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Abstract

This paper describes the systems submitted
to WAT 2021 MultiIndicMT shared task by
IITP-MT team. We submit two multilingual
Neural Machine Translation (NMT) systems
(Indic-to-English and English-to-Indic). We
romanize all Indic data and create subword
vocabulary which is shared between all In-
dic languages. We use back-translation ap-
proach to generate synthetic data which is ap-
pended to parallel corpus and used to train
our models. The models are evaluated using
BLEU, RIBES and AMFM scores with Indic-
to-English model achieving 40.08 BLEU for
Hindi-English pair and English-to-Indic model
achieving 34.48 BLEU for English-Hindi pair.
However, we observe that the shared ro-
manized subword vocabulary is not helping
English-to-Indic model at the time of genera-
tion, leading it to produce poor quality transla-
tions for Tamil, Telugu and Malayalam to En-
glish pairs with BLEU score of 8.51, 6.25 and
3.79 respectively.

1 Introduction

In this paper, we describe our submission to the
MultiIndicMT shared task at the 8th Workshop on
Asian Translation 1 (WAT 2021) (Nakazawa et al.,
2021). The objective of this shared task is to build
Machine Translation (MT) models between 10 In-
dic languages (Bengali, Gujarati, Hindi, Kannada,
Malayalam, Marathi, Odia, Punjabi, Tamil, Telugu)
and English. We submit two Multilingual Neural
Machine Translation models (MNMT): one for XX
→ EN and one for EN → XX (here XX denotes a
set of all 10 Indic languages).

Multilingual Machine Translation (Dong et al.,
2015; Firat et al., 2016; Johnson et al., 2017; Aha-
roni et al., 2019; Freitag and Firat, 2020) has gained

∗Equal contribution
1Our Team ID: IITP-MT

popularity in recent times due to the ability to train
a single model which is capable of translating be-
tween multiple language pairs. The main benefit
of multilingual model is transfer learning. When a
low resource language pair is trained together with
a high resource pair, the translation quality of a
low resource pair may improve (Zoph et al., 2016;
Nguyen and Chiang, 2017). This method of train-
ing is more suitable for Indic languages as they are
similar to each other (Dabre et al., 2017, 2020) and
relatively under-resourced when compared with
European languages (Sen et al., 2018).

Romanization is the process of converting char-
acters that are written in various scripts into Latin
script. Amrhein and Sennrich (2020) showed that
in a transfer learning setting, romanization im-
proves the transfer between related languages that
use different scripts. We train two MNMT models,
which translate between Indic languages and En-
glish with all Indic data romanized. The models are
evaluated using the BLEU (Papineni et al., 2002),
RIBES (Isozaki et al., 2010) and AMFM (Banchs
et al., 2015) metrics.

The paper is organized as follows. In section 2,
we briefly mention some notable works on multi-
lingual NMT and romanized NMT. In section 3,
we describe the systems submitted along with pre-
processing and romanization of Indic data. Results
are described in section 4. Finally, the work is
concluded in section 5.

2 Related Works

Multilingual Machine Translation enabled the abil-
ity to deploy a single model for multiple language
pairs without training multiple models. Dong et al.
(2015) proposes a multi-task learning framework to
translate one source language into multiple target
languages by adding language specific decoders.
Their method has shown improvements over base-
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line models which are trained for individual lan-
guage pairs. Firat et al. (2016) proposes a many-to-
many model for multi-way, multilingual translation
using shared attention and language specific en-
coders and decoders. However, with this setting,
model parameters will increase as the number of
languages increases.

Johnson et al. (2017) use shared encoder-decoder
model in which multiple languages share both en-
coder and decoder also the attention module. This
is achieved by combining multiple language pairs
data into a single corpus and adding a language
tag to every source sentence to specify its target
language. This method enables the zero-shot trans-
lation, in which the model can generate sentences
belonging to a language pair that is not seen at
training time. Aharoni et al. (2019) show that mul-
tilingual NMT models are capable of handling large
number of language pairs. Freitag and Firat (2020)
proposes that the use of multi-way alignment in-
formation will improve the translation quality of
language pairs for which training data is scarce in
multilingual settings.

Improving the quality of NMT models with
monolingual data is a common approach nowa-
days, especially in low resource settings. Back-
translation Sennrich et al. (2016) is an effective
approach to make use of target monolingual data.
In this approach, with the help of existing target-to-
source MT system target is translated into source
and resulting synthetic parallel corpus is combined
with clean corpus and used to train source-to-
target NMT system. Multi-task learning frame-
work (Zhang and Zong, 2016; Domhan and Hieber,
2017) is another way to utilize monolingual data to
improve the performance of NMT.

Recent studies (Du and Way, 2017; Gheini and
May, 2019; Briakou and Carpuat, 2019) show that
the romanization will improve the performance of
NMT system. However these approaches apply
romanization at source side only. Amrhein and
Sennrich (2020) showed that romanization can be
applied on the target side also followed by an addi-
tional, learned deromanization step.

In this work, we follow Johnson et al. (2017)
method to train multilingual NMT models. We ro-
manize Indic data and use it to train our models. We
also follow back-translation approach (Sennrich
et al., 2016) to create synthetic parallel data. We
report the results of the models which are trained
on combined synthetic and clean parallel corpus.

3 System Description

This section describes datasets, preprocessing and
experimental setup of our models.

3.1 Datasets
We use MultiIndicMT parallel corpus 2 consist-
ing of following languages: Bengali, Gujarati,
Hindi, Kannada, Malayalam, Marathi, Odia, Pun-
jabi, Tamil, Telugu and English. It contains the
parallel corpora for 10 Indic languages which are
translated into English. We also use PMI mono-
lingual corpus 3 to generate synthetic data with
back-translation (Sennrich et al., 2016) approach.
Table 1 shows the data sizes of corpora used in the
experiments. Development and Test sets contain
1,000 and 2,390 sentences respectively for each
language pair.

Language Parallel Monolingual
Bengali (BN) 1,341,284 117,757
Gujarati (GU) 518,015 125,647
Hindi (HI) 3,069,725 156,605
Kannada (KN) 396,865 79,433
Malayalam (ML) 1,142,053 82,026
Marathi (MR) 621,481 120,362
Odia (OR) 252,160 103,876
Punjabi (PA) 518,508 90,916
Tamil (TA) 1,354,247 91,324
Telugu (TE) 457,453 111,749
English (EN) - 109,480

Table 1: Language wise training set sizes in terms of
number of sentences. Parallel: Parallel corpus size of
Indic-EN language pair. Monolingual: PMI monolin-
gual corpora sizes of all languages.

3.2 Preprocessing and Romanization
We use a Python based transliteration tool 4 to ro-
manize all Indic language data. This tool supports
all Indic language scripts that are used in the exper-
iments. It also has deromanization support which
maps Latin script into various Indic scripts. We
romanize all Indic language data (Amrhein and
Sennrich, 2020) (both parallel and monolingual
corpora are romanized) and merge all parallel cor-
pora into single corpus. This combined parallel
corpus used to train baseline models.

2http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-
multilingual/indic wat 2021.tar.gz

3http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-
multilingual/filteredmono.tar.gz

4https://github.com/sanskrit-coders/indic transliteration
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We follow back-translation (Sennrich et al.,
2016) approach to generate synthetic parallel cor-
pora. We merge monolingual corpora of all In-
dic languages and generate synthetic English data
using baseline XX → EN model. The resulting
synthetic English - Clean Indic parallel corpus is
merged with clean English-Indic parallel corpus
and used to further train baseline EN → XX model.
We also generate synthetic Indic languages data
using monolingual English data. We duplicate the
monolingual English data 10 times and the base-
line EN → XX model is used to generate synthetic
Indic data. The reason to duplicate English data
is to get equal size synthetic parallel corpus for
all Indic languages. The resulting synthetic Indic -
Clean English parallel corpus is merged with clean
Indic-English parallel corpus and used to further
train baseline XX → EN model.

For the training of EN → XX model, we add lan-
guage tag to start of every source sentence (John-
son et al., 2017) to denote to which language 5 the
source should be translated to. We do not use lan-
guage tags for XX → EN model as the target is
English always. All the training data is shuffled
before feeding to the models. The training corpus
statistics are shown in Table 2. The combined De-
velopment set contains 10,000 sentences and is the
same for all models. Table 3 shows the contribu-
tion of each language pair in the combined training
corpus. Hindi-English pair being the most con-
tributing pair with almost 30% and Odia-English
pair being least contributing pair with 3.3%, in both
directions.

Model Train
XX → EN 9,671,791
XX → EN + BT 10,766,591
EN → XX 9,671,791
EN → XX + BT 10,751,486

Table 2: Training data sizes of combined corpora. {XX,
EN} → {EN, XX} denotes training data sizes of Base-
line models. BT denotes total training data sizes after
adding synthetic back-translated parallel corpora.

3.3 Experimental Setup

We train two multilingual models namely XX →
EN (Indic languages to English) and EN → XX
(English to Indic languages). All the models are

5We use following tags: ##2BN, ##2GU, ##2HI, ##2KN,
##2ML, ##2MR, ##2OR, ##2PA, ##2TA, ##2TE

Language Pair XX → EN EN → XX
HI-EN 29.53 30.0
TA-EN 13.60 13.45
BN-EN 13.47 13.57
ML-EN 11.62 11.38
MR-EN 6.79 6.90
GU-EN 5.83 6.0
PA-EN 5.83 5.67
TE-EN 5.27 5.29
KN-EN 4.70 4.43
OR-EN 3.36 3.31

Table 3: Contribution of each language pair (in %) in
the training set after merging clean corpus with syn-
thetic back-translated corpus. XX → EN: Indic-to-
English model. EN → XX: English-to-Indic model.

trained on the Transformer architecture (Vaswani
et al., 2017). We use 6 layered Encoder-Decoder
stacks with 8 attention heads. Embedding size and
hidden sizes are set to 512, dropout rate is set to 0.1.
Feed-forward layer consists of 2048 cells. Adam
optimizer (Kingma and Ba, 2015) is used for train-
ing with 8,000 warm up steps with initial learning
rate of 2. We split the training data of baseline
models into subwords with the unigram language
model (Kudo, 2018) using SentencePiece (Kudo
and Richardson, 2018) implementation. We create
two subword vocabularies, one for English and one
for all romanized Indic data 6. The size of English
subword vocabulary is 60K and of Indic languages
is 100K, for both the models. We use OpenNMT
toolkit (Klein et al., 2017)7 to train our models with
batch size of 2048 tokens. Models are evaluated
on development sets after every 10,000 steps and
checkpoints are created. The baseline models are
trained for 100,000 steps and the last checkpoint
is used to create a synthetic corpus with the back-
translation approach as described in Section 3.2.
After creating synthetic parallel corpora, baseline
models are further trained for another 200,000 steps
8 on combined synthetic and clean parallel corpora
(see Table 2). Finally, all checkpoints that are cre-
ated by the model using the combined corpora are
averaged 9 and considered as the best parameters
for each model and used to test our models. We

6All Indic languages data is merged after romanization and
created subword vocabulary on combined corpus.

7https://github.com/OpenNMT/OpenNMT-py/tree/1.2.0
8We stop the training as there is no improvement in terms

of perplexity of models on training data.
9OpenNMT-py provides script to average model weights.
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Language Pair XX → EN EN → XX

BLEU RIBES AMFM BLEU RIBES AMFM

BN-EN 25.77 0.77 0.78 11.04 0.70 0.73
GU-EN 36.49 0.83 0.81 20.46 0.75 0.81
HI-EN 40.08 0.85 0.83 34.48 0.84 0.82
KN-EN 31.24 0.81 0.80 13.22 0.64 0.79
ML-EN 29.37 0.80 0.80 3.79 0.44 0.76
MR-EN 29.96 0.80 0.80 13.95 0.67 0.80
OR-EN 31.19 0.79 0.80 12.57 0.71 0.74
PA-EN 38.41 0.84 0.82 16.81 0.79 0.66
TA-EN 27.76 0.79 0.79 8.51 0.58 0.76
TE-EN 28.13 0.78 0.78 6.25 0.53 0.76

Table 4: Official BLEU, RIBES and AMFM scores of multilingual models for each language pair. XX → EN
denotes score of Indic-to-English model. EN → XX denotes score of English-to-Indic model.

keep OpenNMT-py’s default beam size of 5 dur-
ing back-translation and inference. For the EN →
XX model, after getting the model predictions on
the test set, we deromanize these predictions and
convert them into respective language scripts.

4 Results and Analysis

The official BLEU (Papineni et al., 2002), RIBES
(Isozaki et al., 2010) and AMFM (Banchs et al.,
2015) scores of the multilingual models are shown
in Table 4. We observe that the XX → EN model
performance is consistent across all language pairs
in terms of all the three scores. HI-EN being the
most contributing pair (see Table 3), achieves the
BLEU score of 40.08 points. Even the language
pair with the least amount of data (OR-EN) yield a
BLEU score of 31.19 points. However, we do not
observe the same with EN → XX model. The per-
formance of EN → XX model is inconsistent with
achieving a high BLEU score of 34.48 points (EN-
HI) and least BLEU score of 3.79 (ML-EN). We
observe same in terms of RIBES score also. How-
ever, AMFM scores of EN → XX model are quite
consistent despite having less BLEU and RIBES
scores for some language pairs.

Sen et al. (2018) observe that, in the multilin-
gual setting where a single decoder has to handle
information about more languages (7 in their case),
the performance of the model is limited because
of different vocabulary and different linguistic fea-
tures. In our case, we romanize all data and feed it
to the model. Still the EN → XX model is unable
to produce good quality translations. We believe
that the main reason for such low quality transla-

tions is the romanized subword vocabulary, which
is shared across 10 different languages, is not help-
ing decoder at the time of generation. There can be
two possible ways to fix this issue. One is, using
a larger target vocabulary size as 100K subword
vocabulary is not giving good results in our case.
Another is, creating separate vocabularies for each
language instead of combining them together and
creating a joint vocabulary, while the data being
romanized.

5 Conclusion

In this paper, we describe our submission to the
MultiIndicMT shared task to WAT 2021. We sub-
mit two multilingual NMT models: many-to-one
(10 Indic languages to English) and one-to-many
(English to 10 Indic languages). We romanize all
Indic language data to convert all languages’ to-
kens in roman script. We also generate synthetic
data using the back-translation approach. We train
our models on the romanized data sets which is a
combination of clean corpora and synthetic back-
translated corpora. We evaluate our models using
BLEU, RIBES and AMFM scores and observed
that many-to-one model achieves highest BLEU
score of 40.08 for Hindi-English pair and one-to-
many model achieves highest BLEU score of 34.48
for English-Hindi pair. However, the shared sub-
word vocabulary at target side for the one-to-many
model lead to the poor performance of the one-
to-many model especially in Tamil, Telugu and
Malayalam to English pairs by achieving BLEU
score of 8.51, 6.25 and 3.79 respectively.
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