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Abstract

Recently, pre-trained transformer-based archi-
tectures have proven to be very efficient at
language modeling and understanding, given
that they are trained on a large enough cor-
pus. Applications in language generation for
Arabic are still lagging in comparison to other
NLP advances primarily due to the lack of
advanced Arabic language generation models.
In this paper, we develop the first advanced
Arabic language generation model, AraGPT2,
trained from scratch on a large Arabic corpus
of internet text and news articles. Our largest
model, ARAGPT2-MEGA, has 1.46 billion pa-
rameters, which makes it the largest Arabic
language model available. The MEGA model
was evaluated and showed success on different
tasks including synthetic news generation, and
zero-shot question answering. For text gener-
ation, our best model achieves a perplexity of
29.8 on held-out Wikipedia articles. A study
conducted with human evaluators showed the
significant success of AraGPT2-mega in gen-
erating news articles that are difficult to dis-
tinguish from articles written by humans. We
thus develop and release an automatic discrim-
inator model with a 98% percent accuracy in
detecting model-generated text. The models
are also publicly available', hoping to encour-
age new research directions and applications
for Arabic NLP.

1 Introduction

Few years ago, Natural language processing
(NLP) was revolutionized with the introduction
of multi-head self-attention transformer architec-
ture (Vaswani et al., 2017). The transformer
achieved superior performance compared to recur-
rent neural networks several NLP tasks including
machine translation, sentence classification with

"Pretrained variants of ARAGPT2 (base, medium,

large, mega) and discriminator are publicly available on
github.com/aub-mind/arabert/tree/master/aragpt2

BERT (Devlin et al., 2019), and ELECTRA (Clark
et al., 2020b), and sentence completion with GPT-
2 (Radford et al., 2019), GROVER (Zellers et al.,
2019), and CTRL (Keskar et al., 2019). Recent
works have shown that larger models pre-trained
on larger datasets can further improve performance
i.e. ROBERTa (Liu et al., 2019), and XLM-R (Con-
neau et al., 2019).

On the other hand, work on Arabic language
modeling has mostly targeted natural language
understanding (NLU) by pre-training transformer-
based models using the Masked Language Model-
ing (MLM) task i.e. ARABERT (Antoun et al.,
2020a). In contrast, Arabic text generation or
causal language modeling hasn’t received much
attention. Few works such as hULMonA (ElJundi
et al., 2019) used next word prediction as a pre-
training task in for transfer learning in Arabic text
classification. (Khooli, 2020) and (Doiron, 2020)
leveraged the existing GPT2 English model and
adapted it for Arabic using text from the Arabic
Wikipedia dumps, which is sub-optimal for Arabic.

In this paper, the first advanced language gener-
ation models built from the grounds up on Arabic
language have been developed. The process of pre-
training ARAGPT?2, a GPT-2 transformer model
for the Arabic language is described. The model
comes in 4 size variants: base (135M?), medium
(370M), large (792M) and mega (1.46B*), which
allows the exploration of ARAGPT?2 in multiple ap-
plications with different data availability and com-
putational constraints. The perplexity measure is
used to automatically evaluate ARAGPT2. Fur-
thermore, a human-based evaluation is provided,
which highlights the ability of ARAGPT?2 to de-
ceive human evaluators. Finally, an ARAELEC-
TRA (Antoun et al., 2020b) based detector is devel-
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oped and released. It is able to consistently identify
news articles written by ARAGPT2. Making such
powerful models publicly available to the Arabic
research community enables research in rising Ara-
bic NLP fields i.e Conversational Agents (Naous
et al., 2020), Detection of Automatic News Gener-
ation Detection (Harrag et al., 2020)...

Our contributions can be summarized as follows:

* A methodology to pre-train a billion-size
GPT2 model on a large-scale Arabic corpus.

* An automatic discriminator that achieves a
98% accuracy in detecting model-generated
synthetic text.

* The four variants of ARAGPT?2 are released
on popular NLP libraries, along with the auto-
matic ARAGPT?2 discriminator.

The rest of the paper is structured as follows.
Section 2 provides a concise review of previous
literature on Arabic language modeling. Sec-
tion 3 details the methodology used in developing
ARAGPT?2. Section 4 describes the experimental
setup, evaluation procedures and results. In addi-
tion, the approach to build a machine-generated
text discriminator is presented in Section 5. Fi-
nally, a conclusion of the work and implications
are mentioned in Section 6.

2 Related Works

2.1 English and Non-Arabic Language
modeling

GPT-1 (Radford et al., 2018) showed that Causal
Language Modeling® is an effective pre-training
technique that improves a model’s generalization
capabilities. GPT-2 then showed that using a larger
model trained on a larger dataset surpasses the
state-of-the-art of many tasks in a zero-shot setting,
where a model solves a task without receiving any
training on that task. Taking the scaling approach
to the extreme led to the creation of GPT-3 (Brown
et al., 2020), with 175 billion parameter model,
also trained with CLM using terabytes of internet
text. GPT-3 explored the idea of few-shot learning,
where a model is given examples from a new task
as a text prompt, which unlocks new capabilities
at test time. It was later shown that a carefully
designed GPT-3 prompt allows the model to gener-
ate website designs, scramble/unscramble words...

“This is the regular Language Modeling objective where
the model learns the probability of a word given the previ-
ous context. The CLM acronym is used to distinguish from
masked language modeling (MLM).
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The advantage of scaling model sizes and training
datasets comes with drawbacks, particularly the
high computational cost, in addition to the huge
corpora required for pre-training. It was estimated
that training GPT-2 and GPT-3 costs $43K and
$4.6M respectively, without any hyper-parameter
tuning. These drawbacks restricted the availabil-
ity of large pre-trained models to English mainly
and a handful of other languages i.e. ruGPT3> for
Russian, and Chinese 1.5B GPT2 (Zhang, 2019).

2.2 Arabic Language modeling

Work on Arabic causal language modeling has
been mostly limited to automatic speech recogni-
tion (ASR) systems. Since the language modeling
component in ASR systems is a key module that en-
sures that the output text adheres with the statistical
structure of language. Work on Arabic language
models in ASR systems has mostly relied on N-
grams language models. (Ali et al., 2014) built
an N-grams language model (LM) using GALE
training data transcripts of 1.4M words. More re-
cent work in Arabic ASR implemented a recur-
rent neural network as an LM, using 130M tokens,
and achieved a perplexity of 481 compared to 436
for a 4-gram LM (Khurana et al., 2019). Hamed
et al. (2017) developed a code-switched Arabic-
English language model using tri-gram LM and
provided performance superior compared to two
separate monolingual LMs. The code-switched LM
was trained on 2.3M sentences or 13M words and
achieved a perplexity of 275.

With the rising popularity of transfer learning in
NLP, Arabic CLM was used as a pre-training task
for an Arabic universal LM, hULMonA (ElJundi
et al., 2019). The model was then fine-tuned on
different downstream text classification tasks. hUL-
MonA is a 3 stack of AWD-LSTM? layers (Howard
and Ruder, 2018), trained on 600K Wikipedia arti-
cle pre-segmented using the MADAMIRA Arabic
morphological analyzer and disambiguator (Pasha
etal., 2014).

Masked Language Modeling (MLM) has been
useful as a pre-training task for several Arabic NLU
models. Masked Language Modeling (MLM) is
a slightly different objective than CLM that re-
quires a system to predict a masked word within
a sequence compared to CLM which predicts the
missing word at the end of a sequence. MLM

Shttps://github.com/sberbank-ai/ru-gpts/
® ASGD Weight-Dropped LSTM



was used in models such as ARABERT (An-
toun et al., 2020a), Arabic-BERT (Safaya et al.,
2020), Arabic-ALBERT’, GigaBERT (Lan et al.,
2020), MarBERT (Abdul-Mageed et al., 2020), and
QARIiB (Chowdhury et al., 2020). Only two works
have attempted to create an Arabic transformer
causal language model. Khooli (2020) and Doiron
(2020) finetuned the OpenAl GPT2-base model on
Arabic Wikipedia, which was mainly trained on
English text. Doiron (2020) also continued training
on a collection of dialectal Arabic datasets, in order
to create a dialectal Arabic GPT2. While this ap-
proach has shown the capability to generate Arabic
text, it is sub-optimal for Arabic and is useful in
cases where the training data is scarce.

Our proposed model is hence, the first Arabic
transformer-based causal language model trained
from scratch on the largest Arabic corpora available
at the time of writing.

3 ARAGPT2: Methodology

ARAGPT?2 is a stacked transformer-decoder model
trained using the causal language modeling objec-
tive. The model is trained on 77GB of Arabic text.
ARAGPT?2 comes in four variants as detailed in
Table 1, with the smallest model, base, having the
same size as ARABERT-base which makes it ac-
cessible for the larger part of researchers. Larger
model variants (medium, large, xlarge) offer im-
proved performance but are harder to fine-tune and
computationally more expensive. The ARAGPT2-
detector is based on the pre-trained ARAELEC-
TRA model fine-tuned on the synthetically gener-
ated dataset. More details on the training procedure
and dataset are provided in the following sections.

3.1 Model

ARAGPT?2 closely follows GPT2’s variant archi-
tectures and training procedure. Table 1 shows the
different model sizes, number of heads, number
of layers, parameter count, and optimizer used for
each model variant. All models are trained with
context sizes of 1024 tokens. The LAMB (You
et al., 2019) optimizer is used in the base and
medium models only, since it allows using large
batch sizes without worrying about training diver-
gence. Using LAMB and Adam (Kingma and Ba,
2014) to train the large and mega variants isn’t
possible on TPUv3 due to the optimizer’s high
memory requirements, since memory cost scales

Thttps://github.com/KUIS-AI-Lab/Arabic-ALBERT/

linearly with the number of parameters. The lim-
itations were overcome by following the training
procedure of the GROVER model (Zellers et al.,
2019) by using the Adafactor optimizer (Shazeer
and Stern, 2018), which reduces memory require-
ments by factoring the second-order momentum
parameters into a tensor product of two vectors.
The GROVER architecture was also used instead
of GPT2’s, in which the layer normalization order
in the transformer block is changed.

3.2 Dataset

The training dataset is a collection of the publicly
available Arabic corpora listed below:

e The unshuffled OSCAR corpus (Ortiz Sudrez
et al., 2020).

The Arabic Wikipedia dump from September
2020.

The 1.5B words Arabic Corpus (El-Khair,
2016).

The OSIAN corpus (Zeroual et al., 2019).

* News articles provided by As-safir newspaper.

Preprocessing First, the corpus was filtered by
removing short documents with less than 3 sen-
tences, and documents with more than 20% re-
peated sentences. URLs, emails, and user men-
tions were also replaced with special tokens. All
diacritics, and elongations were removed as well,
while punctuation and non-alphabetic characters
were padded with white-spaces. Moreover, the
‘<|endoftext|>’ token is appended at the
end of each document. The total dataset size is
77GB with 8.8B words®. The majority of the train-
ing data is comprised of Arabic news article, which
is mostly written in MSA. The corpus also contains
a small set of English words i.e. named entities,
which are kept without lower-casing. Subsequently,
a Byte-level byte-pair-encoding (BPE) tokenizer is
trained with 64000 vocabulary size on all of our
preprocessed dataset, using the optimized BPE im-
plementation from the HuggingFace library (Wolf
et al., 2020). Finally, the BPE encoding is applied
on the preprocessed dataset, which results in a to-
tal of 9.7M training examples with 1024 sub-word
tokens each.

8Word count was done after preprocessing, where white
space is inserted before and after punctuations, brackets, num-
bers... which increased the total word count
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Model Size  Architecture Context Size Emb. Size Heads Layers Optimizer
Base 135M GPT2 1024 768 12 12 LAMB
Medium | 370M GPT2 1024 1024 16 24 LAMB
Large 792M  GROVER 1024 1280 20 36 Adafactor
Mega 1.46B GROVER 1024 1536 24 48 Adafactor

Table 1: ARAGPT?2 model variants with sizes, architecture and optimizer
Model Batch Size Learning Rate Steps Time (days) PPL
Base 1792 1.27e-3 120K 1.5 55.8
Medium* 80 3e-4 M 23 45.7
Large 256 le-4 220K 3 36.6
Mega 256 le-4 780K 9 29.8

Table 2: ARAGPT?2 training details and validation perplexity. *Medium was trained on a TPUv3-8 with a small
batch size, since the model was not converging with a large batch size

4 Experiments and Evaluation

4.1 Pre-training Setup

All models were trained on a TPUv3-128 slice’
with different batch sizes and the total number
of steps as shown in Table 2. Base and mega
were trained for approximately 20 epochs, while
medium and large were trained for 10 and 6
epochs respectively, due to TPU access limitations.

4.2 Numerical Evaluation

For the validation dataset, the Arabic Wikipedia
articles that were published after August 2020
were used, since older articles were included in
the September Wikipedia dump. The perplexity
score was selected as a numerical evaluation met-
ric since it measures the degree of uncertainty’ a
model has assigning probabilities to the test text.
Table 2 shows that, unsurprisingly, validation per-
plexity keeps improving with larger model sizes.
In fact, the model is still under-fitting the validation
set from Wikipedia. The generation capabilities of
the different variants of ARAGPT?2 is illustrated
through the selected examples in Appendix A.

4.3 Zero-Shot Evaluation

During zero-shot task evaluation, the model is only
given a natural language instruction to motivate
and ground the task, without any back-propagation
happening. The task of searching and finding the
best input prompt, also known as “prompt engineer-
ing”, is hard. Since the search space is practically
infinite, and the performance is highly sensitive to
changes in the prompt. The zero-shot performance
of ARAGPT2-Mega is evaluated on two tasks,

*TPUv3-128 has a total of 2TB of HBM memory with
16GB per core. TPUs were freely provided by the TFRC
program.

question answering, and translation. ARAGPT2-
MEGA correctly answers 25% of the trivia ques-
tions but fails in English-to-Arabic translation. De-
tails on the datasets, prompts, and evaluation are
presented in Appendix B.

4.4 Evaluating the Human Ability to Detect
Machine-Generated Text

The gold standard for evaluating a model’s lan-
guage generation capability is human evaluation.
We presented 74 Arabic-speaking subjects from
various social media with a survey designed to
test the average-human ability to distinguish be-
tween machine-generated and human-written text
and thus testing the model’s ability to deceive a
human subject. The survey had a total of 8 news
articles, 4 machine-generated using ARAGPT2-
Mega and 4 written by humans. Each category
was split into long and short text, which allows
us to test the long-term generation coherency. In
addition, the human evaluators are allowed to add
justification for each answer.

The survey results, Figure 1, show that
ARAGPT2-Mega successfully fooled approx. 60%
of the respondents, with longer passages having a
higher error rate than short passages. In the pro-
vided explanations, some subjects relied on punc-
tuation mistakes, coherence, and repetition issues,
while others spotted factual inaccuracies. However,
the results also show that humans were misclassi-
fying human-written 50% the time (chance level
performance), while also citing factual inconsis-
tencies, grammatical errors, and unusual writing
styles'?.

These surprising results show that ARAGPT?2
can accurately generate human-like text while

10Survey results are available on our GitHub repository.
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Figure 1: Survey results showing human error rates on
machine generated (left) and human written text (right)

maintaining grammatical correctness that can fool
the average reader. It should be noted that there ex-
ist some tools, i.e. the Giant Language model Test
Room (GLTR) (Gehrmann et al., 2019), that allows
humans to study the statistical distributional differ-
ences in text generated by GPT2-based models and
human-written text. Figure 5 in Appendix C dis-
plays a visualization of token-level information cre-
ated by GLTR with text generated by ARAGPT?2
and on human-written articles.

5 Automatic Detection of Machine
Generated Text

Large language models could have a significant so-
cietal impact if used for malicious purposes, such
as automating the generation of misleading news
articles, fake reviews, or high-quality phishing
messages. The survey in Section 4.4, showcases
the failure of the average-human to consistently
detect machine-generated text, which motivates
the problem of automatic detection of ARAGPT2-
generated text. Related work on the detection of
machine-generated text by Jawahar et al. (2020) in-
dicates that automatic detectors like the GROVER-
detector (Zellers et al., 2019) and the ROBERTA-
detector (Solaiman et al., 2019) have better suc-
cess than human evaluators. In addition, previous
work on detecting Arabic GPT2 (Khooli, 2020)
auto-generated tweets, achieved 98.7% accuracy,
by fine-tuning an ARABERTV0.1 (Antoun et al.,
2020a) based classifier (Harrag et al., 2020).

Our detector is based on the pre-trained ARA-
ELECTRA (Antoun et al., 2020b) model, which
we fine-tuned on a dataset created by combining
1500 human-written news articles, with 1500 ar-
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ticles generated by ARAGPT2-Mega. For article
generation, we only provided the model with a
short prompt of 25 words. We created two versions
of the dataset, one with short texts (150 tokens)
and one with long texts (500 tokens), in order to
evaluate the impact of the text’s length.

Fine-tuned ARAELECTRA achieves 98.7% and
94.9% F1-score on long and short text respec-
tively'!, which indicates that longer text is easier
to detect than short text. The high scores achieved
by ARAELECTRA can be explained by the fact
that machine-generated text tends to be more pre-
dictable compared to human-written text (see Ap-
pendix C, Fig. 5). The difference in text predictabil-
ity can be easily exploited by a language model to
detect machine-generated text. Another contribut-
ing factor is that ARAELECTRA was pre-trained
on the exact same dataset as ARAGPT?2.

6 Conclusion

ARAGPT?2 is the first advanced Arabic language
generation model based on the transformer archi-
tecture. The model was trained on the largest pub-
licly available collection of filtered Arabic corpora.
The model was evaluated using the perplexity mea-
sure which measures how well a probability model
predicts a sample. Results show that ARAGPT2
is able to produce high quality Arabic text that is
coherent, grammatically correct and syntactically
sound.

It is important to note that ARAGPT?2, like many
ML models, has ethical implications and can be
used maliciously i.e. automatic fake news genera-
tion, modeling the dataset inherent biases... To help
detect misuse of the model, a detector model that
is tasked to detect output generated by ARAGPT2
is also released. More importantly, our hopes that
publicly releasing ARAGPT?2 will open up doors
for new research possibilities for the Arabic NLP
community.
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A Generated Samples from ARAGPT2
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Figure 2: Random unseen context about coronavirus vaccine(top). Followed by two generated samples bu
ARAGPT2-mega. Generated text 1 (top, = 0.95), Generated text 2 (top, = 1)
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Figure 3: Random unseen contexts about children stories. Followed by a generated sample by ARAGPT2-mega
with top, = 0.95
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Figure 4: Random unseen contexts on miscellaneous topics. Followed by a generated sample by ARAGPT2-mega
with top, = 0.95
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B Zero-Shot Learning

B.1 Question Answering

In zero-shot factoid question answering, the infor-
mation contained within the language model can
be queried. The model is tested on the Arabic
examples from the TyDiQA (Clark et al., 2020a)
validation dataset (921 examples), and on the test
set of ARCD (Mozannar et al., 2019) (702 exam-
ples). Hence, the model os provided with the fol-
lowing prompt: “Answer the following question:”
-4 W IRl e u>\ , followed by the question,
then the phrase “The answer is” - “:ga Ulsd 1. It is
also possible to append the phrase “in the year” -
‘}Lc g if the expected answer is a year, as shown
in Table 3.

Table 3: The input prompt for question answering

Js o @l I3l ez e ot JUI I3l e ]
ol J Olsd ! T bt gwhm HHY JL
Answer the following question: When was the first
episode of the series Buffy the Vampire Slayer shown?
The answer is in the year

The answer length is set to be the same as the
gold answer length, and a repetition penalty is ap-
plied as in CTRL (Keskar et al., 2019), which penal-
izes the probability scores of previously generated
tokens. A ‘no repeat tri-gram’ strategy that inhibits
the model from generating the same tri-gram more
than once has also been employed. Note that the
context passage is not provided, which forces the
model to rely only on the information gained dur-
ing pretraining.

The model achieves a 3.93% exact-match score
and an F1-score of 14.51% on TyDiQA, and 4.07%
exact-match score and 13.88% F1-score on ARCD.
Since exact-match and F1-score misses answers
that are correct but are worded differently (as
shown in Table 4). A subset of 500 answers from
the best TyDiQA run is selected, and scored man-
ually. Manual scoring shows that ARAGPT?2 cor-
rectly answered 24.6% of the questions. The model
was particularly good in countries and capitals ques-
tion, year of birth and death, and some geography.
Yet it was failing mostly on questions about quan-
tities i.e. population counts, area, age... The pre-
defined answer length negatively affected the gen-
erated answers in some cases, which is a limitation
of the current approach.
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Table 4: Examples of correct answers that have zero
exact match score.

Question

T ks 2l oa e
Who is Alfred Nobel?

Predicted Answer & A2y calyl & A=

Inventor of the dynamite, and the inventor of
Sy FlaSy § A2y e

An engineer and an inventor and a Swedish chemist
Tl 59 Lol ST b e

When was the FIFA founded?

Ground Truth

Question

Predicted Answer S VA

1904 AD

Ground Truth VQ et rL"“ o )‘.L’ Y

21 May of the year 1904

Question

T les ko) o8 e
Who is Edgar Degas?
e ol G Vs desJ&uuu <l

He is a French visual artist, born in

A oy Pl ST Ol

Visual artist and painter and sculptor

Predicted Answer

Ground Truth

B.2 Translation

A experiments has also been conducted to test the
translation capability of ARAGPT?2 by append-
ing the prompt “What is the translation of this
sentence 2.7 - % dod| oda L& 5 a7 to the sen-
tence from the source language, in order to induce
the translation behavior of the model. We then
apply greedy decoding to get the generated tar-
get sentence. Evaluation is performed on 5000
randomly selected pairs from the English-Arabic
Tatoeba (Tiedemann, 2012) dataset. The model
achieved only 1.32 BLEU score'?. The low score is
due to the scarce representation of English words in
the vocabulary, since most words were split into sin-
gle characters. Additionally, given that the prompt
design greatly affects the model’s zero-shot perfor-
mance, our prompt design might have been sub-
optimal. Nevertheless, this negative result encour-
ages research into prompt engineering for Arabic
language models, which we leave as future work.

12Using the sacrebleu scorer (Post, 2018)



C GLTR Analysis and Visualizations
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(b) Human-Written Text
Figure 5: It is clear that the machine generated text in (a) is mostly green and yellow highlighted, while in the
human-written text, (b), an increase in red and purple highlighted words can be noticed. P.S.: We use ARAGPT2-
base as the backend model in GLTR
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