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Abstract

Knowledge Graphs (KGs) have become in-
creasingly popular in the recent years. How-
ever, as knowledge constantly grows and
changes, it is inevitable to extend existing KGs
with entities that emerged or became relevant
to the scope of the KG after its creation. Re-
search on updating KGs typically relies on ex-
tracting named entities and relations from text.
However, these approaches cannot infer enti-
ties or relations that were not explicitly stated.
Alternatively, embedding models exploit im-
plicit structural regularities to predict missing
relations, but cannot predict missing entities.
In this article, we introduce a novel method to
enrich a KG with new entities given their tex-
tual description. Our method leverages joint
embedding models, hence does not require en-
tities or relations to be named explicitly. We
show that our approach can identify new con-
cepts in a document corpus and transfer them
into the KG, and we find that the performance
of our method improves substantially when ex-
tended with techniques from association rule
mining, text mining, and active learning.

1 Introduction

Knowledge graphs (KGs) have gained popular-
ity as a versatile, general-purpose, and domain-
independent model to represent information and
are the major backbone for many applications on
the web (Noy et al., 2019). KGs express knowl-
edge as collections of head-relation-tail statements,
named triples, e.g. (:Cheney, :vice-of, :Bush)
expresses that Cheney is the vice president of Bush.
Since KGs are mostly built through automatic pro-
cesses (Carlson et al., 2010; Dong et al., 2014) they
are often incomplete, e.g. a KG may contain the
fact that Cheney was the vice-president of Bush,
but not that Cheney is a US citizen. In addition,
KGs evolve and require maintenance: they grow
and change as the knowledge they describe expands
and adapts to the real world.

The problem of deriving missing portions of
knowledge is known as KG completion. So far,
the problem has been tackled by link prediction, i.e.
finding relationships between previously known en-
tities in the graph. In this paper, we focus on the
problem of adding and integrating new entities into
the KG—a task we call entity prediction. This is
different from link prediction, where entities are
ex-ante partially described in the KG. In entity pre-
diction, we discover the existence of an entity from
an external source and the KG neither contains the
entity nor any information about how it relates to
the other entities in the KG.

As external source, we target document corpora,
which describe the entities and the relations be-
tween them. For example, a document corpus like
Wikipedia contains a description of Joe Biden and
his relations with Obama (vice president) and Ch-
eney (successor). This lead to our core research
question: given a KG G and a document corpus
D, how can we complete G with entities (textually)
described in D but not yet contained in G?

As a solution, we represent the KG and docu-
ment corpus in a common metric space and exploit
this space in conjunction with user feedback and
graph features to derive statements describing the
new entities. Specifically, we leverage joint embed-
ding models for creating a numerical space to repre-
sent the KG and the background source. Whereas
KG embedding models give good performance on
the link prediction task (Cai et al., 2018a), joint
embedding models combine a KG with a document
corpus to draw conclusions in terms of similarity
between documents and KG entities. Our experi-
ments determine that joint embedding models are
well-founded methods to propose new entities to
a KG. We also discuss how the prediction perfor-
mance can be improved by integrating user feed-
back and explicit graph features.

The next section discusses related literature and
introduces relevant notations. Section 4 outlines
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our solution based on joint embedding models, user
feedback, and graph features. Section 5 describes
the experimental setup and evaluates our hypothe-
ses. Finally, Section 6 presents overall conclusions
and outlines future work.

2 Related work

Like in our scenario, ontology population and on-
tology enrichment1 extract information from docu-
ments (Petasis et al., 2011). Ontology population
adds instances to an existing ontology, whereas the
structure of the ontology remains unchanged. In
contrast to our problem it does not need to learn
relations between instances and assumes an ontol-
ogy to guide the information extraction process
(Buitelaar et al., 2006; Etzioni et al., 2004; Peta-
sis et al., 2013). Ontology enrichment inserts new
concepts or relations into an ontology. It differs
from our setting in that it extends the schema of an
ontology, using its concepts, instances, and schema
constraints, while we solely rely on relationships
between entities (Faure et al., 1998; Cimiano and
Völker, 2005; Hahn and Marko, 2002).

KG enrichment aims at completing a given
KG with new statements, or identifying erroneous
ones (Paulheim, 2017), by predicting entity types
(Nickel and Tresp, 2013; Socher et al., 2013) or
links (Oren et al., 2007; Socher et al., 2013). In con-
trast, our goal is to complete a KG by adding new
entities and statements related to them. (Paulheim,
2017) states that no such approach was known until
2015 and to the best of our knowledge, this has not
changed meanwhile.

Automatic Knowledge Base Construction
(AKBC) methods such as NELL or OpenIE
approach a similar problem by means of text
processing. They extract named entities and
relations from a document, then arrange them
as a KG (Verga and McCallum, 2016; Mitchell
et al., 2018; Martínez-Rodríguez et al., 2018).
Similarly, Entity Linking extracts named entities
from text, then disambiguates and links them
with a background database (Hoffart et al., 2014).
These approaches assume that all entities and all
relations are explicitly mentioned in the text under
their canonical name. In contrast, we consider the
scenario where entities are not stated in the text
but described implicitly.

1In this study we do not distinguish between KG and ontol-
ogy. We opt for ontology when it is used to refer to a known
problem in literature, i.e. ontology population.

3 Background

This section presents the key concepts and notation
used throughout the paper.

Knowledge graphs. We define a knowledge
graph as G := (V,R, E), with V a set of ver-
tices (entities), R a set of relations, and E a set
of directed edges, also known as statements. A
statement is a triple (h, r, t) ∈ E , with h, t ∈ V
the head/tail entities, and r ∈ R the relation. For
example, the sentence “Joe Biden is the vice presi-
dent of Barack Obama” is represented by the triple
(:Biden, :vice-of, :Obama). Let U be the the uni-
verse of the entities which can be described. V
identifies the entities described in G, and V ⊂ U ,
i.e., G does not include all possible entities that
may be described, which is the case in real KGs.

KG embedding. Embedding models create a nu-
meric, low-dimensional representation of a KG by
learning a latent vector (embedding) for each KG
entity and relation. Ideally, the distance between
entity embeddings resembles the relatedness of
the KG entities, e.g. the embeddings of :Biden
and :Obama are close. Embedding models exploit
structural regularities in the KG by defining an
optimization problem in terms of a loss function
that incorporates the graph’s structure, as well as
embeddings of a given size.

(Bordes et al., 2013) introduced the TransE em-
bedding model, based on the idea that a relation
r is a translation from the source entity h to the
target entity t in the embedding space, i.e.:

L ∼
∑

(h,r,t)∈E

‖h+ r− t‖2 (1)

We denote embeddings in bold font and elements
of V ∪R in italic, e.g. h and r are the embeddings
of h ∈ V and r ∈ R, respectively.

While there exists a range of embedding models
(Wang et al., 2017; Cai et al., 2018b), we focus on
TransE due to its popularity and conceptual clarity.

Joint embedding models. Not only do embed-
ding models exist for KGs but also for text
(Mikolov et al., 2013; Le and Mikolov, 2014).
Joint embedding models combine two embed-
ding models for different modalities, allowing
to compare embeddings between them while
maintaining the characteristics of the individual
models. These models make two principal as-
sumptions. First, each document d from a cor-
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pus D is a textual description of a single en-
tity e ∈ U , e.g. the Wikipedia document
dB (https://en.wikipedia.org/wiki/
Joe_Biden) describes the entity eB (:Biden).
The description may be implicit, i.e. not actually
mention the entity name, and can mention other
entities. Second, the two modalities are linked to
each other via known correspondences. We de-
fine the correspondences as a bijective function
m : D → U , and its inverse m′ : U → D, e.g.
m[dB] = eB and m′[eB] = dB .

Two joint embedding models are KADE and
StarSpace. Both take a KG G, a document cor-
pus D, and known correspondences m as input.
They then create embeddings for each document,
entity, and relation in a shared embedding space
such that embeddings of a document and a corre-
sponding entity are, i.e. d ∼ e if m[d] = e. KADE
(Baumgartner et al., 2018) joins the TransE KG
embedding model and the par2vec document em-
bedding model (Le and Mikolov, 2014) by adding
a regularizer term (weighted by λ) to both models,
then training them in an alternating fashion. The
regularization forces embeddings of corresponding
documents and entities to be close to each other:

LKADE
Docs ∼ LDocs + λd

∑
d∈D
‖d−m[d]‖

LKADE
KG ∼ LKG + λg

∑
e∈V

∥∥e−m′[e]
∥∥

StarSpace (Wu et al., 2018) models entities, rela-
tions, and words as atomic features, and defines ob-
jects as aggregates over these features. A document
embedding thus becomes the sum of its words’ em-
beddings. It then learns feature embeddings by
minimizing the distance (inner product or cosine)
between related objects:

LSS ∼
∑

(h,r,t)∈E

dst(h+r, t)+
∑
e∈V

dst(e,
∑

w∈m′[e]

w)

4 Approach

As inputs, our approach receives a KG G, a docu-
ment corpus D, and correspondences m between
the two modalities. While every entity has at least
one corresponding document, we assume a number
of surplus documents in D that are not associated
with any entity in G. A surplus document can either
describe a novel entity we want to add to G or its as-
sociation to an existing entity in G is unknown. The
problem of entity prediction can then be divided
into two subproblems:
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(a) The goal of entity prediction is to add the entity
:Biden and all red edges to the KG.

(b) The entity embedding is inferred from the document
embedding in a joint embedding space.

:Obama :USA :Bush :Cheney
:citizen 0.8 0.4 0.75 0.78
:senior 0.5 0.9 0.6 0.7
:preceded 0.6 0.98 0.7 0.65
:vice-of 0.1 0.8 0.3 0.5

(c) Triple plausibility is estimated via the KG embed-
ding loss on joint embeddings (lower is better).

Figure 1: An example of entity prediction via a joint
embedding model.

1. Identify whether a surplus document describes
a novel entity. E.g. a document that describes
the entity :Biden which is not part of the KG
in Figure 1a.

2. Add an entity e∗ to G and propose edges
between e∗ and the graph’s current entities
V . E.g. in Figure 1a, we would ideally add
:Biden and all red colored edges.

We address both problems in the next sections by
describing how our method adds one entity to the
KG. For multiple entities, we repeat the procedure
for each one independently, and leave an approach
that updates the KG and its embeddings incremen-
tally as future work to study.

4.1 Novelty detection

We first discuss how to distinguish surplus docu-
ments that describe novel entities from those that
have an unknown association to an entity in G. We
approach this task as a binary classification prob-

https://en.wikipedia.org/wiki/Joe_Biden
https://en.wikipedia.org/wiki/Joe_Biden
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lem: a surplus document is either an alternative
description of an entity in G or a novel entity. Our
intuition is that documents that describe the same
entity are more similar to each other than to the
remaining documents in the corpus. Since joint em-
beddings preserve the characteristics of the the doc-
ument embedding, we measure the document simi-
larity via the embedding distance. Hence, we train
the joint embedding model, then compute the dis-
tances between surplus document’s embedding to
the other document embeddings. We compute the
mean, variance, minimum, maximum, percentiles,
span, entropy, and skew of these distances, concate-
nate them with the surplus document’s embedding,
and use the resulting feature vector as input to a
binary classifier.

4.2 Triple reconstruction

Next, we discuss how to derive new triples that
have e∗ as head or tail entity. This task is chal-
lenging because the number of possible triples is
2|V||R|, which is orders of magnitude larger than
the average number of triples an entity typically
takes part in2. In the remainder of this section we
describe the three components we use to tackle this
challenge. First, we measure a potential triple’s
plausibility in a joint embedding space. Second,
we propose a method to find likely relations with
the help of user feedback. Third, we incorporate
explicit features of the graph’s structure into the
previous methods. For the sake of brevity, we only
discuss the case where e∗ is in the head position.
Triple loss. We first look into the joint embedding
space to retrieve the most plausible triples. Joint
embedding models strive to produce the same em-
bedding for a corresponding document and entity.
Therefore, they suggest that the entity e∗ is located
at the same position in the embedding space as its
corresponding document d, i.e. e∗:= d. This is
exemplified in Figure 1b: it shows the embeddings
of all entities and documents, with corresponding
items close to each other. Since :Biden is missing
from the graph, its embedding is proposed to be at
the position of the document describing it.

KG embedding models define a triple loss
L(h, r, t) that expresses the plausibility of a triple:
KADE uses TransE’s triple loss ‖h+ r− t‖2,
StarSpace defines it as dst(h + r, t). We com-
pute the triple loss for every possible triple and

2In FB15k-237 the average entity only occurs in about 21
out of 302’455 possible triples.

collect them in a loss matrix Se∗ : R|R|×|V|, where
each cell is defined as:

Se∗
r,e = L(e∗, r, e) (2)

Figure 1c presents an example triple loss matrix.
For the sake of readability, we omit indices of S if
possible, e.g. we use Se∗

r to indicate the row Se∗
r,·.

For the triple reconstruction, we are mostly inter-
ested in the ranking of losses — the triple with the
lowest value in S is the most plausible one, irrespec-
tive of the actual value. We therefore rank triples
in S in ascending order, i.e. assign the lowest rank
to the triple that the embedding model determines
to be the most plausible. Without further infor-
mation, it is optimal to select the N lowest ranked
triples in Se∗ , which we denote as the TopN method.
User feedback. We refine the triple reconstruction
from joint embedding models by incorporating ad-
ditional information from a user’s feedback. The
main challenge of the triple reconstruction is that
the number of true triples to restore is much lower
than the number of possible triples. To circumvent
this issue, we split the triple reconstruction into
two subtasks: First, we identify relations r ∈ R
present at e∗, then we identify the tail entities given
the previously found relations. We propose to in-
volve the user in the first subtask, then to solve the
second one autonomously. This is because there
are typically fewer relations than vertices in a KG,
thus the user has to take fewer decisions while their
feedback’s impact is maximized.

We formalize this idea in the UF procedure in
Algorithm 1. We employ a logistic classifier to dis-
tinguish relations that should be present at e∗ from
those that should not. The inputs to the classifier
are the triple loss statistics of one relation r, i.e.
the mean, median, variance, minimum, maximum,
quantiles, entropy, and skew of Se∗

r . Its output is
the likelihood of e∗ having any triple with relation
r. Out of the M most likely relations we then ask a
user to select a correct one. For the chosen relation
r we add the triples with the lowest ranks in Se∗

r .
Since e∗ can have multiple triples with the same
relation to different entities, we pick the Nr lowest
ranked ones, whereas Nr is the average number of
r-triples (i.e. triples with relation r) at entities in G.
In addition, we discard triples that have a rank in
Se∗ larger than a threshold θ. The process repeats
until the user judges that no relation is valid.

One issue of UF is that the algorithm terminates
without proposing any triple if the initial set of
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Algorithm 1: UF: Iterative triple reconstruction
with user feedback. The || symbol denotes list con-
catenation.

Input: Knowledge graph G, proposed entity e∗ and
its loss matrix Se∗

Result: List of proposed triples [(e∗, r, t)]

/* Build relation features */
1 features← [] ;
2 for r ∈ R do
3 features(r)← [avg(Se∗

r ), var(Se∗
r ), . . . ] ;

4 end
/* Predict initial candidate

relations */
5 candidates←M highest scoring relations according

to clf(features(r)) ;
6 feedback← let the user select one relation from

candidates ;

/* Select triples and iterate */
7 triples = [] ;
8 while feedback is valid do
9 r← feedback ;

10 Nr ← mean number of r-triples on vertices
having at least one r-triple ;

11 s← dNre lowest ranked triples in Se∗
r ;

12 triples← triples || items of s whose rank in Se∗

is lower than θ;
13 candidates←M highest scoring relations

according to clf(features(r)) ;
14 feedback← let the user select one true relation

from candidates ;
15 end
16 return triples ;

relations suggested to the user lacks a valid one.
To prevent this problem, we introduce UF-s, which
keeps generating initial candidate relations (line 5
in Algorithm 1) until the user selects one of them,
then continues in the same way as UF.
Graph features We further improve the triple re-
construction performance by exploiting the graph
structure. In the following, we define two features
and integrate them into the UF method.

The first feature focuses on improving the selec-
tion of a relation in UF. Once a user has selected
a relation, we use this new evidence to improve
the estimate of other relations’ likelihoods. For
this, we use the confidence measure (CO) from
Association Rule Learning (Agrawal et al., 1993),
which expresses how certain we are about an entity
having a relation ri if we know that it has rj :

conf(rj ⇒ ri) = p(ri|rj) =
|{h|(h, rj , ·) ∈ E} ∩ {h|(h, ri, ·) ∈ E}|

|{h|(h, rj , ·) ∈ E}|

We integrate the confidence into UF by multiplying
it with the respective likelihood predicted by the
clf classifier. Note that this notion of confidence

assumes that both ri and rj have the same direction,
e.g. e∗ in the head position. To incorporate the case
where their direction differs (i.e. one is inbound,
the other outbound to e∗), we modify Algorithm 1
to alternate between reconstructing triples with e∗

in the head and tail position.
The second feature helps with finding the tail en-

tities under a given relation. With no other informa-
tion than the graph, it is reasonable to add an edge
from e∗ to the entity that is most frequently used
with the given relation. This measure is especially
informative if the relation occurs at few entities.
To express these ideas, we use the BM25 weight-
ing scheme (BM ), popular in information retrieval
(Robertson and Zaragoza, 2009). It assigns a large
weight to an edge if the entity is likely to have the
relation (term frequency) and if having that relation
is also informative (document frequency). We inte-
grate this feature into the UF method by dividing
each value in Se∗ by its BM25 score.

Both of these features can be calculated in a sin-
gle pass over the graph, i.e. they have complexity
O (|E|). Training an embedding model requires
multiple iterations over the graph, making their
complexity O (k|E|) with k typically in the thou-
sands. Therefore, calculating the graph statistics
does not impact the scalability of the method.

5 Results

In this section, we first describe the experimen-
tal setup, then discuss the novelty detection, and
finally show the triple reconstruction results.

5.1 Setup

We evaluate our methods on FB15k-237 and
DBP50, two popular KGs for KG embedding
model benchmarking (Toutanova and Chen, 2015;
Shi and Weninger, 2018). For entities from either
KG, we select a random section of their respective
Wikipedia article as corresponding document. To
ensure that our methods do not learn from explicitly
mentioned entity names, we replace all mentions
of any of the entity label’s words with ’entity’. For
example, if the label is ’Joe Biden’, we replace
any occurrence of ’Joe’ and ’Biden’ with ’entity’.
We then apply tokenization, normalization, and
stopword removal on the documents. Finally, we
remove entities from the graphs that cannot be as-
sociated with a unique document. Table 1 reports
the resulting dataset sizes.

To test our methods, we randomly sample k =
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FB15k-237 DBP50
Entitites 14’375 24’005

Relations 236 351
Total Triples 300’423 33’486
Train triples 263’907 31’336

Unique words 90’824 66’745

Table 1: Dataset sizes

100 entities from each KG and remove them from
the respective graph, leaving k surplus documents
in both datasets. We then sample another k of the
remaining entities in both KGs and add a second
document to each of them, again randomly selected
from their Wikipedia article and preprocessed in
the same way as before. We omit these documents
from the known correspondencesm. This produces
a total of 2 · k surplus documents: For half of them
no entity exists in the KG, the other half of them
have existing yet unknown entities in the graph.

We then train StarSpace and KADE on the KGs
and corpora. As our goal is not to get the best
performance out of the embedding models, we use
common parameters for these models: for KADE
we set λd = λg = 0.01, for StarSpace we use the
inner product. In both cases, we use embedding
vectors of size 100 and we train for 1000 epochs.

5.2 Novelty detection results

We first discuss the results of novelty detection
with joint embedding models. We hypothesize that
joint embedding models have a higher accuracy in
distinguishing novel from unassociated documents
than other unsupervised document models.
Experiment 1: Novelty classification. To test
the novelty detection, we train a boosting decision
stumps classifier on the 2 · k surplus documents,
whereas half of them describe a novel entity, half of
them describe an existing one. We compare KADE
document embeddings to a bag-of-word document
representation, and evaluate the classifier in a 10-
fold cross-validation setting.

Table 2 shows the two classifiers’ performances
in terms of accuracy (overall correct classification),
type-I (mistaken as novel) and type-II errors (mis-
taken as unassociated), precision, and recall. The
bag-of-words model achieves near-random accu-
racy, while KADE embeddings achieve a substan-
tially higher performance. The advantage of KADE
is mostly in its lower type-I error rate, which pre-
vents redundancy, i.e. that existing entities are
being added a second time to the KG.

FB15k-237 DBP50
KADE BoW KADE BoW

Accuracy 0.640 0.505 0.585 0.515
Type-I error 0.190 0.285 0.205 0.275
Type-II error 0.170 0.210 0.210 0.210
Precision 0.626 0.501 0.578 0.511
Recall 0.650 0.590 0.573 0.581

Table 2: Performance of classifying documents as de-
scribing a novel or existing entity. Higher accuracy,
precision, and recall are better, while lower type-I and
type-II errors are better.

5.3 Triple reconstruction results
In the following, we compare the different triple re-
construction methods and their variations. First, we
discuss the triple reconstruction considering only
the embedding model’s triple loss (TopN). Second,
we investigate the impact of the separation into re-
lation and triple prediction with user feedback (UF,
UF-s). Third, we compare different combinations
of graph features (BM , CO, or both) on their ef-
fect on Algorithm 1. Last, we discuss how much
effort the different procedures inflict on the user.

We evaluate our methods on the binary classifi-
cation metrics precision and recall. The precision
indicates the portion of correct triples out of all pro-
posed triples. The recall measures the portion of
correctly proposed triples out of all correct triples.
We apply our methods on the k novel entities indi-
vidually and report the averaged metrics.
Experiment 2: Joint embedding model. In this
experiment, we study how joint embedding models
perform in the triple reconstruction task. Specifi-
cally, we compare the two joint embedding meth-
ods StarSpace and KADE in the TopN setting,
and investigate how well the document embedding
serves as embedding of the novel entity, as pro-
posed by these models. To test the latter, we train
a TransE model on the KG (without the k omitted
entities) and derive the embedding of a novel entity
e∗ according to TransE’s loss function, i.e.

argmin
e∗

∑
(e∗,r,t)

‖e∗ + r− t‖+
∑

(h,r,e∗)

‖h+ r− e∗‖

by using triples from the original KG. We denote
this as Oracle, as it computes the optimal entity em-
bedding from ground-truth data. As lower baseline,
we use random embeddings (Random). For each
entity embedding (from a baseline or joint embed-
ding space), we select triples as specified by TopN.
We set N = 10 which gave the best performance
in our experiments. We hypothesize that the triple
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0.1 0.2 0.3
0.2

0.25

0.3

0.35

0.4 TopN
UF
UF-s
Upper

recall

pr
ec
is
io
n

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5
TopN
UF
UF-s
Upper

recall

pr
ec
is
io
n

(b) Impact of user feedback.
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(c) Impact of user feedback and graph features combined.
Marker shapes indicate the user feedback method, their color
the graph features.

Vanilla BM CO BM+CO
FB15k-237 (upper baseline 103.658)

UF 26.798 27.237 20.943 20.937
UF-s 29.002 29.329 23.799 23.800

DBP50 (upper baseline 80.562)
UF 30.740 30.738 32.677 32.677

UF-s 64.037 64.037 66.429 66.429

(d) Number of user decisions per method and graph feature
(lower is better).

Figure 2: Experimental results for FB15k-237 (left plots) and DBP50 (right plots). The red ellipses show the
variance. Note that axes have different scales.

reconstruction performs substantially better with
joint embeddings than the Random baseline.

Figure 2a shows the precision and recall of TopN
with embeddings from the different models. It
shows that KADE performs substantially better
than StarSpace in both metrics and datasets, mean-
ing that the more constrained document model used
by KADE is advantageous in the entity prediction
task. As expected, the performance of StarSpace
and KADE lies between the two baselines, however
compared to the Oracle baseline their performance
is unsatisfactory, motivating further improvements.

Experiment 3: User feedback. Next, we hypoth-
esise that user feedback increases precision and
recall in the triple reconstruction task. For these
experiments, we use KADE embeddings, θ = 500,
and M = 10. Since a user study would exceed the
scope of this experiment, we provide user feedback
by automatically selecting one random correct rela-
tion out of the suggested ones. Out of the k entities
omitted from the KG, one is selected as e∗. The
other omitted entities are used to train the classifier
clf by constructing features from their triple loss
matrices as stated in Section 4.2 and using their
triples from the ground-truth KG as training tar-
gets. We repeat this procedure for all k entities,
and report the averaged evaluation metrics.

Figure 2b contrasts the UF and UF-s methods
with TopN and an upper bound Upper. The Up-
per baseline knows all true relations of e∗, then
picks the lowest ranked N triples for each of them,
according to Se∗ . Varying N shifts the trade-off
between precision and recall, whereas we use the
N that maximizes the F1 score (i.e. the harmonic
mean of precision and recall). Note that like Or-
acle, this baseline is not practically viable as it
uses ground-truth information, but rather indicates
the maximum performance that could be achieved
given the triple loss of the joint embeddings.

Figure 2b shows that that the user feedback has a
positive impact on at least one of the two evaluation
metrics, and that UF-s improves over UF with an
average increase of 13.43% in precision and 9.83%
in recall. The latter is expected, since UF-s has a
guaranteed initial relation. In FB15k-237, the user
feedback improves recall by 76.95%, implying that
the classifier learns relations present at e∗. While
more relations are considered, the ratio of correctly
selected triples does not improve with UF, meaning
that the ranking of triples within one relation is
about as accurate as the rankings in the full triple
loss matrix. In DBP50, the precision increases
much more than the recall. In contrast to FB15k-
237, this dataset is sparser (about 2.5 triples per
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vertex), which makes it harder to find relations.
However, once a relation is known, the triple scores
from the joint embedding model are reliable, i.e.
the true triples have low ranks and are thus selected.

Experiment 4: Graph statistics. As the last part
of our triple reconstruction method we evaluate the
combination of user feedback and graph features.
We first hypothesize that combining UF and UF-s
with either BM or CO increases their precision
and recall. Our second hypothesis is that the combi-
nation ofBM andCO yields an improvement over
having only one of them. For this experiment, we
use the same setup as in the previous one and apply
the BM25 parameters b = 0.75 and k1 = 2.0. Fig-
ure 2c shows the use of the different graph features
in UF, UF-s, and the Upper baseline, and includes
TopN as lower baseline. Vanilla indicates no graph
features were in effect. Note that the Upper base-
line is not affected by the CO feature as it does not
select relations iteratively.

On FB15k-237, the BM feature improves the
precision by 23.05%, while the CO feature in-
creases the recall by 6.10% (at the cost of slightly
lowering the precision). The combination of both
features (BM + CO) amplifies these effects, with
an improvement of 23.11% in recall and 22.02% in
precision. These observations relate to how the fea-
tures affect the different parts of Algorithm 1: CO
helps in finding more relations, hence increases the
recall; BM increases the number of retrieved true
triples of a given relation, hence increases the pre-
cision. These effects are greater on UF-s than on
UF because the user provides at least one relation,
which in turn allows the graph features to become
more effective. On DBP50, the graph features have
no significant effect in our methods nor the Upper
baseline; instead, the variance is larger than the
difference between the methods. We attribute this
to the sparsity of the dataset, since it provides too
few samples to estimate frequencies accurately and
small differences in the triple selection have a huge
impact on the precision and recall.

Experiment 5: User involvement. To evaluate
the user workload, we measure how many relations
a user has to judge during the triple reconstruction
task, assuming that the user reports the first valid
relation they find in each iteration.

Figure 2d shows the number of judgements of
UF, UF-s, their variations, and an upper baseline.
The upper baseline expresses the case where at
most one relation is valid in each iteration. The

lower baseline is 2M = 20 since the user has to
review all presented relations at least once.

It is apparent that UF-s involves more judge-
ments than UF, which comes from two factors: A
higher effort to find an initial relation, and more
subsequent iterations. We further observe that the
number of judgements is substantially lower than
the upper baseline in FB15k-237, meaning that it
finds multiple valid relations per iteration. On the
other hand, it is more difficult to find a valid rela-
tion in DBP50, hence the user workload is higher,
especially in UF-s. Graph features generally show
a positive impact in FB15k-237 and a marginal neg-
ative effect in DBP50, in particular the CO feature
as it affects which relations are shown to the user.

6 Conclusion and Future Work

In this paper, we studied the problem of integrating
new entities into a KG given their textual descrip-
tion. We exploited joint embeddings to identify
entity candidates, and combined information from
the joint embedding model with user feedback and
graph features to improve the triple reconstruction.
Our method solely relies on structural patterns in
the data and does not need explicit mentions of en-
tities or relations in the text. Our experiments sug-
gest that joint embeddings are viable methods for
entity prediction, and confirm that user feedback
and graph features have a substantial impact on
the triple reconstruction. In particular, experiments
indicate that user feedback, features on relations
(CO), and features on entities (BM ) treat different
aspects of the problem, making their combination
more successful than using only one of them.

Comparing the results with the upper baselines
shows that there is room for improvement. A pos-
sible way to fill this gap is to integrate explicit
information into the process, e.g. considering the
schema or the semantics of the relations or entities.
Another approach is to study the incremental addi-
tion of new entities and triples: We restore entities
and triples independently of each other, however,
the restoration provides new information that can
be exploited subsequently. Finally, our method
could be extended in a straight-forward manner to
other external data sources such as images, or to
predict novel relations instead of entities.
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