we compute word-normalized cross entropy scores
Hiews(s) and Hgeperal (5) using in-domain language
model and general-domain language model respec-
tively. We retain sentences that meet the threshold
Hiews(s) — Hgeneral (s) > 0.01. This selects around
5% of total number of sentences in the original
Commoncrawl.

2.3 Vocabulary

To create our multilingual vocabulary, we first learn
a multilingual subword tokenizer on our combined
training data across all languages. We use Sentence-
Piece (Kudo and Richardson, 2018), which learns
subword units from untokenized text. We train our
SPM model with temperature upsampling (with
T=5) similar to Conneau et al. (2020), so that low-
resource languages are represented. For bilingual
models, we used vocabulary size of 32,000, and
for multilingual models, we used 128, 000. Subse-
quently, we convert the learned SPM units into our
final vocabulary.

3 System Overview

We describe step-by-step how we created our fi-
nal multilingual submission for WMT2021. We
detail our bilingual and multilingual model archi-
tectures, as well as how we incorporate strategies
such as backtranslation, news-domain finetuning,
ensembling, and noisy channel reranking.
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3.1 Baseline Bilingual Models

A pre-requisite to creating state-of-the-art multi-
lingual translation systems is establishing strong,
competitive bilingual baselines. Our goal is to ap-
ply the same set of techniques in data augmentation
and modeling scaling to both bilingual and multilin-
gual models, and demonstrate multilingual models
have stronger translation quality.

To create baseline bilingual systems, we train a
separate Transformer model (Vaswani et al., 2017)
for each language direction. For every language
pair except Hausa, we use the Transformer 12/12
configurations in Table 2. For Hausa-English (and
English-Hausa), since the amount of bitext data is
smaller, we use the Transformer-Base architecture
similar to Vaswani et al. (2017). We train all our
models using fairseq (Ott et al., 2019) on 32
Volta 32GB GPUs. We use learning rate of 0.001
with the Adam optimizer, batch size of 768,000 to-
kens?, and tune the dropout rate for each language
direction independently. For large models

3.2 Backtranslation

Backtranslation (Sennrich et al., 2015) is a widely
used technique to improve the quality of machine
translation systems using data augmentation. To
perform backtranslation for a forward language di-
rection (e.g. English to German), we use a system
in the backward direction (e.g. German to English),
to translate the target German monolingual data
into the English source. We then use these back-
translated synthetic English to German sentence
pairs in conjunction with the original parallel data
to train an improved forward translation model.
We use all available filtered monolingual data
we have for each language (up to 500 million sen-
tences per language) for backtranslation. Using
our baseline bilingual models (described in Sec-
tion 3.1), we first finetune on in-domain news data
(described in Section 3.5), and use an ensemble of
3 models with different seeds to generate backtrans-
lation data using beam search. For Hausa-English
and English-Hausa, we applied a round of iterative
backtranslation (Hoang et al., 2018; Chen et al.,
2019) as the quality improvement is significant.

3.3 Data Sharding and Sampling

Table 1 displays the amount of data for all lan-
guages after postprocessing. We divide the data

36000 tokens per GPU * 32 GPUs * 4 update frequency

12/12 24/24 24/24 Wide
Layers 12 24 24
Emb. Size 1,024 1,024 2,048
FFN Size 4,096 8,192 16,384
Attn. Heads 16 16 32
Total Params. 480M 1.2B 4.7B

Table 2: Dense Transformer Configurations.

into multiple shards, with each training epoch us-
ing one shard. We downsample data from both
high resource directions and synthetic backtrans-
lated data by dividing them into a greater number
of shards than the real bitext data from low re-
source directions. We find that downsampling high
resource languages works better than upsampling
low resource languages, as upsampling contributes
more strongly to overfitting.

3.4 Model Architectures

We describe several model architectures that we
compared using the final dataset with both bitext
and backtranslated data.

Scaling Bilingual Models. Based on the base-
line architectures described in Section 3.1, we fur-
ther improve our bilingual models. The two main
improvements are: adding backtranslated data, and
adding deeper and wider Transformer configura-
tions to take advantage of the increase in data.

Dense Multilingual Models. For the multilin-
gual systems, we train two separate models: Many
to English, or one system encompassing every lan-
guage translated into English, and English to Many,
or one for English into every language. The chal-
lenge of multilingual models is often one of ca-
pacity — given a fixed number of parameters, a
model needs to learn representations of numerous
languages rather than just one. To understand the
needed capacity and optimal architectural configu-
ration, we experiment with different Transformer
architectures, ranging from 480M parameters to
4.7B parameters (see Table 2).

Sparsely Gated MoE Multilingual Models. In
multilingual models, languages necessarily com-
pete for capacity and must balance sharing parame-
ters with specialization for different languages. A
straightforward way to add capacity to neural archi-
tectures is to simply scale the model size in a dense
manner: increasing the number of layers, the width
of the layers, or the size of the hidden dimension.

207



However, this has a significant computational cost,
as each forward pass activates all parameters — at
the limit, models become incredibly slow to train
and produce translations (Fan et al., 2021).

In this work, we instead focus on sparse model
scaling, motivated by wanting to increase capac-
ity without a proportional increase in computa-
tional cost. We train Sparsely Gated Mixture-of-
Expert (MoE) models (Lepikhin et al., 2020) for
English to Many and Many to English. These mod-
els aim to strike a balance between allowing high-
resource directions to benefit from increased ex-
pert model capacity, while also allowing transfer to
low-resource directions via shared model capacity.
In each Sparsely Gated MoE layer, each token is
routed to the top-k expert FFN blocks based on a
learned gating function. Thus, only a subset of all
the model’s parameters is used per input sequence.

We use a Transformer architecture with the Feed
Forward block in every alternate Transformer layer
replaced with a Sparsely Gated Mixture-of-Experts
layer with top-2 gating in the encoder and decoder.
As in Lepikhin et al. (2020), we also add a gate loss
term to balance expert assignment across tokens
with a gate loss weight of 0.01. We use an expert
capacity factor of 2.0. We use a learning rate of
0.001 with the Adam optimizer with 4000 warmup
updates and a batch size of 1 Million tokens (MoE
model with 64 experts) or 1.5 Million tokens (MoE
model with 128 experts).

3.5 In-Domain Finetuning

Finetuning with domain-specific data is an effec-
tive method of improving translation quality for
the desired domain, and thus we curated news-
domain data for finetuning. For directions such
as German and Russian, we finetune on evaluation
datasets from previous years of WMT. For Hausa
and Icelandic, as no previous data exists, we use
mined data and filter to the subset identified as
most likely news domain. Subsequently, we fine-
tune our models on the in-domain data for a maxi-
mum of ten epochs, selecting the best model with
validation loss on the newstest2020 dev set.
For our submission, we use the settings tuned on
newstest2020 and include newstest2021
dev set in the final finetuning.

3.6 Checkpoint Averaging

To combat bias toward recent training data, it is
common to average parameters across multiple
checkpoints of a model (Vaswani et al., 2017). We

apply this technique to all models and average the
last five checkpoints. To address rapid overfitting
during finetuning, we also average the finetuned
model with the model after the initial training is
complete and select this averaged set of parameters
if it performs better on the validation data.

3.7 Noisy Channel Re-ranking

We apply noisy channel re-ranking to select the
best candidate translations from n-best hypotheses
generated with beam search. We follow Yee et al.
(2019); Bhosale et al. (2020) and utilize scores
from the direct model P(tgt|src), channel model
P(src|tgt), and language model P(tgt). To com-
bine these scores for reranking, for every one of
our n-best hypotheses, we calculate:

log P(tgt|src)+A1 log P(src|tgt)+Az log P(tgt)

The weights Ay and Ao are determined by tuning
them with a random search over 1000 trials on a
validation set and selecting the weights that give
the best performance. In addition, we also tune a
length penalty. The search bounds we use for the
weights and the length penalty are [0,2].

Language Models. We trained Transformer-
based language models for all languages on the
same monolingual data as used for backtransla-
tion. The exception is English, where we trained
on the CC100 English data and RoBERTa training
data (Conneau et al., 2020; Wenzek et al., 2019;
Liu et al., 2019). For the high resource languages,
the language models have 12 decoder layers and
embedding dimension 4096. For Hausa and Ice-
landic, we trained smaller language models with 6
decoder layers to prevent overfitting.

3.8 Post-Processing

As a final step, we apply post-processing to the
translation outputs for Czech, German, Icelandic,
Japanese, and Chinese. For Czech, German, and
Icelandic, we convert quotation marks to German
double-quote style*. For Chinese and Japanese, we
convert punctuation marks to the language-specific
punctuation characters.

4 Experiments and Results

We conduct experiments to quantify the impact of
each of the component in our system. All exper-
iments are evaluated on newstest20 (Barrault
et al., 2020) using SacreBLEU (Post, 2018).

*https://en.wikipedia.org/wiki/Quotation_mark#German
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cs-en de-en ha-en is-en ja-en ru-en zh-en
Multilingual Vocab ~ 28.3 38.0 28.3 345 211 38.0 30.8
Bilingual Vocab 28.6 36.8 284 352 224 37.0 29.6

en-cs en-de en-ha en-is en-ja en-ru en-zh
Multilingual Vocab ~ 33.2 394 23.1 294  26.1 25.7 42.4
Bilingual Vocab 33.7 39.8 239 294 26.1 26.0 43.3

Table 3: Impact of Vocabulary on Bilingual Models. We compare using a specialized bilingual vocabulary vs. a
general multilingual vocabulary and its impact on performance of bilingual systems.

4.1 Creating State-of-the-Art Multilingual
Translation Models

We investigate the effectiveness of multilingual-
ity in translation. Compared to bilingual models,
which can dedicate their capacity to specializing in
specific source and target languages, multilingual
systems must learn to effectively share available
capacity across all languages while balancing lan-
guages of different resource levels. Despite rising
research interest, previous WMT submissions have
not demonstrated quality improvement of multilin-
gual models over bilingual models. We discuss var-
ious choices and comparisons that build our state-
of-the-art multilingual translation system. Overall,
the best multilingual systems outperform the best
bilingual ones in 11 out of 14 directions, with an
average improvement of +0.8 BLEU.

4.1.1 Building a Multilingual Vocabulary.

Similar to how multilingual systems must share
model capacity, multilingual translation models
must also share vocabulary capacity. Instead of
training specialized subword units for a specific
language (often 32k), multilingual models group
all languages together to learn a much smaller vo-
cabulary set than 32k * number of languages. We
first examine the impact of this multilingual vocab-
ulary, by taking a bilingual system and training it
with the multilingual vocabulary. This would in-
dicate a performance difference coming not from
architecture, but from the vocabulary itself. Ta-
ble 3 indicates that across all directions, using a
specialized bilingual vocabulary is usually supe-
rior, meaning multilingual systems must bridge the
performance gap of a potentially subpar vocabu-
lary. However, for some directions such as en-is
and en-ja, no difference is observed.

4.1.2 Comparing Model Architectures.

Dense Transformer Models. Overall, we find
that dense multilingual models are fairly compet-
itive with dense bilingual models (see Table 4).

Importantly, we find multilingual models benefit
greatly from additional model capacity. In Table 5,
we show comparable dense scaling applied to a
bilingual model translating from English to Ger-
man. While the multilingual model improves up to
1 BLEU point, the bilingual model only improves
+0.3 BLEU, indicating diminishing return and pos-
sible overfitting in bilingual models. Scaling mul-
tilingual translation models has stronger potential
for performance improvement.

Sparsely Gated Mixture of Expert Models. If
multilingual models benefit from greater capacity,
what is the best way to add that capacity? In Ta-
ble 4, we compare the performance of Dense and
MoE multilingual models while keeping the FLOPs
per update approximately the same for fair compar-
ison. Due to the conditional compute capacity of
MOoE layers, MoE models have a greater number of
total parameters, but a comparable computational
cost with the corresponding dense model.

For Many to English and English to Many, the
MoE model with 64 experts per MoE layer gives
an average boost of +0.7 BLEU on the dev set.
To compare to scaling dense models, increasing
dense model size from 12/12 to 24/24 does not
correspond to significant improvement for Many
to English. However, there is around +1 BLEU
improvement in dense scaling on English to Many.
We also see a slightly decline or no improvement
in the performance of MoE models (MoE-64 12/12
vs MoE-128 24/24) when increasing model dimen-
sionality and increasing the number of experts from
64 to 128. One possible hypothesis is that having
128 experts is largely unnecessary for only 7 lan-
guages. Compared to 64 experts, training conver-
gence per expert is slower as each expert is exposed
to fewer tokens during training on an average.

After finetuning on in-domain data, we observe
a significant improvement in performance across
the board. There is a larger improvement from fine-
tuning in MoE models compared to the associated
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cs-en de-en ha-en is-en ja-en ru-en zh-en \ Avg
Bilingual Dense 12/12 28.3 38.0 283 345 211 38.0 30.8 | 31.3
Dense 12/12 26.9 37.5 283 352 190 36.2 28.8 | 303
MoE-64 12/12 28.0 389 272 373 185 39.1 28.0 | 31.0
Dense 24/24 28.1 37.2 263 356 206 35.8 28.0 | 302
MoE-128 24/24 28.1 36.8 23.1 369 187 36.9 29.7 | 29.7
Dense 24/24 Wide 29.0 37.9 245 368 212 36.9 304 | 31.0
Bilingual Dense 12/12, BL-FT 304  42.8 303 355 246 39.5 362 | 342
Dense 12/12, ML-FT 30.3 424 327 375 239 39.5 342 | 344
MoE-64 12/12, ML-FT 31.6 435 334 388 257 39.8 36.0 | 355
Dense 24/24, ML-FT 31.8 434 36.0 388 256 40.3 36.3 | 36.0
MoE-128 24/24, ML-FT 319 436 349 397 265 40.4 372 | 363
Dense 24/24 Wide, ML-FT 32.1 43.8 361 394 267  40.6 369 | 36.5

en-cs en-de en-ha en-is en-ja en-ru en-zh | Avg
Bilingual Dense 12/12 33.1 39.6 23.1 294  26.1 25.7 424 | 313
Dense 12/12 33.7 38.6 214 305 266 25.3 41.1 | 31.0
MoE-64 12/12 335 39.7 204 315 280 264 425 | 31.7
Dense 24/24 34.0 39.6 217 316 275 26.4 423 | 319
MoE-128 24/24 33.0  40.2 193 309 288  26.6 4.8 | 31.7
Dense 24/24 Wide 334 39.7 234 32,0 280 @ 26.6 422 | 322
Bilingual Dense 12/12, BL-FT  35.7 39.5 233 294 277 26.0 43.0 | 32.1
Dense 12/12, ML-FT 35.0 39.1 229 305 269 25.6 415 | 31.6
MoE-64 12/12, ML-FT 359 404 24.1 29.6  28.8 26.4 43.0 | 326
Dense 24/24, ML-FT 35.8 40.1 24.1 31.6 287 26.8 425 | 32.8
MoE-128 24/24, ML-FT 364  40.8 246 312 297 268 43.6 | 333
Dense 24/24 Wide, ML-FT 36.7 40.6 246 320 293 26.7 43.0 | 333

Table 4: Comparing Dense vs Sparsely Gated MoE Multilingual Models before and after in-domain fine-tuning.
BL-FT refers to finetuning a model on bilingual data, while ML-FT refers to finetuning a model on multilingual

data, see Section 4.1.

en-de
Bilingual 12/12 39.8
Bilingual 24/24 40.1
Bilingual 24/24 Wide 40.3
Bilingual 12/12 + FT 40.4
Bilingual 24/24 + FT 40.5
Bilingual 24/24 Wide + FT 404

Table 5: Scaling Bilingual Models.

dense baselines. Furthermore, the MoE model with
128 experts, which previously lagged behind the
MoE model with 64 experts, now gives the best re-
sults for all but two directions. A possible hypothe-
sis is that expert capacity in MoE models can retain
specialized direction-specific finetuning better than
dense models, where all language directions must
share all model capacity while finetuning.

4.1.3 Effects of In-Domain Finetuning

Finetuning Improves Multilingual More than
Bilingual. Table 6 compares the impact of fine-
tuning across a variety of models. Multilingual
systems benefit more from in-domain finetuning.

As a result, the best multilingual system always
outperforms the best bilingual system.

Multilingual Finetuning is better than Bilin-
gual Finetuning. For multilingual models, there
are two possible finetuning schemes (Tang et al.,
2020). The multilingual model could be finetuned
to specialize to the news domain in a multilingual
fashion, concatenating the news data for all lan-
guages, or could be finetuned for each direction
separately by training on bilingual news domain
data. We compare multilingual in-domain finetun-
ing with bilingual in-domain finetuning in Table 6.
We find that multilingual finetuning is almost al-
ways better than bilingual finetuning, indicating
that it is not necessary to take a multilingual sys-
tem and specialize it to be bilingual via bilingual
finetuning — a completely multilingual system still
has the strongest performance.

4.1.4 Human Evaluation.

While a number of studies have been conducted
on bilingual models to understand how BLEU cor-
relates with human-perceived quality, few studies
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cs-en de-en ha-en is-en ja-en ru-en zh-en
Bilingual 28.3 38.0 28.3 34.5 21.1 38.0 30.8
Bilingual, BL-FT 30.4 42.8 30.3 355 246 39.5 36.2
Multilingual 29.0 37.9 24.5 36.8 212 36.9 30.4
Multilingual, BL-FT 31.8 433 31.9 37.0 265 40.6 36.8
Multilingual, ML-FT  32.1 43.8 36.1 394  26.7 40.6 36.9

en-cs en-de en-ha en-is en-ja en-ru en-zh
Bilingual 33.1 39.6 23.1 294 26.1 25.7 424
Bilingual, BL-FT 35.7 39.5 23.3 294  27.7 26.0 43.0
Multilingual 334 39.7 23.4 320 28.0 26.6 42.2
Multilingual, BL-FT 36.1 40.3 24.2 30.1 28.7 274 43.0
Multilingual, ML-FT  36.7 40.6 24.6 320 293 26.7 43.0

Table 6: Impact of Finetuning on Bilingual and Multilingual Models. BL-FT refers to finetuning a multilingual
model on bilingual data, while ML-FT refers to finetuning a multilingual model on multilingual data.

cs-en de-en ha-en is-en ja-en
Bilingual 28.9 41.5 15.9 30.3 19.7
+BT 283 38.0 283 345 21.1
A -0.6 -3.5 +124  +42 +14

en-cs en-de en-ha en-is en-ja
Bilingual 33.1 38.7 14.7 25.8 25.4
+ BT 33.2 39.4 23.1 294  26.1
A +0.1 +0.7 +8.4 +3.6  +0.7

Table 7: Impact of Large-scale Backtranslation in
Bilingual Systems.

cs-en de-en ha-en is-en ja-en
Multilingual  27.7 37.6 165 342 208
+ BT 27.8 37.9 258 356 208
A +0.1 +0.3 +9.3 +14 +0

en-cs en-de en-ha en-is en-ja
Multilingual  33.7 39 100 270 269
+ BT 339 39.2 23.7 31.6 27.6
A +0.2 0.2 +13.7 +4.6 +0.7

Table 8: Impact of Large-scale Backtranslation in
Multilingual Systems.

have investigated multilingual ones. Given a bilin-
gual system and a multilingual system with the
same BLEU scores, we want to understand if there
is anything intrinsically different in the multilingual
system output that would impact human evaluation.

We study two directions: English to German and
English to Russian. We ask human annotators who
are fluent in source and native in target language to
evaluate the translation quality between a bilingual
system output and a multilingual system output.
Both systems have similar BLEU scores, within
decimal point difference. The translations are gen-
erated on the same English source sentence. We

. Bilingual Bilingual . Bilingual

I Bilingual +BT +FT +BT+FT

zh-en

de-en

cs-en ru-en

Figure 1: Impact of In-Domain Finetuning after
Backtranslation on bilingual models.

find no statistically significant difference between
human evaluations of both systems, indicating that
human evaluators have no innate preference for
bilingual or multilingual systems.

4.2 Impact of Large-scale Backtranslation

Large-scale backtranslation has contributed to im-
provements in performance in machine translation
models (Edunov et al., 2018), even when measured
in human evaluation studies (Edunov et al., 2019;
Bogoychev and Sennrich, 2019) — it is a compo-
nent integrated into most modern translation sys-
tems. However, backtranslation also has downsides.
Research has indicated that systems trained with
large scale backtranslation data tend to overfit to
the synthetically generated source sentences, pro-
ducing lower quality translations when translating
original source sentences (Marie et al., 2020). Fur-
ther, backtranslation is fundamentally a form of
data augmentation, which could have increasingly
marginal effect when large-scale mined bitext is di-
rectly incorporated into training datasets. Beyond
mining, multilingual translation can also be seen
as an inherent form of data augmentation, as lan-
guage directions can benefit from the training data
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MMT \ Model cs-en de-en ha-en is-en ja-en ru-en zh-en \ Avg Incremental A
X Bilingual 28.9 41.5 159 303 197 40.2 34.8 | 30.2 —
X + Backtranslation  28.3 38.0 28.3 345 211 38.0 30.8 | 31.3 +1.1
X + Finetuning 30.4 42.8 30.3 355 246 39.5 36.2 | 34.2 +2.9
v + Multilingual 32.1 43.8 36.1 394 267 40.6 369 | 36.5 +2.3
v + Ensemble 323 44.5 372 399 272 40.9 37.8 | 37.1 +0.6
v + Reranking 32.7 444 382 405 278 41.4 38.0 | 37.6 +0.5
X WMT20 Winner 29.9 43.8 — — 26.6 39.2 36.9
A over WMT20 +2.8  +0.6 — — +1.2  +2.2 +1.1
MMT \ Model en-cs en-de en-ha en-is en-ja en-ru en-zh \ Avg Incremental A
X Bilingual 33.1 38.7 14.7 25.8 254 25.8 40.0 | 29.1 —
X + Backtranslation  33.1 39.6 23.1 294  26.1 25.7 424 | 31.3 +2.3
X + Finetuning 35.7 39.5 233 294 277 26.0 43.0 | 32.1 +0.7
v + Multilingual 36.4 40.8 246 312 297 26.8 43.6 | 333 +1.2
v + Ensemble 36.8 41.1 250 325 297 26.9 43.6 | 33.7 +0.4
v + Reranking 37.2 41.1 25.5 32.8 297 27.4 43.6 | 339 +0.2
v + Postprocessing 39.8 42.6 25.5 345 29.8 28.8 482 | 35.6 +1.7
X WMT20 Winner 36.8 38.8 — — 28.4 25.5 47.3
A over WMT20 +3.0 +3.8 — — +14  +33 +0.9

Table 9: Full Results of Submitted Models. Starting with a bilingual baseline, we depict the incremental gain
of different techniques across language pairs. Our final submission is a multilingual ensemble with noisy channel
reranking, trained on all available data including backtranslation. On all language pairs, we observe improvement
compared to the previous WMT20 winning models. The column MMT denotes if the model is multilingual. Note

Hausa and Icelandic were not present in WMT20.

of other directions. Thus, we analyze further in this
section the continued importance of backtransla-
tion, even in multilingual systems.

Backtranslation in Bilingual Systems. First,
we investigate if backtranslated data is still helpful,
even after we augment the training dataset with
mined and publicly available training data, beyond
what is distributed in the WMT Shared Task. Our
results in Table 7 show that backtranslation is help-
ful for 10 out of 14 directions, especially for low re-
source directions such as ha-en and is-en. However,
for high resource directions such as de-en, ru-en,
zh-en, bilingual systems trained with backtransla-
tion had slightly lower validation BLEU compared
to those trained without backtranslation.

Finetuning Corrects Overfitting to Transla-
tionese We further investigate the anomaly that
high-resource directions can suffer from adding
backtranslated data. Figure 1 shows that the mi-
nor BLEU degradation from adding backtransla-
tion mostly disappears after applying in-domain
finetuning. For zh-en and cs-en after in-domain
finetuning, the system trained with backtransla-
tion has stronger performance (+0.4 BLEU) com-
pared to the system trained without backtransla-
tion. Previous studies of this effect have indicated

that backtranslation produces translationese, which
has distinct qualities compared to original training
data (Marie et al., 2020; Zhang and Toral, 2019;
Graham et al., 2020). We hypothesize that in-
domain finetuning, which trains the model on non-
backtranslated data, can have a corrective effect
that counteracts overfitting on translationese.

Backtranslation in Multilingual Systems. Ta-
ble 8 summarizes the performance improvement
from adding backtranslation to multilingual mod-
els in an ablation study. Overall, despite creat-
ing a fully unconstrained system with substantially
greater training data and leveraging the data shar-
ing potential of multilingual translation, we find
that backtranslation still improves the performance.
We believe this is influenced by the fact that back-
translation fully utilizes available monolingual data.
While data mining techniques can identify poten-
tially parallel sentences, it is naturally limited to
identifying only a subset of the full monolingual
data the algorithms utilize to mine.

4.3 Ablation on Components of Final
Submission

Finally, we end by analyzing each aspect in our
final submission and the cumulative effect. The
effect of each component is shown in Table 9.
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Bilingual Baselines. We find that our bilingual
baselines have high BLEU scores, particularly
for ru-en where our bilingual baseline is already
stronger than the WMT20 winner. Overall, we ob-
serve that only en-ha and ha-en are significantly
lower than 20 BLEU, indicating that curating a
large amount of high quality bitext data is likely
the most important basis of a strong system.

Backtranslation. Subsequently, we add back-
translated data. We observe that ha, is, and ja in
particular observe large improvements in BLEU
after adding backtranslated data, while other direc-
tions can actually slightly decrease in quality as a
possible effect of translationese.

In-Domain Finetuning. We next evaluate the
impact of in-domain finetuning and find an almost
3 BLEU improvement across directions for trans-
lation into English and 0.7 BLEU improvement
for translation out of English. Across all language
directions, finetuning is almost universally helpful.

Multilingual. Compared to bilingual models,
multilingual models have stronger performance in
every direction. Multilingual models benefit much
more from scaling model size, as our largest archi-
tecture (MoE-128 24/24) has the best performance.

Ensembling. The effect of ensembling on aver-
age is fairly minor, but specific directions can see
large improvements (such as +1 BLEU on zh-en).

Reranking. We then apply noisy channel rerank-
ing to the outputs of our final system. It is helpful
across almost all directions, but does not have a
huge effect on BLEU. On average, performance
improves around 0.3 to 0.5 BLEU.

Postprocessing. Finally, we observe that post-
processing translated output to use standardized
punctuation in each language is very important for
BLEU scores when translating out of English. For
example, Chinese in particular has a number of
specific periods and double width punctuation char-
acters, and properly using these produces almost
+5 BLEU. However, we note that these techniques
likely only improve BLEU score, and the effect on
human evaluation is not well understood.

5 Conclusion

In this paper, we describe Facebook’s multilingual
model submission to the WMT2021 shared task on
news translation. We employed techniques such as

large scale backtranslation, bitext mining, large
scale dense and sparse multilingual models, in-
domain finetuning, ensembling, and noisy channel
reranking. We provide extensive experiment results
to quantify the impact of each technique, as well
as how well they cumulatively stack to produce the
final system. Our results demonstrate that multi-
lingual translation can achieve state-of-the-art per-
formance on both low resource and high resource
languages, beating our strong bilingual baselines
and previous years’ winning submissions.
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