
Iterative Paraphrastic Augmentation with Discriminative Span Alignment

Ryan Culkin J. Edward Hu Elias Stengel-Eskin

Guanghui Qin Benjamin Van Durme

Johns Hopkins University

{rculkin, edward.hu, elias, gqin, vandurme}@jhu.edu

Abstract

We introduce a novel paraphrastic augmenta-

tion strategy based on sentence-level lexically

constrained paraphrasing and discriminative

span alignment. Our approach allows for the

large-scale expansion of existing datasets or

the rapid creation of new datasets using a small,

manually produced seed corpus. We demon-

strate our approach with experiments on the

Berkeley FrameNet Project, a large-scale lan-

guage understanding effort spanning more than

two decades of human labor. With four days

of training data collection for a span alignment

model and one day of parallel compute, we

automatically generate and release to the com-

munity 495,300 unique (Frame,Trigger)
pairs in diverse sentential contexts, a roughly

50-fold expansion atop FrameNet v1.7. The

resulting dataset is intrinsically and extrin-

sically evaluated in detail, showing positive

results on a downstream task.

1 Introduction

Data augmentation is the process of automatically

increasing the size or diversity of a dataset with

the goal of improving performance on a task

of interest. It has been applied in many areas

of machine learning including computer vision

(Shorten and Khoshgoftaar, 2019) and speech

recognition (Ragni et al., 2014; Ko et al., 2015).

With text-based datasets in particular, para-

phrastic augmentation, a technique to automat-

ically expand datasets in their overall size and

lexico-syntactic diversity via the use of a para-

phrase model, may be applied. In general, a

paraphrase model outputs a sentence S
′ given

an input sentence S such that meaning(S) ≈
meaning(S′) and S 6= S

′. Prior work has

demonstrated that paraphrastically augmented

datasets are beneficial when applied to a vari-

ety of sentence-level tasks including machine

translation, natural language inference, and intent

classification (Ribeiro et al., 2018; Hu et al.,

2019a; Kumar et al., 2019).
Often in paraphrastic augmentation an input

sentence is rewritten one or more times, with the

assumption the transformed sentence(s) preserve

the original label. For example, in sentiment

analysis, data consists of (Sentencei,Labeli)
pairs, where each Labeli is in {0, 1}, indicat-

ing negative or positive sentiment. To augment

this kind of dataset, we can paraphrase each

Sentencei with a model f and thereby produce

an additional (f(Sentencei),Labeli) pair,

doubling the size of the dataset.
In many natural language understanding tasks,

however, data contains span labels of the form:

(Sentencei, {(starti,1,endi,1,typei,1), ...}),
where the latter element is a set of tuples indicating

each label’s location (as a contiguous subsequence

of the input tokens) and type. In this paper, we

develop a data augmentation strategy for span

labeling problems where we are concerned with

balancing the joint objectives of finding different

ways to express meaning at the level of a word or

phrase while ensuring the paraphrase is sensitive

to the context of the surrounding sentence.
Although a paraphrase is expected to have the

same meaning as the sentence from which it was

generated, words and phrases are usually added,

removed, or reordered. Thus for a given sentence

annotated with span labels, while we expect the

same label types to still apply to a paraphrase, the

locations (start and end) are expected to shift.
To address this issue, we introduce a new model

for span-based discriminative alignment. Given

an input sentence S, a paraphrase f(S), and a span

of tokens in S representing a label location, the

alignment model finds a semantically equivalent

span in f(S). We present the architectural details

of this model, a dataset for span alignment, and

corresponding results in §4.

A second problem is that most paraphrase mod-

els offer no control over specific words or phrases
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Figure 1: Framework for iterative paraphrastic augmentation illustrated on an actual system output. The original,

manually annotated sentence contains a tag over the word ‘‘corroborate’’. In Iteration 1, the sentence is paraphrased

using a lexically constrained decoder with negative constraints on ‘‘corroborate’’ and all associated inflectional

forms, guaranteeing that it will not appear in the paraphrase. Next, a span alignment model is used to obtain a

link between ‘‘corroborate’’ in the original sentence and ‘‘confirm’’ in the paraphrase. All inflectional forms of

‘‘confirm’’ are then unioned with the prior set of negative constraints and the process repeats for a predetermined

number of iterations.

to be included in or excluded from the final output.

As text-based data augmentation typically aims

to increase lexical diversity, it is useful to force

span label text to be rewritten in the paraphrase as

a synonymous or semantically similar phrase via

lexically constrained decoding (§3).

In §5 we describe an augmentation framework

that utilizes lexically constrained paraphrasing

and alignment together, iteratively, to expand

datasets for span labeling problems. An illustrative

diagram is given in Figure 1.

Finally, we demonstrate the application of this

framework to FrameNet in §6, resulting in a new

dataset with 495,300 unique (Frame,Trigger)
pairs in diverse sentential contexts. The intrinsic

quality of the dataset is evaluated manually and

its utility on external tasks is demonstrated with

positive results on the task of Frame ID.

2 Background

Monolingual Paraphrasing Coinciding with

the improvement of machine translation, sev-

eral works have explored sentential paraphrasing

through back-translation (Mallinson et al., 2017;

Wieting and Gimpel, 2018). One such model

(Wieting and Gimpel, 2018) was used for sentence

canonicalization, although its further usefulness

was hindered by lack of control over the para-

phrasing process. Hu et al. (2019b) introduced

constrained decoding (Post and Vilar, 2018) to

sentential paraphrasing, enabling lexical control

over the paraphrases. Wang et al. (2018) incorpo-

rated semantic frames and roles into Transformers

to produce better paraphrases. Our work can be

seen as taking their work in the opposite direction.

While they used semantic information to inform

paraphrases, we leverage high-quality paraphrases

to generate new lexical units in semantic frames.

Automatic Lexicon Expansion As an alterna-

tive to manual labor, past work has sought to auto-

matically build on existing semantic resources.

Snow et al. (2006) used hypernym predictions

and coordinate term classifiers to add 10,000 new

WordNet entries with high precision. FrameNet+

(Pavlick et al., 2015) tripled the size of FrameNet

by substituting words from PPDB (Ganitkevitch

et al., 2013), a collection of primarily word-level

paraphrases obtained via bilingual pivoting. PPDB

paraphrases lack sentential context; for example,

‘‘river bank’’, ‘‘bank account’’, and ‘‘data bank’’

are listed as paraphrases of ‘‘bank’’, in addition

to the broader and incorrectly cased ‘‘organi-

zations’’ and less related still, ‘‘administrators’’,1

without any means of determining when one might

not be a valid substitute.2 While the FrameNet+

expansion itself involved little cost, the lexicalized

nature of their procedure failed to capture word

senses in context and resulted in many false posi-

tives, requiring costly manual evaluation of every

sentence. In contrast, we seek to mitigate false pos-

itives and enhance lexical and syntactic diversity

by using a context-aware paraphrase model.

Paraphrasing for Structured Prediction Struc-

tured prediction finds a mapping between a surface

form and some aspect of its underlying structure.

1http://paraphrase.org/#/search?q=bank

&filter=%5BNN%5D,%5BNNP%5D,%5BNP%5D&lang

=en.
2Even if we could determine contextually synonymous

words for a (sentence, word) pair, they may not be

grammatically or semantically valid when substituted

back into the sentence, further motivating sentence-level

paraphrasing.

495

https://paraphrase.org/#/search?q=bank&filter=%5BNN%5D,%5BNNP%5D,%5BNP%5D&lang=en
http://paraphrase.org/#/search?q=bank&filter=%5BNN%5D,%5BNNP%5D,%5BNP%5D&lang=en
http://paraphrase.org/#/search?q=bank&filter=%5BNN%5D,%5BNNP%5D,%5BNP%5D&lang=en


that express the same meaning (i.e., paraphrases)

which makes learning this mapping nontrivial.

Berant and Liang (2014) leveraged unstructured

Q&A data by learning a paraphrasing model that

maps a new query to existing ones with known

structures. More relevant to our work, Wang et al.

(2015) built a semantic parser from a small

seed lexicon by generating canonical utterances

from a domain-general grammar and then man-

ually collecting paraphrases of these utterances

through crowd-sourcing. A semantic parser is

then trained on the paraphrases to produce the

underlying structures that generated them. Our

work is distinct in that we automatically expand

our seed lexicon, collecting human judgments on

a small subset of outputs in order to assess qual-

ity. Moreover, we introduce a general framework

for augmenting data for span labeling, whereas

Wang et al. (2015) focused on parsing. Choe and

McClosky (2015) improved parsing performance

by jointly parsing a sentence and its paraphrases.

In addition, they constructed the paraphrases

manually and discouraged syntactic diversity, as

it lowered parsing performance.

Monolingual Span Alignment Yao et al.

(2013a) introduced a discriminatively trained

CRF model for monolingual word alignment,

expanded to span alignment by Yao et al. (2013b).

Ouyang and McKeown (2019) introduced a

pointer-network-based phrase-level aligner for

paraphrase alignment that obtains high recall on

several tasks. Syntactic chunking is used to build

a candidate set of phrases in both source and

paraphrase sequences, which the model is then

tasked with aligning. Their model is applied to an

open alignment task, where more than one phrase

in the source and paraphrase should be aligned,

differing from the setting described in §4.

While we have chosen to make use of span-

pooled BERT representations in our alignment

model, a natural direction for future work would

be to use span-based representations such as

SpanBERT (Joshi et al., 2020).

The Berkeley FrameNet Project FrameNet

(Baker et al., 2007) is the application of frame-

semantic theory (Fillmore, 1982) to real-world

data. Each FrameNet frame contains a descrip-

tion of a concept, a list of entities participating in

the frame (frame elements), and a list of lexical

units, which are the semantically similar words

Figure 2: An example annotation from FrameNet. The

trigger, ‘‘sold’’, an instance of thesell.v lexical unit,

evokes the Commerce sell frame. The participating

entities, or frame elements, are represented as colored

text.

that evoke, or trigger, the given concept. Figure 2

illustrates a sentence labeled under the FrameNet

protocol. FrameNet v1.7 contains roughly 1,200

frames, 8,500 annotated lexical units, and 200,000

annotations over English text taken from newspa-

pers, journals, popular fiction, and other sources.

FrameNet has been used in tasks ranging from

question-answering (Shen and Lapata, 2007)

and information extraction (Ruppenhofer and

Rehbein, 2012) to semantic role labeling (Gildea

and Jurafsky, 2002) and recognizing textual en-

tailment (Burchardt and Frank, 2006), in addition

to finding utility as a lexicographic compendium.

As a manually created resource, FrameNet is

limited by the size of its lexical inventory and

number of annotations (Shen and Lapata, 2007;

Pavlick et al., 2015).

3 Lexically Constrained Paraphrasing

Sentential paraphrasing is a sequence generation

problem where the goal is to find an output se-

quence conveying similar semantics to the input

sequence while also ensuring that the two se-

quences are lexically or syntactically distinct. Re-

cent prior work has approached this problem with

sequence-to-sequence neural networks (Wieting

and Gimpel, 2018; Hu et al., 2019a), where

an encoder embeds the input sequence into a

fixed-dimensional space and a decoder produces

a sequence auto-regressively. Often, the decoder

uses beam search to explore the output space more

efficiently.

Lexically constrained decoding allows one to

dynamically include or exclude token sequences

from the output via user-supplied positive or neg-

ative constraints. When combined with paraphras-

ing, it can boost external NLP task performance

via data augmentation (Hu et al., 2019a). Our
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work uses negative constraints, which exclude

certain token sequences from the output by set-

ting the likelihood of the last token in the nega-

tive constraint phrase to zero when all preceding

tokens in the phrase have been generated (Hu

et al., 2019a).

In our experiments, we follow the model archi-

tecture3 described by Hu et al. (2019a) with minor

changes: 1) we use SentencePiece (Kudo and

Richardson, 2018) unigrams instead of tokeniza-

tion, following Hu et al. (2019c); 2) we do not

use source factors, as SentencePiece unigrams

are case-sensitive. These changes allow us to

rewrite raw text without tokenization. The model

is trained to convergence on a corpus (Hu et al.,

2019c) with rich lexical and syntactic diversity,

as measured by human judgment and parse-tree

edit-distance, respectively.

4 Alignment Models

4.1 BERT-based Span Alignment Model

We present a model based on BERT (Devlin et al.,

2018) to align spans of text between paraphrastic

sentence pairs. The model is trained and evaluated

on a new dataset4 released alongside this paper,

consisting of 36,417 labeled sentence pairs.

Architecture Our model takes as input two

tokenized English-language sentences S (source,

with n tokens) and S
′ (reference, with m tokens),

whereS′ is a paraphrase ofS. The model also takes

as input a span s inS: a contiguous subsequence of

tokens with length between 1 and n, initially rep-

resented as a tuple of (start,end) offsets into

the source-side token sequence. Given this input

the model predicts a span ŝ ∈ {(i, j)|1 ≤ i ≤
j ≤ m}, representing the best alignment between

s and the O(n2) possible candidate spans5 in S
′.

In the forward pass, we embed S and S
′ using

a pretrained 12-layer BERT-Base model with

frozen parameters, obtaining a hidden vector

ti ∈ R

768 for each of the (m + n + 3) input

tokens. S and S
′ are embedded at the same time,

that is, as [CLS] S [SEP] S
′ [SEP], follow-

ing the Microsoft Research Paraphrase Corpus

3Transformer with 6-layer encoder, 4-layer decoder, 8

heads, 512-d embeddings, and feed-forward size of 2048.
4http://nlp.jhu.edu/parabank.
5The model only explicitly scores the O(n) reference

spans whose length is within k of the source-side span.

Remaining spans are implicitly assigned zero probability.

(Dolan and Brockett, 2005) paraphrase classifi-

cation experiments of Devlin et al. (2018).

Next, we obtain a fixed-size representation

S ∈ R

768 of the source-side span by mean-

pooling the corresponding hidden states. In the

same way, we compute span representations Ci
for each of the O(n) reference-side candidate

answer spans whose length6 is within k of the

length of the source-side span s. For each span

pair representation (S, Ci) we create an aggregate

Vi ∈ R
1540 by concatenating three vectors:

• Element-wise difference (Df): S − Ci

• Element-wise maxima (Mx): max(S, Ci)

• Positional cues (Cue): start index and length

per span7

We expect that the element-wise difference of

the two span representations is close to the zero

vector when the spans are close in meaning; a use-

ful signal for the model. Concatenating element-

wise maxima to the representation was beneficial

empirically. Since word spans in the source likely

start in a similar position and are of a similar length

as compared to corresponding word spans in the

reference, positional cues provide useful informa-

tion. Finally, the aggregate vector Vi is fed into a

simple feedforward neural network f , consisting

of one layer with 770 hidden units, PReLU acti-

vations, batchnorm, and a sigmoid output layer.

We use binary cross entropy loss with soft

labels: Rather than labeling each Ci candidate

span as 1 or 0 depending on whether it is the gold-

standard span, we assign labels according to the

function 2−d(S,Ci), where d measures the absolute

difference of the start and end offsets between two

spans: d(a, b) = |a1 − b1|+ |a2 − b2|. In this way,

the gold span is given a label of 1, candidate spans

that are close to the gold-standard span are given

partial credit, and partial credit exponentially ap-

proaches 0 as the distance between the candi-

date span and gold-standard span increases. This

labeling strategy has two motivations. First, since

only one of the O(n) candidates is correct, there

are many more negative examples than positive

6In our experiments we used k = 5; this was the lowest

value that guaranteed the gold-standard reference span would

be considered as a possible candidate 100% of the time in the

training set.
7This vector contains four elements: the start index and

length corresponding to the S representation, and the start

index and length corresponding to the Ci representation.
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Figure 3: Span alignment inference. A BERT-based

representation of the source-side span ‘‘corroborate’’

is passed to a neural network f, scoring against possible

reference-side candidate spans.

ones; thus, this strategy decreases the label imbal-

ance. Second, we believe that tokens close to

the gold span are more likely to be semantically

similar to the gold span than far away tokens on

average, so this strategy avoids harshly penalizing

the model when it predicts a nearby (and likely

semantically similar) span.

At inference time, we choose the span corre-

sponding to the aggregate representation Vi that is

assigned the highest score by the neural network f

(i.e., ŝ = argmaxi f(Vi)). A diagram illustrating

the inference procedure is given in Figure 3.

Data To train and evaluate our model we crowd-

sourced a span alignment dataset consisting of

36,417 labeled sentence pairs. Each instance in

the dataset consists of a natural language sentence

taken from FrameNet, a span in the sentence corre-

sponding to a FrameNet trigger span, an automatic

paraphrase, and a span in the automatic paraphrase

that has been manually aligned with the source-

side span. In our experiments, we split the data

randomly as 80% train, 10% dev, and 10% test.

Automatic paraphrases of FrameNet sentences

were generated using the model described in

§3, where a negative constraint was placed on

the source-side span text and its morphological

variants in order to force the model to replace the

original trigger with a semantic equivalent. Each

paraphrase was decoded using top-k sampling

with k = 10. In order to ensure broad lexical

coverage we paraphrased up to8 four sentences for

each of the roughly 10k lexical units in FrameNet.

Annotators were presented with a highlighted

trigger span from a FrameNet sentence and asked

to identify an analogous span in the automatic

8On rare occasion, some lexical units had fewer than four

annotated sentences.

paraphrase. The annotation interface allowed

workers to state that the paraphrase did not con-

tain any semantically equivalent phrase, which

occurred 9% of the time. In a 1260-sentence study

of span labeling inter-annotator agreement with

3-way redundancy, of the cases where the three

annotators did select a span, they chose the same

span (exact match) 88% of the time.

4.2 Word-level Baselines

We compare our span alignment model with two

word-level alignment baselines: FastAlign (Dyer

et al., 2013) and DiscAlign (Stengel-Eskin et al.,

2019). The former is a fast implementation of

IBM Model 2 (Brown et al., 1993), which de-

composes the conditional probability of a target

sequence given a source sequence into a lexical

model and an alignment model. FastAlign is an

asymmetric model, meaning that it must be run

in both directions (source to paraphrase and para-

phrase to source) and then these alignments must

be combined using some heuristic—we use the

grow-diag-final-and heuristic. A FastAlign model

was run over the concatenation of the test data,

the train data, and paraphrased FrameNet data to

obtain the final test alignments.

DiscAlign is a discriminatively trained neural

alignment model that uses the matrix product

of contextualized encodings of the source and

paraphrase word sequences to directly model the

probability of an alignment given the source and

paraphrase sequences. Unlike FastAlign, which is

trained on bitext alone, DiscAlign is pre-trained on

bitext and fine-tuned on gold-standard alignments.

For this task, a DiscAlign model was pre-trained

with 141 million sentences of ParaBank data (Hu

et al., 2019b) and finetuned on a 713 sentence

subset of the Edinburgh++ corpus (Cohn et al.,

2008).9 Both DiscAlign and FastAlign have been

successfully used for cross-lingual word align-

ment, with DiscAlign outperforming FastAlign

on Arabic-English and Chinese-English alignment

by a large margin (Stengel-Eskin et al., 2019).

4.3 Evaluation

Since the baseline aligners are word-level and our

model is span-level, in order to have a fair compar-

ison we evaluate on span F1 (Table 1), computing

the overlap between predicted and gold spans.

9Because the aligner requires fully aligned training data,

we did not use larger partially aligned corpora such as the

Microsoft Research Paraphrase Corpus.
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Method P R F1

DiscAlign 34.11 39.69 36.69

FastAlign 78.64 72.13 75.25

Df+Mx+Cue+SBCE 96.75 88.24 92.30

Table 1: Soft-match span F1 on the test set,

calculated using the precision and recall of pre-

dicted tokens vs. gold truth tokens; allows for

partial matches. Word-level baselines are com-

pared against our best performing BERT-based

span alignment model.

Predicted spans are obtained from word-level

alignments by following alignments of each word

in the source span to the paraphrase and taking the

maximal span covered by those alignments. The

span F1 metric allows partial credit to be awarded

in cases where the predicted span and gold span

do not match exactly. We also evaluate exact span

match (Table 2), where credit is awarded only if

the predicted span matches the gold span exactly.

4.4 Results

Table 1 shows that when evaluated on span over-

lap, our model significantly outperforms both

baselines. Table 2 shows that these results gen-

eralize to the more difficult exact match setting.

While all models experience a drop in perfor-

mance, our model continues to outperform both

baselines. Because no prediction threshold was

used in the baselines (unlike in our model) the

values for precision and recall are equal for the

baselines but can differ slightly for our model, as

the addition of a threshold allows the model to

incur a false negative without a false positive.

4.5 Discussion

Because our model is trained to choose spans by

design, the probability of an exact match is higher

a priori: Rather than choosing the words of a span

independently, it chooses them as a set, with limits

on the difference in length between the source and

target spans. This is reflected in the better perfor-

mance of our model on both evaluation metrics.

The bottom two rows of Table 2 show that SBCE

boosts recall with almost no loss of precision.

Our intuition is that the increased proportion of

non-zero labels causes the model to make more

threshold-exceeding predictions on reasonable

candidate spans. We expect that future work—for

Method P R F1

DiscAlign (29.82) (29.82) 29.82

FastAlign (71.02) (71.02) 71.02

Cue 10.39 9.77 10.07

Mx 80.65 77.92 79.26

Df 87.31 85.42 86.36

Mx+Cue 87.50 86.49 86.99

Df+Cue 88.74 86.96 87.84

Df+Mx 89.27 87.29 88.27

Df+Mx+Cue 89.15 88.19 88.67

Df+Mx+Cue+SBCE 89.14 88.99 89.06

Table 2: Exact-match span F1 on the test set; does

not allow for partial matches. {Disc, Fast}Align

are both word alignment models, where ours were

trained for span alignment. Cue adds positional

information, Mx adds max pooling of span rep-

resentations, Df adds element-wise difference of

span representations, and SBCE adds soft binary

cross entropy.

example, experimenting with alternative label-

ing strategies or model architectures—may lead

to improvements in the span alignment com-

ponent of our overall framework, although our

core intended contribution is the framework itself

and its successful application to data augmenta-

tion and subsequent improved performance on

a downstream task. In particular, we expect

model performance to increase as contextualized

representations become more powerful.

4.6 Analysis

Memorization Since our model could be mem-

orizing a large static mapping between lexical

units, we tested the ability of our model to

generalize by running an experiment where all

source-side spans in the test set were guaranteed to

not have been observed at training time.10 Under

this setting, the loss of F1 was minimal (roughly

2 points), suggesting that the model is robust to

unseen lexical units.

Syntactic Diversity In Table 3 we measure the

amount of syntactic diversity that is introduced by

10In our main experiments, (original sentence, trigger,

paraphrase, alignment) combinations are disjoint between

train and test, but it is possible to observe the same trigger

(with a different sentence, paraphrase, or alignment) at both

train- and test-time.
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Comparison ¬EXT JCD WJCD

Source vs. Model 31.08 28.94 29.31

Source vs. Gold 34.54 30.60 31.05

Table 3: Percentage of part of speech differ-

ences between source-side and reference-side

spans. ¬EXT is the percentage of span pairs

whose POS tags did not exactly match. Since an

exact match would be precluded in the case of

differing span lengths we also include Jaccard

distance11 (JCD) and weighted Jaccard dis-

tance12 (WJCD), the latter of which is sensitive

to tag frequency. In row one the reference-

side spans are produced by the alignment model

whereas in row two the analysis uses gold

manually annotated span labels.

running a part-of-speech tagger13 over each (source,

reference) pair and then comparing the POS tag(s)

of the source-side trigger span (over natural lan-

guage) to the POS tag(s) of the reference-side

span (over automatically paraphrased text). Spans

predicted by the alignment model are reasonably

syntactically diverse, having different POS tags

than those of the source-side span 31.08% of the

time. The alignment model has a slight inclination

to retain the part of speech of source-side span

given that gold spans are more diverse (34.54%).

Multi-word Spans Figure 4 shows the distribu-

tion of length for source-side spans, reference-side

gold spans, and model-predicted spans. Alignment

model F1 over the test set is given for each bin.

Model-predicted spans and reference spans are

shorter than source-side spans on average; 1.22,

1.34, and 1.53 tokens, respectively. Multi-word

spans constitute 14.71% of model-predicted spans,

21.88% of reference-side spans, and 34.18% of

source-side spans. The shorter average span length

of the gold spans (annotated over automatic para-

phrases) suggests the synthetic text from our

paraphrase model may be biased in ways that

distinguish it from natural language. Although the

alignment model predicts shorter spans on aver-

age, when it does predict a longer span, F1 is

higher.

11Of two sets S and T : 1 − |S∩T |
|S∪T | .

12Of two vectors u and v: 1−

∑

i

min(ui,vi)

∑

i

max(ui,vi)
.

13https://github.com/explosion/spacy-

models/releases//tag/en core web lg-2.3.1.

Figure 4: Distribution of source-side, reference-side,

and model-predicted span length in the test set, with

per-bin F1 above each bar.

Figure 5: Distribution of absolute difference between

source-side and reference-side span positions in the test

set, with per-bin F1.

Source and Reference Span Positions Fig-

ure 5 shows the distribution of absolute difference

between source and reference spans, defined as

d(a, b) = |a1 − b1| + |a2 − b2|, giving a mea-

sure of the positional differences between spans

in FrameNet sentences and their corresponding

paraphrases. The first three bins (0, 5, and 10)

contain 97.49% of the data. F1 experiences a

modest decrease across the first three bins and is

unsteady in subsequent bins due to data sparsity.

5 Iterative Augmentation Procedure

Our alignment model (§4) is paired with a

lexically constrained paraphrase model (§3) to

form an iterative procedure for augmenting data

of the form: (Sentencei, {(starti,1,endi,1,
typei,1), ...}). The process consists of three

steps: constraint expansion, paraphrasing, and

alignment. In constraint expansion, we negatively

constrain on a text span of interest, including

its upper/lowercase counterparts and morpho-

logical variants using the pattern software
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package (Smedt and Daelemans, 2012). By ap-

plying negative constraints, the paraphrase model

is forced to generate a semantically equivalent

sentence with a different surface form of the

labeled text, creating a target for the alignment

model. In the alignment stage, we score the orig-

inal text span’s representation together with each

candidate span in the paraphrase and choose the

one with the highest score under the model. Using

the newly obtained aligned phrase as input to

constraint expansion, we repeat the process for a

predetermined number of iterations.

Although we apply the iterative augmentation

procedure to English language text, the method

could be applied to other languages as long as a

dataset exists on which to train a monolingual

paraphrase model, which could then be used to

generate data to be manually annotated for the

span alignment training set. Our paraphrase model

is trained on data that ultimately needs backtrans-

lation, which requires a set of aligned bilingual

sentence pairs, though there are other types of

paraphrase models that use only monolingual data

(Roy and Grangier, 2019). Software such as

pattern that allow the procedure to negatively

constrain on morphological inflections of a given

word would speed up the rate at which new lem-

mas are generated; however, even without such

software, the paraphrase model would eventually

discover inflections independently and negatively

constrain on them. Languages with richer mor-

phological structure would benefit more from

this kind of software as the paraphrase model

might otherwise waste computational resources

generating sentences with many inflections of the

same word.

6 Experiments

Our approach lends itself to two applications: In

§6.1 we are concerned with building a semantic

resource from scratch, whereas in §6.2 we are con-

cerned with expanding a pre-existing resource.

We demonstrate the usefulness of our approach

on downstream tasks in §6.3, where we apply

our generated paraphrastic dataset to the task

of Frame ID. Following Pavlick et al. (2015),

we consider FrameNet as an illustrative resource

motivating augmentation. In all experiments we

treat each system output (paraphrase and align-

ment) as evoking the same frame as the original

FrameNet input sentence.

6.1 Building FrameNet (nearly)

from Scratch

To simulate constructing a resource using itera-

tive paraphrastic augmentation, we consider what

FrameNet would have looked like in its earliest

stages of development.14 Using each object’s

‘‘created date’’ attribute, we ablate all but the

20 earliest-added frames, the three earliest-added

lexical units per frame, and the three earliest-

added annotations per lexical unit, for a total of

at most15 180 annotations in our seed corpus.

We then ran 10 iterations of augmentation with

a beam size of 30 for the paraphrase model.

For each input, we ran the alignment model on

each of the top-20 beam elements and chose the

beam element with the highest score under the

alignment model. This resulted in 1710 para-

phrased and aligned sentences16 and 1316 unique

(Frame,LexicalUnit) pairs. Some generated

words lemmatized to the same form, causing the

number of lexical units to be less than the number

of sentences.

Automatic Evaluation Prior to ablation, the 20

frames in the seed corpus contained a total of 360

lexical units, of which 60 were chosen to remain in

the seed. We treat the set of 300 unobserved lex-

ical units as gold standard and compute precision

and recall of the lexical units contained within

the 1710-sentence system output. Lexical units

were only considered correct if they were in the

correct frame; comparisons were made between

(Frame,LexicalUnit) pairs.

Our system produced 128 true positives, 1188

false positives, and 112 false negatives,17 yielding

a precision of 9.7% and recall of 53.33%.

Since the hypothetical complete set of lexical

units for a given frame is vast and the lexical units

already in FrameNet constitute a small subset of

the complete set, we are not surprised to see the

probability is low that the lexical units gener-

ated by our framework fall into the small subset

14The decision to select our seeds based on frame creation

date—in contrast to some other sub-selection strategy—was

informed by discussions with FrameNet creators.
15In practice we were left with slightly fewer (171), as

we removed sentences that were observed by the alignment

model at training time, and some lexical units contained fewer

than three annotations.
16171 sentences rewritten 10 times each.
17We exclude from the false negative count the 60 lexical

units in the seed corpus since they are guaranteed to not be

generated due to the negative constraints placed upon them.
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Figure 6: Sample of actual system outputs and associated manually judged scores. Annotators did not see

the original sentence when assigning scores but they are provided here for reference. In the first example, the

paraphrase model makes a mistake; in the second, the sentence is roughly synonymous but borderline out-of-frame;

in the third, both the paraphrase and alignment are high-quality.

already in FrameNet. Upon manual inspection, we

found that many of the words predicted by the

framework were valid yet absent from FrameNet,

motivating us to develop a more sophisticated

evaluation method.

Manual Evaluation We conducted a 3-way-

redundant manual evaluation of the 1710 system

outputs using skilled, locally trained annotators.

For each system output—a paraphrase with a

highlighted phrase corresponding to the span pre-

dicted by the alignment model—we provided a

description of the anticipated frame18 and three

gold-standard example annotations19 to reinforce

the frame definition. Workers were then asked

to rate three candidate sentences, each with a

highlighted trigger phrase, on a scale of 0–100,

as to how well the highlighted trigger evoked

the given frame in the context of the sentence.

Unbeknownst to annotators, of the three candidate

sentences in each task, only one of them (in a

random position) was an actual system output; the

other two were positive or negative gold-standard

sentences taken from FrameNet:

1. System output: Frame a and lexical unit b.

2. Gold in-frame: Frame a and lexical unit ¬b.

3. Gold out-of-frame (adversarial): Frame ¬a.

18We assume that the paraphrase transformation is label-

preserving so the anticipated frame is simply the frame of the

original FrameNet sentence.
19The trigger words in the example sentences were made to

be disjoint with the trigger words in the candidate sentences

in order to avoid biasing annotators.

The scores collected on gold in- and out-

of-frame control sentences provide a means to

ground the interpretation of scores on system out-

puts and also enable us to gauge overall annotator

understanding of the task by scoring sentences for

which we know the correct response.

Since each system output was judged by three

distinct annotators, we average each triple of judg-

ments and treat values less than 50 as a rejection

(‘‘the highlighted trigger, in the context of the

sentence, does not evoke the given frame’’) and

values greater than or equal to 50 as an acceptance.

Gold in- and out-of-frame sentences had accep-

tance rates of 95.26% and 6.57%, respectively,

suggesting workers possessed a relatively strong

understanding of the task. Figure 6 provides a

sample of actual system outputs and associated

individual scores.

Inter-annotator Agreement Fleiss’ kappa for

the binarized scores of judgments of system out-

puts is 0.5641, indicating moderate to substantial

agreement. Separately, all three annotators made

the same binarized judgment 71.18% of the time.

Analysis Figure 7 shows how human judgments

distribute over the [0,100] range for in-frame

sentences (average 77.36), system outputs (aver-

age 59.35), and out-of frame sentences (average

23.17). Judgments of in- and out-of-frame sen-

tences are neatly partitioned, with in-frame

sentences being concentrated in the [50,100]

range and out-of-frame judgments concentrating

in the [0,50] range. Annotators tend not to make
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Figure 7: Distribution of human judgments for in-frame

sentences, system outputs, and adversarial out-of-frame

sentences. System output is unfiltered; in §6.1 we

experiment with methods to automatically remove low

quality system outputs.

judgments at the extrema of the range. Judgments

of system outputs skew towards the the upper

half of the range although they are more split

than judgments of in- and out-of-frame sentences.

This distribution and the associated averages are

calculated using the unfiltered set of system out-

puts; in §6.1 we test several ways of automatically

identifying system outputs that are likely to be

low quality, enabling the removal of such outputs

and the creation of a higher quality dataset.

Filtering Methods We experiment with several

methods of filtering system outputs, providing a

trade-off between the competing goals of quality

and size. Each system output has an associated

iteration number, score under the paraphrase

model, and score under the alignment model;

each filtering method then uses this information

to select a subset of the unfiltered system outputs.

We report the precision (the ratio of elements in

the subset that had a score over 50) and recall (the

number of elements in the subset with a score over

50, divided by the number of elements in the unfil-

tered set that also had a score over 50) in Table 4.

The upper section of Table 4 presents results for

a variety of heuristic filtering methods, for exam-

ple, the subset of system outputs with an iteration

number of three or lower, while the lower section

presents results for a neural filtering model.

The neural model takes as input a system out-

put’s iteration number, score under the paraphrase

model, and score under the alignment model, and

produces a score between 0 and 1, where 0 repre-

sents a decision to filter an output, and 1 represents

a decision to keep it. Architecturally, the model

Filtering P R Multiple

Unfiltered 68.25 100 11x

Iter = 1 90.06 13.20 2x

Iter ≤ 3 81.29 35.73 4x

Paraphrase score ≤ 0.6 90.14 5.48 1.42x

Paraphrase score ≤ 0.8 74.86 34.45 4.14x

Aligner score ≥ .99 85.01 32.56 3.61x

Aligner score ≥ .95 76.72 85.00 8.56x

Lax conjunction 87.73 20.82 2.62x

Strict conjunction 92.54 5.31 1.39x

P-Classifier 95.00 15.61 2.28x

R-Classifier 81.19 96.99 10.27x

Table 4: Human evaluation of system outputs

across several filtering methods, with manually

judged Precision for the subset of outputs re-

maining after applying the given filter, Recall of

sentences manually judged to be acceptable, and

the Multiple (in terms of number of sentences) of

the resulting dataset in relation to the original

seed corpus. Filtering methods consider the

iteration number, and scores from the paraphrase

and aligner models for a given system output.

The ‘‘lax’’ row applies a filter consisting of

the conjunction of the criteria from rows 3, 5,

and 7 (relatively lenient conditions) whereas the

‘‘strict’’ row conjoins the criteria from rows 2,

4, and 6 (which are stricter, and lead to higher

precision but fewer lexical units).

is a feed-forward neural network with two hidden

layers, 10 units per hidden layer, and a sigmoid

output layer, trained to minimize binary cross

entropy loss. We trained one model to favor preci-

sion by downweighting the training loss when the

label was 1, and a second model to favor recall by

downweighting when the label was 0. As training

data, we used the 1710 aggregated manual judg-

ments from above (where each system output has

a label of 0 or 1), plus 2988 additional judgments

collected specifically for this model. We split the

data as 90% train (4228) and 10% test (470), and

present results,20 in the lower section of Table 4.

Discussion The upper section of Table 4 sug-

gests that iteration number, paraphrase model

score, and aligner model score each have slightly

different filtering characteristics, and a simple

20Results in the upper section of Table 4 are reported over

the 1710 system outputs from §6.1 while the results in the

lower section are reported over the 470-element test set.
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conjunction of criteria achieves higher precision

than any condition alone. The P-Classifier, opti-

mized to select a high-precision subset of the data,

achieves higher precision than any of the heuris-

tic methods, and higher recall than the highest-

precision heuristic method. The precision of the

P-classifier (95%) is roughly the same as the

human-level acceptance rate on gold in-frame sen-

tences (95.26%) while generating a resource that

is 2.28x as large as the original. A higher recall

subset may be obtained with the R-Classifier,

which retains 96.99% of acceptable outputs with

a precision of 81.19%.

6.2 Expanding Existing FrameNet

In this section we report the results of applying

large-scale iterative augmentation to an existing

resource. As in our reconstruction experiment,

we ran 10 iterations of augmentation, but with

minor configuration changes21 to enable faster

processing over the roughly 200,000 FrameNet

annotations.22

Our unfiltered dataset,23 which excludes the

original FrameNet data, contains 1,983,680 auto-

matically paraphrased and aligned English-language

sentences and 495,300 (Frame,Trigger) pairs24

in diverse sentential contexts. As the underlying

text of our generated resource is automatically

paraphrased, it is synthetic and may contain

biases that distinguish it from natural language.

Of the 495,300 new triggers, 428,416 are unique

after applying lemmatization; each lemma has

4.63 automatic in-context annotations on average.

We use the filter models from §6.1 to select

high quality and high quantity subsets of the

unfiltered data; each system output in our data

release has an associated score from both filter

classifiers to enable post-hoc filtering. The P-

Classifier retains 138,797 sentences and 33,332

(Frame,Trigger) pairs, while the R-classifier

retains 1,807,235 sentences and 425,050 pairs. To

enable further experimentation, each sentence in

our release is linked to FrameNet v1.7.

21We used a beam size of 20 to decode paraphrases and

ran the alignment model on each of the top-3 beam elements,

choosing the beam element with the highest score under the

alignment model.
22In practice, we filtered out sentences with greater than

80 tokens due to a limitation in the paraphrase model, leaving

198,368, or 99.55% of the original sentences.
23http://nlp.jhu.edu/parabank.
24A (Frame,Trigger) pair can be thought of as an

inflected surface form of a given word sense.

Because our data only contains alignments of

triggers and not frame elements, it cannot be

directly used for full FrameNet semantic role

labeling (SRL). However, by additionally apply-

ing positive constraints on frame element spans

during lexically constrained decoding, an align-

ment link may be trivially obtained, allowing our

framework to be used for full SRL.

6.3 Using Paraphrastic Data on a

Downstream Task

In this section, we use the expanded FrameNet

resource from §6.2 to improve model robustness

on the task of Frame ID, a key subtask in FrameNet

SRL (Das et al., 2010; Hermann et al., 2014).

It is often prohibitively expensive to anno-

tate entire documents under protocols such as

FrameNet, and full-document annotation may not

provide full coverage of the ontology due to the

rarity of some ontological types. A commonly

used alternative to full-document annotation is

exemplar-based annotation, where several canon-

ical examples (or ‘‘exemplars’’) are identified

for each ontological type, ensuring full coverage

of the ontology. Below, we conduct experiments

to show that the addition of paraphrastic data to

full-document and exemplar annotations boosts

Frame ID model performance.

Task FrameNet parsing (Das et al., 2014;

Kshirsagar et al., 2015; Roth and Lapata, 2015;

Swayamdipta et al., 2018) is an established task in

the field of semantic parsing. Most previous work

has viewed FrameNet parsing as SRL, where the

goal is to identify the frame and label all frame ele-

ments given a sentence with a known trigger span,

but little attention has been paid to identifying

trigger spans themselves (Das et al., 2014).

Given the practical importance of finding trig-

gers, we focus on jointly identifying both triggers

and frames, rather than frames alone.

Specifically, given a sequence of words, our

task is to find all contiguous subsequences25 that

trigger a frame and to identify the corresponding

frames. We pose this as a span tagging problem,

with trigger spans being tagged with the associated

frame and non-trigger spans tagged as NULL.26

25Following the convention of Das et al. (2014) we do

not capture discontiguous trigger spans; e.g., we treat there

would be as an instance of the lexical unit there be.v
260.05% of the full-text annotations contained triggers

that evoked two frames; we discard the second frame for

simplicity.
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Model We adopt a two-pass Long Short-Term

Memory (LSTM) model for the Frame ID task. We

first convert the sentence S = 〈s1, s2, . . . , sI〉 into

a sequence of embedding vectors 〈e01, e
0
2, . . . , e

0
I〉,

where each embedding e
0
i is a concatenation of

GloVe, BERT (first subtoken, fixed), character,

and POS embeddings (Pennington et al., 2014;

Devlin et al., 2018; Alberti et al., 2019). Next, we

use a l-layer stacked bidirectional LSTM model

(Hochreiter and Schmidhuber, 1997) to obtain a

contextual embedding for each word:

〈el1, e
l
2, . . . , e

l
I〉 = BiLSTM(〈e01, e

0
2, . . . , e

0
I〉)

We then apply another unidirectional LSTM

model on top to get a representation for a span

si:j:

ei:j = LSTM(〈eli, e
l
i+1, . . . , e

l
j〉)

As in the alignment model, we empirically

choose a maximum span length27 to reduce the

computational complexity from O(I2) to O(I).
A fully connected neural network is then applied

to transform the representation ei:j into a logit

vector, which is then translated by softmax into a

distribution over the label set composed of frames

and NULL. We train with cross-entropy loss.

The FrameNet corpus provides two sets of anno-

tated sentences: full-text and exemplar, where

full-text annotations consist of exhaustively anno-

tated documents, whereas exemplar annotations

are only annotated with one frame for every sen-

tence. For the full-text sentences, we treat both the

trigger and non-trigger spans as training examples,

but for the exemplar and paraphrastic sentences,

non-trigger spans are excluded due to the fact that

they represent incomplete annotations rather than

true negative examples. Furthermore, Das et al.

(2014) pointed out that some triggers are not anno-

tated in the full-text sentences, leading to false neg-

ative training examples. In light of this, we apply

the label smoothing trick (Szegedy et al., 2016)28

on negative examples to smooth the point distri-

bution, resulting in a 3-point F1 improvement.

Experiments To illustrate the utility of the

paraphrastic data generated by our augmentation

framework in low-resource settings, we sample

{10%, 20%, . . . , 100%} of full-text sentences as

27In this case 3, which only excludes 0.24% of the target

words, which are treated as false negative during evaluation.
28A smoothing factor 0.2 is empirically chosen.

Figure 8: Frame ID results with different full-text

percentages, with and without paraphrastic data. Each

experiment is repeated 5 times with resampled train-

ing data. ‘‘FN’’ is the original FrameNet data, and

‘‘FN + Para’’ uses both FrameNet and paraphrastic

data for training. 10+ and 100+ indicate that exemplar

sentences are added.

training data. In two experiments we also incor-

porate exemplar sentences.29 For each sample

k of original FrameNet sentences, we conduct

a parallel experiment adding in corresponding

paraphrases of sentences in k, taken from our

resource in §6.2.

Using the FrameNet v1.7 release,30 we adopt the

same development and test split proposed by Das

and Smith (2011), treating all other documents as

training examples. We use greedy search to find

the optimal hyperparameters, used for conducting

all experiments. We evaluate model performance

using Frame ID F1 score, where a frame prediction

is viewed as true positive when both the trigger

span and frame match exactly.

Results and Analysis Based on the results

shown in Figure 8, we can see that we get higher

F1 when using more data, and paraphrases boost

the F1 for every experiment, particularly in low-

resource settings where only a small fraction of

the full-text data is accessed. If we provide the

model with both full-text and exemplar sentences,

the improvement brought by paraphrases is less,

but still significant. Peng et al. (2018) reported

state-of-the-art results on Frame ID with 90.00%

accuracy on FrameNet v1.5; however, this is not

comparable with our result because their model is

provided gold triggers and has only to identify the

29We extract the first 3 lexical units for every frame and the

first 3 exemplar sentences for every lexical unit. The lexical

units and exemplar sentences are sorted by the annotation

date.
30Accessed using the FrameNet support within NLTK

(Schneider and Wooters, 2017) to process the raw data.
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frame, whereas our model jointly identifies both

triggers and frames.

Comparison to Lexical Substitution To

demonstrate31 that paraphrases are more beneficial

when they are contextual, with sentence-level

alterations to the input, rather than the result of

simple word- or short phrase-level substitutions

(c.f. Ganitkevitch et al., 2013) we conducted

additional experiments using paraphrases obtained

via lexical substitution.

For each FrameNet sentence and its correspond-

ing paraphrase, we replace the original trigger in

the FrameNet sentence with the automatically

aligned trigger from the paraphrase. To ensure

that the resulting sentences are grammatical, we

only keep sentences that have the same part-of-

speech tag(s) over the trigger span as the original

sentences; this filter removed approximately 35%

of the resulting word-level paraphrases. We

use 100% of the full-text FrameNet annotations

as the base training data and reuse the same

hyperparameters as our previous experiments.

The model trained on full-text annotation +

word-level paraphrases achieved an F1 score of

49.59 ± 2.59 (averaged over 5 runs), which is

lower than the full-text only result (61.63± 0.49)

and lower still than the full-text + sentence-level

paraphrase result (66.37±0.63). This suggests that

simple lexical substitution produces lower quality

paraphrases, translating into the result that these

sentences actually hurt performance on Frame ID.

Future Work While we have shown that

paraphrasing is beneficial for training a Frame

ID model in a low-resource setting, it is important

to be aware of the limitations of paraphrastic data.

The paraphrasing generation process does not

guarantee that the resulting data will be beneficial

since it is possible that some of the paraphrases

are already well understood by the model (Ribeiro

et al., 2018). Furthermore, paraphrases could

include lexical units that fall outside of the on-

tology being used, leading to a negative impact

with respect to evaluation.

Future work may investigate tactical data aug-

mentation such as the filtering score proposed by

Ribeiro et al. (2018) or automatic scoring func-

tions such as those proposed by Lee et al. (2019).

31Aside from these empirical results we also describe two

a priori issues with lexical substitution-based methods in §2

– Automatic Lexicon Expansion.

Our method might be extended to task-oriented

dialog in a number of domains, for example,

SMCalFlow (Andreas et al., 2020), where data

sparsity often poses a problem.

7 Conclusion

We introduced a novel approach for iterative

construction of semantic resources via automatic

paraphrasing. To demonstrate two possible uses

of our framework, we simulated the rapid creation

of a new semantic resource from a small seed

corpus and generated a large-scale expansion of

an existing resource. The latter experiment, run

on FrameNet data, generated a lexically diverse

dataset with 495,300 unique (Frame,Trigger)
pairs in diverse sentential contexts, 50x the

number of such pairs originally in FrameNet,

which we release to the community alongside our

36,417-instance span alignment dataset.
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