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Abstract

We study continual learning for natural lan-

guage instruction generation, by observing hu-

man users’ instruction execution. We focus

on a collaborative scenario, where the system

both acts and delegates tasks to human users

using natural language. We compare user exe-

cution of generated instructions to the original

system intent as an indication to the system’s

success communicating its intent. We show

how to use this signal to improve the system’s

ability to generate instructions via contex-

tual bandit learning. In interaction with real

users, our system demonstrates dramatic im-

provements in its ability to generate language

over time.

1 Introduction

Natural language provides an expressive and ac-

cessible avenue to instruct non-expert users. The

ability to generate instructions is critical for sys-

tems that collaborate with users, for example, to

delegate tasks. In such scenarios, the system gen-

erates language to communicate to the user a latent

intent. When users are cooperative and proficient

in the language, whether they accomplish the sys-

tem’s intent provides an informative, albeit noisy

signal of the quality of instruction generation.

This implicit signal is fundamentally different

from supervised data, including via active learn-

ing, in that it does not label the system’s intent with

a written instruction, but only provides evidence

to the quality of a given instruction in relaying this

intent. As a natural byproduct of interaction with

users, it also differs from explicit user feedback in

not requiring user action beyond what they already

do as part of the interaction. Despite its potential

and prevalence, this signal is understudied for

learning to generate natural language

In this paper, we study this learning signal. We

formalize continually improving instruction gen-

eration by observing human users executing gen-

erated instructions. We learn by comparing in-

struction execution to the system intent, and

demonstrate how this results in a system that con-

tinually improves its natural language generation

ability through interaction with users. Figure 1

illustrates our learning process.

We design a task-oriented collaborative sce-

nario using the CEREALBAR game environment

(Suhr et al., 2019). In CEREALBAR, two agents, a

leader and a follower, work together to complete

tasks. The leader plans the tasks to complete, and

communicates goals to the follower using natural

language. CEREALBAR was originally introduced

for studying follower instruction execution. We

modify it to focus on generation of leader in-

structions, which are then executed by human

followers. The collaborative, embodied setup ef-

fectively engages users, and aligns their incentives

with executing the system’s instructions to the best

of their abilities.

A major challenge is inferring a learning sig-

nal from observed user behavior. Given the user

execution, we create positive and negative exam-

ples, depending on how the user execution aligns

with the system’s plan and the user’s perceived

correctness of their own execution. For example,

consider an execution that does not align well

with the system’s plan, but that the user considers

correct given the instruction. Because of the mis-

alignment, we cannot consider the instruction as a

successful example given the system’s plan. How-

ever, given the user’s perceived correctness, we

can generate a positive example treating the user’s

execution as a plan paired with the instruction. In

contrast to supervised learning with gold-standard

per-token labels (Sutskever et al., 2014), such

utterance-level binary labels form a challenging

signal for learning, because they do not distinguish

between correct and incorrect tokens.

We do not make the typical distinction between

training and deployment; as human users follow
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Figure 1: Diagram of our learning process. We ini-

tialize a generation model using supervised learning,

and continually learn through interaction with users,

by alternating between observing user execution of

generated instructions and training.

generated instructions, we continually collect new

data, periodically train using this data, and eval-

uate the system through the interaction itself.

We formalize learning as an off-policy contextual

bandit learning problem. We show that positive

examples can be treated in a manner that reduces to

supervised learning, allowing for simple effective

use of the data. However, using negative examples

is more challenging, because simply minimizing

their likelihood gives an unbounded negative loss.

We weigh negative examples using an inverse pro-

pensity score (IPS; Horvitz and Thompson, 1952;

Wang et al., 2017) to address this issue.

We experiment with our approach through in-

teraction with human users, tracking both task

performance and how the generated language

changes. We observe dramatic improvements in

the quality of instructions generated as reflected

in users’ execution: Task completion in accor-

dance to the system intent increases from 44.7%

to 79.3%. This is accompanied by significant

language change: The occurrence of erroneous

phrases decreases as desired, but the effective

system vocabulary gradually shrinks.

Although using user feedback for improving

language generation has been studied, as we dis-

cuss in Section 8, to the best of our knowledge,

this study is the first to show effective instruction

generation learning by observing user execution.

Our experiments demonstrate the effectiveness

of our process, but also illustrate limitations and

important directions for future work. Code and

data are available at https://lil.nlp.cornell

.edu/cerealbar/.

2 Technical Overview and Notation

Our goal is to continually improve a natural lan-

guage instruction generation model, by observing

human executions of generated instructions.

Interaction Scenario We focus on a collabora-

tive scenario, where two agents, a leader and a

follower, complete tasks in an environment. The

system is the leader, and the human user is the

follower. The leader plans tasks to accomplish,

acts in the world, and instructs the follower using

natural language. We use a deterministic proce-

dure for planning and executing leader actions,

and focus on learning the leader instruction gener-

ation model. The human follower acts in the world

following the system instructions. We instantiate

this scenario using CEREALBAR (Section 3), a col-

laborative game, where two agents collect sets of

cards together by moving in a 3D environment.

Task A world state s describes the current envi-

ronment; in CEREALBAR, this includes the location

of landmarks, cards, and both agents. A plan p̄ is a

sequence of poses 〈p1, . . . , p|p̄|〉 the system intends

for the human user to take starting from a start

state s1. In CEREALBAR, a plan includes moving

in the environment with the intent of collecting

cards; each pose pj is a tuple (hj , wj , αj), where

hj and wj are height and width coordinates, and

αj is a discrete orientation angle. An instruction

x̄ is a sequence of tokens 〈x1, . . . , x|x̄|〉. An in-

struction execution ē is the sequence of poses

〈p1, . . . , p|ē|〉 a user takes executing x̄, starting

in a start state s1. The generation distribution

P (x̄ | s1, p̄; θ) is parameterized by θ. The goal

of instruction generation is that given a generated

instruction x̄ ∼ P (· | s1, p̄; θ), the user execution

ē from s1 will follow the plan p̄. The user does not

have access to p̄, but only to its description x̄.

Learning We use an encoder-decoder neural

network model (Section 4), which we continually

improve by observing user behavior. This process

proceeds in rounds. At each round r, we first col-

lect data and then train our model by estimating

the model parameters θr. During data collection in

round r, we sample from our model to generate in-

structions, and observe a human user’s execution

of each instruction. An execution of an instruction

x̄ ∼ P (· | s1, p̄; θr) generated for the plan p̄ with

start state s1 creates a tuple (s1, p̄, x̄, ē, f), where ē
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is the user execution and f is structured user feed-

back solicited using binary questions (e.g., about

the grammaticality of x̄). The learner does not ob-

serve the user’s actions executing x̄, but only their

poses along the execution. Given these tuples, we

create a dataset Dr = {(s
(i)
1 , ρ̄(i), x̄(i), y(i))}

|Dr |
i=1 ,

where y(i) ∈ {−1,+1} is a binary label. Depend-

ing on the user execution and feedback, the plan

ρ̄(i) is either the original plan p̄(i) used for gen-

erating x̄(i) or the user execution ē(i) of x̄(i). We

formulate estimating θr+1 as a contextual bandit

learning problem with y as the reward. Section 5

describes the complete learning process.

Evaluation Throughout the system’s lifetime,

we measure how well human users complete tasks,

and also use earth mover’s distance (EMD; Rubner

et al., 1998) to quantify the similarity of the

user execution ē to the plan p̄. We characterize

language change over time by tracking vocabulary

size, instruction length, and other statistics.

3 Interaction Scenario

Suhr et al. (2019) describe CEREALBAR in detail.

CEREALBAR is a two-player, turn-based game

where a leader and follower collaborate to col-

lect sets of matching cards. The game objective is

to collect as many valid sets as possible in a 3D en-

vironment. The environment includes landmarks

(houses, mountains, ponds, etc.) that the players

must move around, and may obscure a player’s

view. A valid set consists of three cards with three

distinct colors, shapes, and counts. Players move

onto cards to select or deselect them. When the

selected cards comprise a valid set, the players

earn a point, all cards disappear,1 and new cards

appear. The two players must collaborate effec-

tively using natural language. The leader observes

the entire environment, plans who should select

which cards for the next set, executes their own

part of this plan, and issues instructions to the

follower. The follower executes leader instruc-

tions, only seeing a partial first-person view of

the environment. Leader instructions must make

use of the observed spatial environment, including

landmarks, for the follower to be able to execute

them given their partial view. Each interaction

includes multiple instructions. Figure 2 shows

the game and example generated instructions.

1In Suhr et al. (2019), only the selected cards disap-

pear. We introduced this modification to minimize inter-turn

effects for the follower (i.e., memorize card locations).

Figure 2: Interaction snapshot in CEREALBAR, with

instructions generated by our model. The current in-

struction is x̄9. The leader plan is illustrated with red

arrows in the leader’s view. The user sees only the

follower’s view during execution.

CEREALBAR was originally used for learning a

follower instruction execution model from human

demonstrations (Suhr et al., 2019). In contrast,

we learn an instruction generation model for the

leader, with the human user as the follower. The

generated instructions must often specify multi-

ple tasks to complete (i.e., when the follower is

to select multiple cards), and how to navigate to

the target cards, because the follower has only

partial observability of the environment. This in-

cludes references to landmarks, spatial relations,

and descriptions of paths. We focus on language

generation, and use a deterministic planner to gen-

erate the plan, including which cards to select and

how each player should move in their next turn,

and execute the planned leader actions. The sys-

tem uses the model we learn to map the follower’s

part of the plan to a natural language instruction.

We learn through interactions with non-expert

human followers, which CEREALBAR is particularly

suited for. The utility-maximizing game objective

to earn a high score by collecting as many valid sets

as possible incentivizes followers to execute the

generated instructions as accurately as possible.

In addition, CEREALBAR players need no expert

knowledge to participate in the game, beyond

familiarity with the simple game rules.

4 Model

We design a relatively simple encoder-decoder

architecture to model the generation distribution
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Figure 3: Model illustration. Section 4 describes the model.

P (· | s1, p̄; θ), leaving more complex model de-

velopment for future work. The inputs are a start

state s1 and a plan p̄. The model parameters are θ.

Our design considers the environment and plan to

generate relevant, grounded instructions. Figure 3

illustrates the model.

Inputs Similar to Suhr et al. (2019), we repre-

sent the world state s1 ∈ {0, 1}P×H×W as a binary

3D tensor, whereP is the number of position prop-

erties, and H and W are the environment’s height

and width. Each of the W × H positions is rep-

resented as a binary properties vector of length P

(encoding the type of object in the position, its

color, etc.). The system plan p̄ = 〈p1, . . . , p|p̄|〉 is

a sequence of follower poses along the intended

execution. Each pose pj is a tuple (hj , wj , αj) of

height hj and width wj coordinates, and a discrete

orientation angle αj .

Encoder The encoder computes a set of hid-

den states, which the decoder attends to during

generation. We use a learned embedding function

φs to map each position vector to a dense em-

bedding of size N s by summing the embeddings

of each of the position’s properties. We combine

the embeddings into a tensor S ∈ IRNs×H×W ,

and compute: S′ = CNN1(S), where CNN1 is

a learned convolution and S′ ∈ R
Ns

′
×H×W . Be-

cause the CEREALBAR environment is a grid of

hexagons, we use HEXACONV (Hoogeboom et al.,

2018). We encode the plan positions into a se-

quence of vectors 〈ps′

1 , . . . ,p
s′

|p̄|〉 by cropping a

N s′ × Np × Np-sized tensors from S′ centered

around each (hj , wj) and rotated by αj . These

tensors represent the pose of the follower and its

surroundings during execution. Each ps′

j is en-

coded to pj = CNN2(ps′

j ), while retaining the

dimensionality of ps′

j .

We concatenate an orientation embedding φα(αj)
to each pj , and process [p1;φ

α(α1)], . . . , [p|p̄|;
φα(α|p̄|)] with a bidirectional LSTM to compute
h1, . . . ,h|p̄|. We construct the set of hidden states
P the decoder attends to by concatenating each
hj with the Np ×Np position vectors encoded in
each pj :

P =
{

[hj ;pj [x, y]] |1 ≤ j ≤ |p̄|,

1 ≤ x, y ≤ Np
}

,
(1)

where pj [x, y] is a position vector of size N s′ .

Decoder The decoder computes a probability

distribution over token types conditioned on the

prefix generated so far and the set P , which

represents the environment state and plan. The

decoder uses the first four layers of the GPT-2

Transformer architecture (Radford et al., 2019),

which enables initializing with GPT-2 weights.

We extend it with pseudo self attention (Ziegler

et al., 2019) to condition the generation on the

encoder outputs P . This adds a linear layer that

projects the encoder outputs P into the decoder

self-attention space.

Inference We decode instructions from P (· |
s1, p̄; θ) using temperature sampling with a tem-

perature of τ (Kreutzer et al., 2018b). This sharp-

ens the sampling distribution, to focus on higher

probability outputs. We do not use beam search.

5 Learning

We continually improve our model by observ-

ing users following generated instructions and

re-estimating the model parameters. We initialize
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the model parameters θ1 using an existing lan-

guage model and training on a static dataset of

instructions D0 (Section 5.1). We then perform a

series of rounds, each round r includes deploying

the model with human users and training on the

collected interactions (Section 5.2). In round r, we

collect interactions between our model parameter-

ized by θr and human followers, to create a dataset

Dr = {(s
(i)
1 , ρ̄(i), x̄(i), y(i))}

|Dr |
i=1 of start states s

(i)
1 ,

plans ρ̄(i), instructions x̄(i), and binary labels y(i).

We estimate θr+1 using all data collected so far

∪r
q=0Dq. Figure 1 illustrates our learning process.

5.1 Initialization

User interaction requires some level of mini-

mal performance. Pilot experiments showed that

a poorly initialized system is likely to frustrate

users, who in turn provide little learning signal.

Our initialization provides a sufficient level of

grammaticality and plausibility to support user

interaction, and thereby further learning.

We initialize the decoder weights with the first
four layers of GPT-2 (Radford et al., 2019). All
other weights, including of the encoder and pseudo
self-attention linear layers, are initialized ran-
domly. We then train with a supervised dataset

D0 = {(s(i), ρ̄(i), x̄(i), y(i))}
|D0|
i=1 of human plans

ρ̄(i) starting at start states s(i) and instructions

x̄(i), all with positive labels y(i) = +1. We use
limited data, just sufficient to effectively interact
with users for further learning. We estimate θ1
by minimizing a supervised loss:

LI(θ1,D0) =

−
1

|D0|

|D0|
∑

i=1

logP (x̄(i)|s(i), ρ̄(i); θ1) .
(2)

5.2 Learning from User Behavior

Learning from interacting with human users al-

ternates between generating instructions in inter-

action with users and training the model.

Interaction with Users In each round r, we first

deploy the model with parameters θr to interact

with human users, with our system as the leader

and the user as the follower. We do not update the

model during this interaction phase.

The game environment is randomly generated

for each interaction. Each game continues until it

concludes, either when the user leaves or the turns

are exhausted. A game often includes collecting

Figure 4: The binary questions displayed to the user at

the end of instruction execution.

multiple sets of cards, and generating multiple

instructions. Each instruction is generated for the

current state as the start state s1;
2 as both agents

move and change the status of cards, the environ-

ment state changes throughout the game. At state

s1, we generate the plan p̄ using a deterministic

planner that determines (a) which cards should be

selected or de-selected to make the next valid set,

and (b) the shortest paths the leader and follower

should take to visit all target cards. The actions

the planner assigns to the follower form the plan

p̄. The actions assigned to the leader are executed

by the leader agent deterministically during its

turn. The model is used to sample an instruction

x̄ ∼ P (· | s1, p̄; θr), which is displayed to the user.

The human user has no access to p̄, the set of target

cards, or the game state s1. They only observe the

instruction and what is ahead (Figure 2).

During their turn, the user executes x̄ to the

best of their ability, and indicates when done. If

the user determines that the instruction cannot be

followed, they can terminate the execution, which

is treated just like marking the instruction as com-

plete. The user execution ē is the entire sequence

of poses they take while following the instruction.

When the user concludes or terminates an in-

struction x̄, we show them a top-down view of the

entire environment with their execution path high-

lighted. They do not see the original system plan.

We ask the user two binary feedback questions

about the perceived correctness of their execution

and grammaticality (Figure 4).

We create a tuple (s1, p̄, x̄, ē, f) for each ex-

ecution ē, where s1 is the start state of the

environment, p̄ is the plan generated in that state,

x̄ ∼ P (· | s1, p̄; θr) is the sampled instruction, and

f is the set of responses to the feedback questions.

2For simplicity, we do not index the game time step.
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Once the user submits the answers to the feedback

questions, the next instruction is generated.

Dataset Construction We use all interactions

in round r to construct dataset Dr, which is made

of tuples (s1, ρ̄, x̄, y), where ρ̄ is a plan and y is a

binary label. Given a tuple (s1, p̄, x̄, ē, f), we use

three heuristics to add examples to Dr:

1. If any feedback answer in f is negative, the

instruction does not reflect the user’s execu-

tion or not well written (i.e., ungrammatical).

We add a negative example to Dr with the

system plan p̄: (s1, p̄, x̄,−1).

2. If both feedback answers are positive, the

user considers their execution ē accurate and

the instruction well formed. This does not

necessarily indicate the execution follows

the system plan, but that we can treat the ex-

ecution as a plan. We add a positive example

with the execution as the plan: (s1, ē, x̄,+1).

3. If both answers are positive and the execution

ē follows the plan p̄,3 the instruction com-

municates the plan well. We add a positive

example with the system plan: (s1, p̄, x̄,+1).

Overall, we add examples to Dr using both the

original system plan and the user execution. The

heuristics utilize the observational learning signal

as much as possible while avoiding examples not

beneficial for learning. For example, we do not

add negative examples using the user execution,

because these are less likely to be useful for learn-

ing. Although such executions can form negative

examples if the user answered negatively to the

correctness question, they tend to be relatively ar-

bitrary, and it is unlikely the model conditioned on

them will assign significant probability to the gen-

erated instruction, which is the behavior negative

examples come to suppress.

Parameter Estimation We estimate the model

parameters for the next round θr+1 using all avail-

able data D = ∪r
q=0Dq. We re-train our model,

starting with GPT-2 parameters (Section 5.1).4

3For instructions that target cards, we require getting

the card selection right, and ignore the follower position.

For instructions that require waiting (e.g., hold still), we

require the position to remain the same, but allow orientation

deviation.
4Pilot studies showed re-training to be more stable than

fine-tuning given new data, and we conduct the majority of

We formulate learning as an offline contex-

tual bandit problem, treating the sentence labels y

as rewards. Learning from the positive examples

in D forms a straightforward supervised learning

problem, albeit one where the data is generated

from system interaction. A key challenge is using

the negative examples. Treating them like super-

vised examples requires optimizing the probability

of their instructions to zero. Because limP (·)→ 0
logP (·) = −∞, this leads to an unbounded neg-

ative loss that quickly dominates the objective.

This in contrast to positive examples, for which the

loss is bounded by zero. This issue is not present

in existing work using offline contextual bandits

to improve machine translation (Lawrence et al.,

2017; Kreutzer et al., 2018b), where rewards are

always non-negative.

We address this issue by adding an inverse
propensity score (IPS; Horvitz and Thompson,
1952; Wang et al., 2017) coefficient to negative
examples in a policy gradient objective. The gra-
dient for estimating parameters θr+1 is:

∇L(θr+1,D) =

1

D

|D|
∑

i=1

ℓ
(i)
θr+1

y(i)∇ logP (x̄(i) | s(i), ρ̄(i); θr+1) ,
(3)

where, given an example (s(i), ρ̄(i), x̄(i), y(i))

acquired in round q with parameters θq, ℓ
(i)
θ is:

ℓ
(i)
θ =

{

1 y = +1
P (x̄(i)|s(i),p̄(i);θ)
P (x̄(i)|s(i),p̄(i);θq)

y = −1
. (4)

As the probability of a negative example (i.e.,

y = −1) decreases, so does its impact on the loss.

While IPS is commonly used in bandit learning to

de-bias the loss estimate (Lawrence et al., 2017),

our motivation is different, and we do not add it to

positive examples. Because of the large combina-

torial space, sentence probabilities are generally

small. The IPS coefficient of a positive example

can become very large as its probability increases

during learning. Instead, we use a supervised-like

term, which is known to behave well.5

our experiments with this method. However, we also observe

that our process is overall robust to the initially observed

instabilities of fine-tuning (Section 7).
5An alternative, and important direction for future study

is to add IPS to all examples, but clip it at a certain maximal

value, similar to clipping in PPO (Schulman et al., 2017).
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6 Experimental Setup

Initialization Data We create the supervised

initialization dataset D0 by sampling 360 interac-

tions from the original CEREALBAR data (Suhr et al.,

2019), which was collected in a wizard-of-oz

(WOZ; Kelley, 1984) setup via human-human

games. We select this number through pilot stud-

ies and qualitative analysis to minimize the amount

of initialization data, while still maintaining suf-

ficient model performance for early interactions

to facilitate learning. Our goal is to use as little

data as possible to study the target scenario where

investment in supervised data is minimal, and

most learning is left to interaction with users. This

data includes 7,147 examples. We use the human

demonstrations in the original data as plans.

Evaluation Similar to Zhao et al. (2021), we

observe that automated metrics, such as BLEU

(Papineni et al., 2002) or BERTScore (Zhang et al.,

2020), computed over a static held-out validation

set are unreliable for evaluating instruction gen-

eration. Instead, we focus on task-completion

measures via human execution. We measure task

completion by considering the user execution as

completing the intended task if the user visits all

card locations included in the system plan; or, if

the plan includes no target cards, the user stays

in the starting position. We quantify the similarity

of the user execution to the path in the system

plan by computing earth mover’s distance (EMD;

Rubner et al., 1998)6 between the two (Blukis

et al., 2019). We also track the user answers to

the feedback questions (Figure 4). We average

each measure over the number of instructions in

each round.

Language Analysis We quantitatively analyze

how generated instructions change throughout

training. For each round, we report mean instruc-

tion length, vocabulary size, and three measures

of syntactic complexity using dependency trees

(Xu and Reitter, 2016): (a) maximum depth: the

longest path from root to a leaf; (b) maximum

width: the maximum out-degree of any word in

the tree; and (c) average branching factor: the av-

erage out-degree of non-leaf words. We normalize

the three measures by instruction length. We qual-

itatively analyze errors in generated instructions,

6We use POT (Flamary et al., 2021) to compute EMD.

by comparatively analyzing 100 randomly sam-

pled examples where the user failed to complete

the intended task from the first and final rounds.

Interaction Setup Except initialization, learn-

ing and evaluation are done through live inter-

action with users on Amazon MTurk. All workers

passed a tutorial and a qualification quiz. We pay

$0.15 per interaction, with a bonus of $0.10 per

instruction to workers who follow our guidelines.

Implementation Details Similar to perfor-

mance evaluation, automated measures are un-

reliable for model selection. Instead, for both

initialization and in each round, we train for

N = 400 epochs, and take the final model. We

find N via qualitative analysis of the initial model.

We use an ensemble of four models. We uniformly

sample one of the four models to sample each in-

struction, and take its probability to use in IPS

for negative examples. We use a sampling tem-

perature τ = 0.5, and AdamW (Loshchilov and

Hutter, 2018) for learning.

7 Results and Analysis

We conduct a long-term experiment with 14

rounds using our approach, and separate seven-

round experiments to compare system variants. In

both experiments, we collect roughly 100 interac-

tions for each system per round. In the seven-round

experiments, we deploy methods simultaneously

to ensure that our observations are not sensitive to

changes in user behavior, for example, because of

adaptation and increased expertise. We do not in-

form workers about the model they are interacting

with. We train each system only on data collected

by the same method in previous rounds.

7.1 Long-term Study

We experiment with our approach for 14 rounds.

We collect a total of 27,031 instructions from

1,445 interactions, with 103.2 interactions per

round on average. The total cost is $2,895.

Figure 5 shows both performance measures and

language trends. For task measures and user feed-

back, we also break down performance according

to the number of target cards in the system plan

to evaluate performance changes for plans which

may be more difficult to describe (e.g., because

they require specifying more cards).7

70-card plans target no cards (e.g., hold still).
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Figure 5: The system’s lifetime statistics from the long-term experiment (14 rounds). The system improves on

task completion (↑), EMD (↓), positive response rate for the two feedback questions (↑), and game score (↑).

Section 7.1 discusses these results in detail.

Our learning method significantly improves the

system performance across all measures. Task

completion rate improves from 44.7% at round

one to 79.3% at round 14, while EMD decreases

from 1.73 to 0.88, showing increasing similar-

ity between the execution and the plan. The user

perception of the system also improves: The pos-

itive response rate for the perceived correctness

question improves from 47.9% to 78.6%, and for

grammaticality from 88.9% to 99.2%. The over-

all collaborative system performance improves

as well; the game score increases from 4.5 to

10.4. The number of positive examples per round

gradually increases, as the system improves and

the interactions become longer. In contrast, the

number of negative examples decreases over time.

We observe that the initial model struggles to

describe plans containing more target cards, with

a particularly low task completion rate of 1.6% for

3-card plans in the first round. This is potentially

because only 0.7% of human follower executions

in D0 demonstrate picking up three cards, while

the planner generates 3-card plans 7.9% of the

time. While initial improvement is slow for 3-card

instructions, it picks up around round eight, and

reaches 32.9% task completion rate.

Language Analysis We observe a consistent

trend of decreasing sentence length and vo-

cabulary size. Overall, these trends accompany

reduction in over generation of erroneous phrases

that are not grounded well in the environment.

We also qualitatively observe that the systems

gradually generates slightly more underspecified

instructions, for example by dropping mentions of

landmarks crucial for navigating to a target card.

This may explain the slight decrease in 1-card

task completion rate in later rounds (Figure 5), be-

cause the planner usually has the follower travel

further for 1-card instructions, which requires re-

lying more on landmarks. A potential explanation

to the decrease in vocabulary size is the ever in-

creasing presence of system-generated sentences

in training, which reinforces the system’s word

choices. Alternatively, our learning signal may

not account for the need for more descriptive

language. For example, humans may compensate

with exploration for omitted descriptions, which is
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Error Type r = 1 r = 14 Example

Incorrect, missing, or extra cards 75 39 turn left and go to the yellow star triangles

Irrelevant landmarks 13 1 Head toward the windmill house. grab 2 red and triangle

Incorrect direction 30 35 grab the black heart to your left in front of you.

Incorrect actions or conditions 28 14 After the two red triangles, get the 3 red triangles.

Underspecification 8 26 turn right and go straight toward red trees collect two orange

triangle.

Implausible instructions 11 1 Turn left and get the two pink hearts

and the two pink hearts near the pink hearts.

Proportion of erroneous instructions 68.5% 26.8%

Table 1: The types of errors observed in erroneous instructions generated during the first (r = 1) and

final (r = 14) rounds of deployment. We show error counts from the 100 randomly-sampled erroneous

instructions. Examples illustrate error categories; red strikethrough shows erroneous segments, and blue

fragments show possible corrections. Instructions that fit into multiple categories are double counted.

not distinguished by how we convert the observed

behavior to a learning signal. These trends outline

important directions for future work.

We observe a small increase in syntactic com-

plexity over the system’s lifetime with regard

to the branching factor, which shows significant

increase (p < 0.00001).8 We also see a slight

decrease in maximum tree depth (p < 0.0001),

and no significant change in max width.

Error Analysis We analyze errors in the gener-

ated instructions at the first and final rounds. For

each round, we randomly sample 100 instructions

that the user did not execute according to the plan

or answered negatively to a feedback question.

Table 1 shows error types and example instruc-

tions. Overall, the frequency of erroneous instruc-

tions decreases from 68.5% of instructions in the

first round, to 26.8% in the final round. From the

first to final round, we observe noticeable decrease

in errors related to grounding of cards and land-

marks. The overall frequency of errors related to

incorrect directions and incorrect actions or condi-

tions also decreases, and implausible instructions

diminish close to zero percent. However, there is

an overall increase in underspecified instructions.

This aligns with the decrease in the vocabulary

size and landmark use we discuss above.

Confounding Factors We identify two mecha-

nisms unrelated to our approach that could explain

the observed performance changes. We deploy

two additional systems alongside our system dur-

ing the final round. For each interaction, one of

8We use t-test (α = 0.01) comparing rounds 1 and 14.

Model r Overall 0-card7 1-card 2-card 3-card

θ1 1 44.8 84.1 64.9 9.6 1.7

θ1 14 45.1 84.5 62.1 9.3 0.8

θ
′
1 14 49.6 76.6 63.8 24.8 7.4

θ14 14 79.4 99.6 81.9 72.1 33.0

Table 2: The effect of confounding factors on

task completion rate (%). The initial model θ1 is

evaluated both in the first (r = 1) and final (r =
14) rounds, showing no effect of user adaptation.

In the final round, we also evaluate θ′1, which is

trained on the same data as θ1 but using more

gradient updates. We also show results for the

final-round model θ14.

the three systems is randomly chosen. We do not

inform the workers of the identity of the model

for each interaction. First, we deploy the system

following initialization during the final round to

study if performance might be explained by user

improvement over time. Second, because we train

with a fixed number of epochs, later rounds have

many more gradient updates, which may allow

for better parameter estimation, even with the

same amount of data. We train a system on the

initialization dataset D0 for the same number of

gradient updates as when training the final full

system.

Table 2 shows that these confounding factors do

not explain the observed gains. We find minimal

differences between evaluating the initial model

(θ1) at the beginning and end of deployment,

showing no significant effect from user improve-

ment. Training the initial system longer (θ′1) shows

a slight overall improvement, but negligent com-

pared to final system (θ14).
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Figure 6: Comparison of system variants.

7.2 System Variants Study

We vary different design decisions, and experi-

ment for seven interaction rounds.9 We experiment

with four system variants: (a) FULL: our full ap-

proach described in Section 5; (b) POS-ONLY: use

only examples with positive labels y = +1; (c)

TC-ONLY: ignore the feedback questions, instead

if the user completes the task according to our

task success measure we add positive examples

with both the system plan and user execution,

otherwise we add a negative example using the

system plan; (d) NO-ENSEMBLE: train and deploy

a single model each round, starting from an ini-

tial model randomly sampled from these we use

for FULL; and (e) FINE-TUNING: train model pa-

rameters θr+1 on Dr for N epochs, starting from

θr, avoiding overfitting with rehearsal (Rebuffi et

al., 2017; Hawkins et al., 2020a). In rehearsal, in

each batch, half the examples are sampled ran-

domly from the previous datasets D0,. . . ,Dr−1.

Except the variations specified, the systems are

identical. We do not deploy a system ablating IPS,

because we observe that training with negative

9This study is similar to ablation analysis, but aims to

study different learning design decisions. Full-fledged repet-

itive ablations to identify the ideal system design are parti-

cularly challenging in this work, both because of experiment

costs and the complex dynamics of interacting with users.

examples without IPS results in a largely unus-

able system.

We collect a total of 63,189 instructions across

all systems, with 3173 interactions. Each round

includes 453.2 interactions on average. The total

cost is $7,165. All systems are used concurrently

in each round, including re-deploying FULL again

starting from initialization. Figure 6 shows the

results. Despite some differences between the

system variants, our method is largely robust to

variations in learning design decisions.

All systems achieve comparable improvements

in task completion rate, except for OS-ONLY, which

slightly underperforms. We observe faster de-

crease in the vocabulary size and instruction

length for OS-ONLY, which does not use nega-

tive examples. This is possibly because the loss

from negative examples encourages a more uni-

form generation distribution, potentially slowing

down the overall trends of making the generation

distribution more peaky. TC-ONLY, which ignores

the answers to user feedback questions when con-

structing the dataset, shows fewer positive re-

sponses to the perceived correctness feedback,

although task completion remains comparable.
We observe that using a single (NO-ENSEMBLE)

model rather than an ensemble leads to limited dif-

ference in overall performance. However, because

of the challenge of identifying a good automated

metric to stop training, the performance of models

following training varies significantly. This can

lead to deploying a bad model, which provides

users with a poor experience. Using an ensemble

of models incurs higher computational cost, but

makes such a worst-case scenario less likely. For

example, in our long-term experiment, the maxi-

mum task completion performance gap we observe

between the best and worst models in each round

is 13%.
Finally, we observe that fine-tuning (FINE-

TUNING) works as well as our re-training approach

(FULL), potentially with a more stable vocabulary

size. This is in contrast to our initial experiments,

which showed it is harder to get consistent im-

provements through fine-tuning. While the fine-

tuning process is harder to design because it

requires to choose the fine-tuning procedure (e.g.,

rehearsal (Robins, 1995) or KL regularization (Yu

et al., 2013)) and carefully optimize additional

hyperparameters, it can work just as well as re-

training. Because fine-tuning is faster to train be-

tween rounds, it may be preferable in future work.
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Figure 7: Comparison to supervised learning. The con-

tinual learning system is competitive in task completion

rates with systems trained on equivalent amount of

supervised data.

7.3 Comparison to Supervised Learning

We also separately study the learning trends of

our method compared to training on equivalent

amount of supervised WOZ data. Supervised data

is fundamentally different from our bandit data,

for two main reasons: (a) it is significantly costlier

because it requires a dedicated instruction-writing

effort, whereas our data arises naturally from the

system interaction with users during deployment;

and (b) it provides per-token labels, whereas our

data includes only utterance-level binary labels.

For the supervised system, after each round, we

expand the dataset by randomly drawing an equiv-

alent amount of additional data from the complete

dataset of Suhr et al. (2019), which includes 19,112

examples from 960 interactions.10 This dataset

allows for seven rounds. We concurrently deploy

a no-ensemble variant of our continual learning

system. We collect a total of 22,216 instructions

across both systems, with 1,166 interactions. This

experiment’s total cost is $2,230.

Figure 7 shows our continual learning system

consistently outperforms this supervised alterna-

tive in overall task completion rate. There are

two potential explanations to this gap. First, the

data our approach uses is made of examples the

system is likely to generate, potentially provid-

ing a more effective learning signal. Second,

10Interactions with the supervised system are not used for

learning, but only for evaluation.

there is a difference between the plans of hu-

man leaders and our planner. Our training is better

suited to adapt to how the complete system is

designed, whereas training on human-annotated

data is bound to suffer from a distribution shift.

However, the continual learning system did not

consistently outperform the supervised alternative

on 2-card and 3-card instructions, especially at

early rounds. This is likely because the continual

learning system generates few positive examples

for more complex system plans (i.e., 2-card or

3-card) at earlier rounds. At later rounds, as the

system improves, we observe more positive ex-

amples for such plans, creating an accelerating

effect of improvement, which is best observed in

our long-term experiment (Figure 5).

8 Related Work

Learning for instruction generation has been stud-

ied using supervised methods, with examples of

task specifications (i.e., contexts) paired with

human-written instructions (e.g., Daniele et al.,

2016; Narayan-Chen et al., 2019), including to

improve instruction following (Fried et al., 2018;

Tan et al., 2019). We focus on continually learning

by observing users executing generated instruc-

tions. This reduces annotation needs, and delegates

much of the learning to interaction with users dur-

ing system deployment. Language generation in

context was also studied in scenarios that are not

explicitly instructional, but aim to elicit specific

behavior, such as negotiation games (e.g., Lewis

et al., 2017) and referring expression generation

(e.g., Dale and Reiter, 1995).

Gatt and Krahmer (2017) survey existing work

on language generation, including using rule-

based methods. Similar to our approach, some

rule-based methods were evaluated with human

followers in situated environments using task suc-

cess (e.g., Koller et al., 2010; Janarthanam and

Lemon, 2011). Such methods are accurate and re-

liable, but are limited to pre-specified rules and

remain static following development. Our focus is

on studying the potential for learning by observing

human behavior. The two approaches can be com-

bined, for example by using rule-based methods

to generate initialization data for our approach.

Bandit learning has been studied with simulated

user ratings for machine translation (Nguyen

et al., 2017; Lawrence et al., 2017; Kreutzer

et al., 2017) and semantic parsing (Lawrence and
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Riezler, 2018). We learn from real users, similar

to recent studies in machine translation (Kreutzer

et al., 2018a,b). In general, such learning assumes

users can judge the system output, for exam-

ple via proficiency in the language they wish to

translate to. Our learning signal does not require

such expertise, and is available naturally from

the interaction.

Explicit human feedback has also been in-

corporated into reinforcement learning methods

(Knox and Stone, 2009; Pilarski et al., 2011;

Daniel et al., 2015; Mathewson and Pilarski, 2016;

Warnell et al., 2018; MacGlashan et al., 2017;

Arumugam et al., 2019), including in the context

of dialogue system learning (Liu et al., 2018).

Jaques et al. (2020) study forming a reward from

implicit feedback for non-task-oriented dialogue

language generation, by training multiple mod-

els to detect linguistic signals, such as sentiment

and lexical overlap, that correlate with explicit

user feedback. Learning from users has also been

studied by asking users to rank system outputs

(e.g., Wilson et al., 2012; Christiano et al., 2017),

including for instruction following (Wang et al.,

2016) and summarization (Stiennon et al., 2020).

Unlike our approach, such ranking requires know-

ing the true system intent, and is not part of the

system’s normal operation (i.e., instructing users

in our case).

Incorporating human users into learning is re-

lated to active learning (Settles, 2009), where a

policy selects examples for an oracle to label

during learning. Unlike common active learning

scenarios we do not select examples from a static

underlying distribution (i.e., a training set) for an-

notation, but generate examples with the learned

model. This is similar to query synthesis active

learning (Angluin, 1988), where examples are gen-

erated for annotation, rather than being selected

from a set of unannotated examples. A more signi-

ficant difference is that active learning methods

solicit model output annotations by presenting an

oracle with model inputs. In contrast, our approach

exposes users to model outputs (i.e., generated in-

structions). It does not solicit written instructions,

as would be expected if requesting labels. We also

do not show model inputs (i.e., plans) to users.

Finally, our model interacts with users during sys-

tem operation, while completing its task. It does

not require oracle annotators.

Language learning from behavioral signals has

been studied in the cognitive science and psychol-

ogy literature.11 Krauss and Weinheimer (1966)

study two types of feedback in human studies:

concurrent linguistic feedback and behavioral in-

tent confirmation, and show how both influence

linguistic adaptation in an interaction over time.

Studies of reference games reproduced the effect

of confirmation feedback, showing that successful

intent communication reinforces convention for-

mation in the form of shorter references (Clark and

Wilkes-Gibbs, 1986; Hawkins et al., 2020b). Our

learning signal is a type of confirmation feedback.

However, our interaction procures and makes use

of more complex learning signals than a simple

binary intent communication success, by using

the path the listener takes in response to the

generated instruction as an alternative intent when

constructing data for learning (Section 5.2).12

9 Discussion

We propose a methodology to continually improve

an instruction generation model by observing hu-

man users executing natural language instructions,

and demonstrate its efficacy within a collaborative

instruction following scenario. Our study shows

that observation of user behavior is an infor-

mative signal for generating language to relay

instructional intent. To the best of our knowledge,

this type of learning signal has not been studied

before. This learning setting facilitates contin-

ual learning through interaction with users, and

is particularly compelling for interactions with

collaborative agents, including robots and soft-

ware agents. Such agents are likely to operate in

constantly changing environments (e.g., robots in

homes), where continual learning is necessary to

adjust to changes. Our continual learning approach

also provides systems the flexibility to co-adapt to

human users, who are likely to change preferences

and behaviors in response to system behavior.

Our experiments demonstrate the learning pro-

cess is robust to various learning and process

design choices. However, they also show it is ac-

companied by a reduction of language complexity,

including reducing the effective vocabulary and

sentence length. While much of the decrease in the

effective vocabulary size throughout the system

11This review is not comprehensive, and only aims

to highlight the relation to problems studied in related

disciplines.
12In more recent reference games (Hawkins et al., 2020b),

unlike in Krauss and Weinheimer (1966), the choice of a bad

referent can be seen as related to our use of listener execution.
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lifetime relates to generating fewer erroneous

phrases, it also reduces the language diversity

and descriptiveness. Our experiments show that

this trend can be slowed down by using nega-

tive examples, and appears to be less pronounced

when using fine-tuning. The combination of this

decrease with the preference for shorter instruc-

tions makes it difficult for the system to describe

longer, complex trajectories. Qualitatively, we

observe this open problem is responsible for a

significant portion of the remaining errors. An im-

portant direction for future work is experimenting

with directly encouraging more diverse language.

This can be combined with approaches that al-

low for introducing new word types, which is

unlikely in our approach, even though it uses

sub-word tokenization. A potential direction in

this vein is combining active learning to solicit

human-written oracle instructions for plans the

system fails to communicate.

Our work highlights several other directions

for future work. There is a strong need for a

reliable automated metric to evaluate instruction

generation. In absence of such a metric, we use a

simple, but likely sub-optimal stopping criteria for

learning. Beyond the learning signal we explored

in our experiments, there are additional potential

cues available during interaction. For example, us-

ing continuous-valued similarity between system

intent and user execution, modeling follower qual-

ity to discount the learning signal from interactions

with bad followers, or weighing the feedback

questions differently for more nuanced reward.

Finally, the decrease in utterance length and

vocabulary size mirrors similar trends observed

in studies of human communication (Clark and

Wilkes-Gibbs, 1986; Hawkins et al., 2020b). This

illustrates the potential of continual learning sys-

tems to reflect the dynamics of language change

human participants expect in natural language in-

teractions. Observations of human learning also

indicate the potential of integrating our approach

with conversational self-repair (Clark, 2020) and

partner reformulation (Clark, 2018), both impor-

tant components of child language acquisition that

likely provide better credit assignment for learning

compared to our binary bandit signal.
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