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Introduction

SpLU-RoboNLP 2021 is a combined workshop on spatial language understanding (SpLU) and grounded
communication for robotics (RoboNLP) that aims to realize the long-term goal of natural conversation
with machines in our homes, workplaces, hospitals, and warehouses by highlighting developments in
linking language to perception and actions in the physical world. It also highlights the importance of
spatial semantics when it comes to communicating about the physical world and grounding language in
perception. The combined workshop aims to bring together members of NLP, robotics, vision and related
communities in order to initiate discussions across fields dealing with spatial language understanding and
grounding language to perception and actions in the real world. The main goal of this joint workshop is
to bring in the perspectives of researchers working on physical robot systems and with human users, and
align spatial language understanding representation and learning approaches, datasets, and benchmarks
with the goals and constraints encountered in HRI and robotics. Such constraints include high costs of
real-robot experiments, human-in-the-loop training and evaluation settings, scarcity of embodied data,
as well as non-verbal communication.

Recent years have seen an increase in the availability of simulators in which virtual agents can take
actions and obtain realistic visual observations, which has led to the creating of benchmarks for grounded
language understanding in such environments. These benchmarks allow more direct comparisons of
different techniques on certain tasks and have led to a significant increase in interest in some tasks such
as vision and language navigation. However, many challenges still remain. Most systems using such
benchmarks do not actually perform interactive training - obtaining live feedback from the environment
on taking novel actions. Such training becomes more expensive as the simulator starts to support more
actions. Different simulators and benchmarks vary in the extent to which they model realistic tasks or
realistic capabilities of physical robots. Many of the modeling techniques used on such benchmarks may
require too much compute to be used on physical robots.

Following the exciting recent progress in a number of visual language grounding tasks and vision and
language navigation, the creation of more interactive embodied agents that can reason about spatial
knowledge, common sense knowledge and information provided in instructions, generalize to data
beyond what is seen during training, identify gaps in their knowledge or understanding, and engage
in natural language interactions with users to fill in these gaps and explain their behavior are interesting
research directions.

We have accepted 6 archival submissions and the workshop included an additional 4 non archival
submissions.
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Abstract

This paper describes a method for learning
from a teacher’s potentially unreliable correc-
tive feedback in an interactive task learning
setting. The graphical model uses discourse
coherence to jointly learn symbol grounding,
domain concepts and valid plans. Our exper-
iments show that the agent learns its domain-
level task in spite of the teacher’s mistakes.

1 Introduction

Interactive Task Learning (ITL) aims to develop
agents that can learn arbitrary new tasks through
a combination of their own actions in the environ-
ment and an ongoing interaction with a teacher (see
Laird et al. (2017) for a survey). Because the agent
continues to learn after deployment, ITL allows an
agent to learn in an ever changing environment in
a natural manner.

One goal of ITL is to have the interactions be as
natural as possible for a human teacher, and many
different modes of interaction have been studied:
non-verbal through demonstration or teleoperation
(Argall et al., 2009), or natural language: an embod-
ied extended dialogue between teacher and agent,
like between a teacher and apprentice. Our interest
lies in natural language interactions where teach-
ers can provide instructions (She et al., 2014), de-
scribe current states (Hristov et al., 2017) and de-
fine concepts (Scheutz et al., 2017), goals (Kirk and
Laird, 2019), and actions (She et al., 2014), while
the agent asks clarifying questions (She and Chai,
2017) and executes instructed commands. Teachers
can also use corrective feedback (Appelgren and
Lascarides, 2020). These approaches all assume
that the teacher offers information that is both cor-
rect and timely. However, humans are error prone,
and so in this paper we study how agents can learn
successfully from corrective feedback even when
the teacher makes mistakes.

Appelgren and Lascarides’ model exploits dis-
course coherence (Hobbs, 1985; Kehler, 2002;
Asher and Lascarides, 2003): that is, constraints on
how a current move relates to its context. But their
models assume that the teacher follows perfectly a
specific dialogue strategy: she corrects a mistake
as and when the agent makes it. However, humans
may fail to perceive mistakes when they occur,.
They also may, as a result, utter a correction much
later than when the agent made the mistake, and
thanks to the teacher being confident, but wrong,
about the agent’s capacity to ground NL descrip-
tions to their referents, the agent may miscalculate
which salient part of the context the teacher is cor-
recting. In this paper, we present and evaluate an
ITL model that copes with such errors.

In §2, we use prior work to motivate the task
we tackle, as described in §3. We present our ITL
model in §4 and §5, focusing on coping with situa-
tions where the teacher makes mistakes of the type
we just described. We show in §6 that by making
the model separate the appearance that the teacher’s
utterance coherently connects to the agent’s latest
action with the chance that it is not so connected,
our agent can still learn its domain-level task effec-
tively.

2 Background

Interactive Task learning (ITL) exploits interac-
tion to support autonomous decision making dur-
ing planning (Laird et al., 2017). Similar to Kirk
and Laird (2019), our aim is to provide the agent
with information about goals, actions, and concepts
that allow it to construct a formal representation
of the decision problem, which can thereafter be
solved with standard decision making algorithms.
Rather than teaching a specific sequence of ac-
tions (as in e.g., Nicolescu and Mataric (2001);
She et al. (2014)), the teacher provides the infor-
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mation needed to infer a valid plan for a goal in
a range of specific situations. In this work we fo-
cus on learning goals, which express constraints
on a final state. The agent learns these goals by
receiving corrective dialogue moves that highlight
an aspect of the goal which the agent has violated
(Appelgren and Lascarides, 2020).

Natural language (NL) can make ITL more data
efficient than non-verbal demonstration alone: even
simple yes/no feedback can be used to learn a re-
ward function (Knox and Stone, 2009) or to trig-
ger specific algorithms for improving behaviour
(Nicolescu and Mataric, 2003). More extended
NL phrases must map to semantic representations
or logical forms that support inference (eg, Wang
et al., 2016; Zettlemoyer and Collins, 2007). Like
prior ITL systems, (eg, Forbes et al., 2015; Lau-
ria et al., 2002) we assume our agent can analyse
sentential syntax, restricting the possible logical
forms to a finite set. But disambiguated syntax
does not resolve semantic scope ambiguities or lex-
ical senses (Copestake et al., 1999), and so the
agent must use context to identify which logical
form matches the speaker’s intended meaning.

Recovering from misunderstandings has been
addressed in dialogue systems (eg, Skantze, 2007),
and ITL systems cope with incorrect estimates
of denotations of NL descriptions (eg, Part and
Lemon, 2019). Here, we address new sources of
misunderstanding that stem quite naturally from the
teacher attempting, but failing, to abide by a par-
ticular dialogue strategy: ie, to correct the agent’s
mistakes as and when they’re made. This can lead
to the learner misinterpreting the teacher’s silence
(silence might not mean the latest action was cor-
rect) or misinterpreting which action is being cor-
rected (it might be an earlier action than the agent’s
latest one). We propose a model that copes with
this uncertainty.

3 Task

In our task an agent must build towers in a blocks
world. The agent begins knowing two PDDL ac-
tion descriptions: put(x, y) for putting an object
x on another y; and unstack(x, y) for removing
an object x from another object y and placing x
back on the table. Further, it knows the initial state
consists of 10 individual blocks that are clear (i.e.,
nothing on them) and on the table, and that the goal
G contains the fact that all the 10 blocks must be
in a tower.

Figure 1: The colours of objects fit into different
colour terms. Each individual hue is generated from
a Gaussian distribution, with mean and variance se-
lected to produce hues described by the chosen colour
term. There are high level categories like “red” and
“green” and more specific ones like “maroon”. This fig-
ure shows examples of hues generated in each category,
including one that is both red and maroon.

However, putting the blocks in a tower is only
a partial description of the true planning problem,
and the agent lacks vital knowledge about the prob-
lem in the following ways. First, the true goal
G includes further constraints (e.g., that each red
block must be on a blue block) and the agent is
unaware of which such constraints are truly in the
goal. Further, and perhaps more fundamentally, the
agent is also unaware of the colour terms used to
define the constraints. I.e. the word “red” is not
a part of the agent’s natural language vocabulary,
and so the agent does not know what “red” means
or what particular set of RGB values the word de-
notes. Instead, the agent can only observe the RGB
value of an object and must learn to recognise the
colour through interaction with the teacher, and in
particular the corrective dialogue moves that the
teacher utters.

The possible goal constraints are represented in
equations (1–2), where C1 and C2 are colour terms;
e.g., “red” (r for short) and “blue” (b).

rc1,c21 = ∀x.c1(x)→ ∃y.c2(y) ∧ on(x, y) (1)

rc1,c22 = ∀y.c2(y)→ ∃x.c1(x) ∧ on(x, y) (2)

In words, rr,b1 expresses that every red block must
be on a blue block; rr,b2 that every blue block should
have a red one on it. These rules constrain the
final tower, but thanks to the available actions, if a
constraint is violated by a put action then it remains
violated in all subsequent states unless that put
action is undone by unstack.

In our experiments (see §6), a simulated teacher
observes the agent attempting to build the tower,
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and when the agent executes an action that breaks
one or more of the rules in the goal G, the
teacher provides NL feedback—e.g., “no, red
blocks should be on blue blocks”. The feedback
corrects the agent’s action and provides an explana-
tion as to why it was incorrect. However, linguis-
tic syntax makes the sentence ambiguous between
two rules—“red blocks should be on blue blocks”
could mean rr,b1 or rr,b2 . Thus, the agent must disam-
biguate the teacher’s message while simultaneously
learning to ground new terms in the embodied en-
vironment, in this example the terms “red” and
“blue”. This latter task amounts to learning which
RGB values are members of which colour concepts
(see Figure 1).

4 Coherence

To learn from the teacher’s feedback the agent rea-
sons about how an utterance is coherent. In dis-
course each utterance must connect to a previous
part of the discourse through a coherence relation,
and the discourse relation which connects the two
informs us what the contribution adds to the dis-
course. In our multimodal discourse each of the
teacher’s utterances u connect to one of the agent’s
actions a through the discourse relation “correc-
tion”. The semantics of correction stipulate that the
content of the correction is true and negates some
part of the corrected action (Asher and Lascarides,
2003). In our domain, this means that the teacher
will utter u if the agent’s latest action a violates
the rule that she intended u to express. If u = “no,
red blocks should be on blue blocks” then, as previ-
ously stated, this is ambiguous between is rr,b1 and
rr,b2 . So, a must violate one of these two rules:

CC(a, u)↔ (rr,b1 ∈ G ∧ V (rr,b1 , a))∨
(rr,b2 ∈ G ∧ V (rr,b2 , a)) (3)

where CC(a, u) represents that u coherently cor-
rects action a, G is the (true) goal, and V (rr,b1 , a)

represents that a violated rr,b1 (similarly for
V (rr,b2 , a)). Since the semantics of correction is
satisfied only if the correction is true, the rule the
speaker intended to express must also be part of the
true goal G; that is why (3) features rr,b1 ∈ G (and
rr,b2 ∈ G) in the two disjuncts.

There are two ways in which these rules can
be violated. Either directly or indirectly. For rr,b1

the rule requires every red block to be on a blue
block, therefore it is directly violated by action

a = put(o1, o2) if o1 is red and o2 is not blue
(illustrated in S1 of Figure 2):

VD(r
r,b
1 , a)↔ red(o1) ∧ ¬blue(o2) (4)

The rule rr,b2 requires all blue blocks to have red
blocks on them, meaning that S1 in Figure 2 does
not directly violate the rule, but S2 does because it
is only violated when a blue block does not have a
red block on it:

VD(r
r,b
2 , a)↔ ¬red(o1) ∧ blue(o2) (5)

So rr,b1 is not directly violated in S2 and rr,b2 is not
directly violated in S1 but it would still be impos-
sible to complete a rule compliant tower without
undoing the progress that has been made on tower
building. This is because the block which is cur-
rently not in the tower cannot be placed into the
current tower in a rule compliant manner. For rr,b1

in S2 the red block needs a blue block to be placed
on, but no such blue block exists. Similarly, for
rr,b2 in S1 the blue block needs a red block to place
on it, but no additional red blocks are available. In
this way the rules are Indirectly violated in these
states, which occurs when the number of available
blocks of each colour makes it impossible to place
all of those blocks:

VI(r
r,b
1 , a)↔ ¬red(o1) ∧ blue(o2)

|{o3 : red(o3) ∧ on(o3, table)}| >
|{o4 : blue(o4) ∧ on(o4, table)}|

(6)

VI(r
r,b
2 , a)↔ red(o1) ∧ ¬blue(o2)∧
|{o3 : blue(o3) ∧ on(o3, table)}| >
|{o4 : blue(o4) ∧ on(o4, table)}|

(7)

Our teacher signals if the error is due to a direct
violation VD by pointing at the tower or an indirect
violation VI by pointing at a block which cannot be
placed in the tower any more (e.g., the blue block
in S1 or the red block in S2).

When the agent observes the teacher say u =
”no, put red blocks on blue blocks” it can make in-
ferences about the world, with confidence in those
inferences depending on its current knowledge. For
example, if it knows with confidence which blocks
are “red” or “blue”, then it can infer via equations
(4–7) which of the rules the teacher intended to con-
vey. Alternatively, if the agent knows which rule
was violated then the agent can infer the colour
of the blocks. We use this in §5 to learn the task.
However, if the agent is completely ignorant about
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Figure 2: These two states would both be corrected if
either r(r,b)1 or r(r,b)2 were in the goal.

the referents of the colour terms, it may not be able
to make an inference at all. In this case it will ask
for help by asking the colour of one of the blocks:
“is the top block red?”. Either answer to this ques-
tion is suffiicent for the agent to disambiguate the
intended message and also gain training exemplars
(both positive and negative) for grounding the rele-
vant colour terms.

If the teacher’s dialogue strategy is to always cor-
rect an action which violates a rule (either directly
or indirectly) directly after this incorrect action is
executed, then the teacher’s silence implies that the
latest executed action does not violate a rule. This
means that if the agent knows, for example, that if
a green block is placed on a blue block then either
green blocks must always be placed on blue blocks
(rg,b1 ) or no rule constraining green blocks exists.
In this way the teacher’s silence implies assent.

4.1 Faulty Teacher

We’ve laid out the what it means for something
to be coherent, assuming that the teacher always
acts in the most optimal way, correcting any ac-
tion which violates a rule as soon as that action is
performed. However, in general a human teacher
will be unlikely to perfectly follow this strategy.
Despite this, an agent would still have to attempt to
learn from the teacher’s utterances even though
some of those utterances may not fit with the
agent’s expectations and understanding of coher-
ence. In this paper we introduce two types of errors
the teacher can make: (a) she fails to utter a correc-
tion when the latest action a violates a rule; and (b)
she utters a correction when the most recent action
does not violate a rule (perhaps because she notices
a previous action she should have corrected). We
think of (b) as adding a correction at the ‘wrong’
time.

Since a rule can violate an action in two ways—

either Directly or Indirectly—teacher errors of type
(a) and (b) lead to four kinds of ‘imperfect’ dia-
logue moves:

1. Missing Direct Violations (MD)
2. Adding Direct Violations (AD)
3. Missing Indirect Violations (MI)
4. Adding Indirect Violations (AI)

In our experiments we control in what way the
teacher is faulty by assigning a probability with
which the teacher performs each type of mistake,
e.g. PMD represents the probability that the teacher
misses a direct violation. Controlling these proba-
bilities allows us to create different types of faulty
teachers.

Due to the teacher’s faultiness the agent must
now reason about whether or not it should update
its knowledge of the world given a teacher utterance
or silence. In the following section we describe
how we deal with this by creating graphical models
which capture the semantics of coherence as laid
out in this section.

5 System Description

An agent for learning from correction to perform
the task described in §3 must be able to update
its knowledge given the corrective feedback and
then use that updated knowledge to select and exe-
cute a plan. The system we have built consists of
two main parts: Action Selection and Correction
Handling.

5.1 Action Selection
To generate a valid plan, the agent uses the Met-
ricFF symbolic planner (Hoffmann and Nebel,
2001; Hoffmann, 2003)). It requires as input a
representation of the current state, the goal, and
the action descriptions (here, put(x, y) and
unstack(x, y). The agent knows the posi-
tion of objects, including which blocks are on each
other, and it knows that the goal is to build a tower.
However, the agent begins unaware of predicate
symbols such as red and blue and ignorant of
the rules r ∈ G that constrain the completed tower.

The aim of our system is to learn to recognise the
colours—and so estimate the current state S∗—and
to identify the correct goal G, given the evidence
X which it has observed so far. We describe how
shortly. The agent uses its current knowledge to
construct S∗ and G which are given as input to
the planner to find a valid plan. Due to errors in
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the grounding models or goal estimate, this may
fail: eg, if the agent estimates rr,b1 ∈ G but there
are more red blocks than blue blocks in S∗, mak-
ing it impossible to place all of the red blocks. In
such cases, the agent recovers by searching in the
probabilistic neighbourhood of S∗ for alternatives
from which a valid plan for achieving G can be con-
structed (Appelgren and Lascarides, 2020). The
agent executes each action in its plan until it’s com-
pleted or the teacher gives corrective feedback. The
latter triggers the Correction Handling system (see
§5.2).

5.1.1 Grounding Models

The grounding models construct a representation
of the current state S∗ by predicting the colour of
blocks, given their visual features. Binary classi-
fiers represent the probability of an object being
a particular colour, e.g. P (Redx|Fx) where Fx

are the visual features of object x. We use binary
classifiers over a categorical distribution for colour
since the set of possible colours is unknown and
colours aren’t all mutually exclusive (e.g., maroon
and red). We estimate the the probability using
Bayes Rule:

P (Redx)|Fx) =

P (Fx|Redx)P (Redx)∑
i∈{0,1} P (Fx|Redx = i)P (Redx = i)

(8)

For P (Fx|Redx = 0) we use a uniform
distribution—we expect colours that are not
red to be distributed over the entire spectrum.
P (Fx|Redx = 1) is estimated with weighted Ker-
nel Density Estimation (wKDE). wKDE is a non-
parametric model that puts a kernel around ev-
ery known data point {(w1, Fx1), ...(wm, Fxm)}
(where wi are weights) and calculates the probabil-
ity of a new data point via a normalised weighted
sum of the values of the kernels at that point. With
kernel ϕ (we use a diagonal Gaussian kernel), this
becomes:

P (Fx|Redx = 1) =

1
m∑
i=1

wi

m∑

i=1

wi · ϕ(Fx − Fxi) (9)

The pairs (wi, Fxi) are generated by the Correction
Handling system (see §5.2).

Figure 3: The agent consists of an Action Selection
system (yellow) and a Learning System (green). The
former uses a symbolic planner to find a plan given the
most likely goal and symbol grounding. The latter uses
coherence to learn the goal and grounding.

5.1.2 The Goal
In order to estimate G the agent begins with the
(correct) knowledge that it must place all blocks
in a tower. However, it must use the teacher’s
feedback X to find the most likely set of additional
rules which are also conjuncts in G (see §5.2):

G = arg max
r1,...,rn

P (r1 ∈ G, . . . , rn ∈ G|X) (10)

R = {r1 . . . rn} is the set of possible rules that the
agent is currently aware of, as determined by the
colour terms it’s aware of (soR gets larger during
learning). For each r ∈ R, the agent tracks its
probabilistic belief that r ∈ G. Due to the belief
that any one rule being in the goal is unlikely, the
priors for all r ∈ G are low: P (r ∈ G) = 0.1. And
due to the independence assumption (11), the goal
G is constructed by adding r ∈ R as a conjunct iff
P (r ∈ G|X) > 0.5.

P (r ∈ G, r′ ∈ G|X) = P (r ∈ G|X)P (r′ ∈ G|X)
(11)

5.2 Handling Corrections
When the teacher corrects the agent by uttering, for
example, u = “no, red blocks should be on blue

5



blocks” the agent must update its knowledge of the
world in two ways: it must update its beliefs about
what rules are in the goal, as described in §5.1.2
and it must update its models for grounding colour
terms. To perform these inferences the agent builds
a probabilistic model which allows it to perform
these two inference. For the goal it uses the in-
ference in equation (10). To learn the colours it
performs this inference:

w = P (Red(o1)|X) (12)

And adds the data point (w, F (o1)) to its grounding
model for red objects.

We base our graphical model on the model pre-
sented in Appelgren and Lascarides (2020) which
we extend to deal with the fact that the teacher’s
utterance may be faulty. The model is a Bayes Net
consisting of a number off different factors which
are multiplied together to produce the final output
probability. The model from Appelgren and Las-
carides (2020) is shown in Figure 4. Grey nodes are
observable while white nodes are latent. Arrows
show conditional dependence between nodes. If
the teacher is faultless then the agent observes that
a coherent correction occurred: CC(a, u). The
factor for this in the graphical model:

P (CC(a, u)|rr,b1 ∈ G,V (rr,b1 , a),

rr,b2 ∈ G,V (rr,b2 , a)) (13)

captures equation (3), which stipulates that a co-
herent correction occurs when a rule which is in
the goal is violated. In the graphical model the
factor has a value of 1 any time this is true and 0
otherwise.

The violation factors V (rr,b1 , a) and V (rr,b2 , a)
represent whether or not a particular rule was vio-
lated by the action a. The agent cannot observe this
directly, but must instead infer this from whether or
not the objects are red and blue. As such the factor:

P (V (rr,bi , a)|Redo1 , Blueo2) (14)

captures equation (4) for i = 1 and (5) for i = 2.
The value of the factor is 1 if the relevant equa-
tion holds and 0 otherwise. So, for example,
when V (rr,b1 , a) = True, Redo1 = True, and
Blueo1 = False the value of the factor is 1.

The remaining nodes P (Redo1 |Fo1) and
P (Blueo2 |Fo2) are defined by the agent’s ground-
ing models. P (Foi) is a prior which is assumed to
be a constant for all oi. Finally, P (rr,bi ∈ G) is the

Redo1

Fo1

Blueo2

Fo2

rr,b1 ∈ G V (rr,b1 , a) rr,b2 ∈ GV (rr,b2 , a1)

CC(a, u)

Figure 4: The nodes added to the graphical model after
a correction u = “no, red blocks should be on blue
blocks”.

agent’s prior belief that rr,bi is in the goal (i = 1, 2).
As we mentioned earlier, this is initially set to 0.1;
however, the prior is updated each time the agent
encounters a new planning problem instance. The
prior is then set simply to the agent’s current belief
given the available evidence.

When the teacher designates a block o3 on the
table (thereby signaling that violation is indirect),
the graphical model this generates is similar to Fig-
ure 4, save there are two additional nodes Fo3 and
Redo3 ∨ Blueo3 (see (Appelgren and Lascarides,
2020) for details).

When the teacher stays silent the agent can make
an inference which implies that no rule which is
in the goal was violated. It can therefore build a
model similar to Figure 4 which captures this nega-
tion of equation (3). The agent can then update its
knowledge by making the same inferences when a
correction occurs, but with the observed evidence
being that no correction occurred. For further de-
tails on how this inference works see (Appelgren
and Lascarides, 2020).

5.3 Uncertain Inferences

In this paper we assume that the teacher may
make mistakes as described in §4. This intro-
duces a novel problem for the agent since it can
no longer assume that when the teacher says u that
that means the utterance coherently attaches to the
most recent action a. In other words, CC(a, u)
becomes latent, rather than observable. What
is observable is that the teacher did in fact ut-
ter correction u immediately after action a. We
capture this by adding a new (observable) fac-
tor TeacherCorrection(a, u) (or TC(a, u) for
short) to the graphical model. When the teacher is
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infallible TC(a, u) ≡ CC(a, u) but not when the
teacher is fallible.

The updated model is shown in Figure 5.
TC(a, u) is added as an observable node with
CC(a, u) made latent. The factor for CC(a, u)
still works in the same way as before, conform-
ing to equation (3). TC(a, u) imposes no se-
mantic constraints on a or on u. However, we
can use the evidence of TC(a, u) to inform the
agent’s belief about whether CC(a, u) is true or
not, i.e. whether it was actually coherent to ut-
ter u in response to a. The newly added factor
P (TC(a, u)|CC(a, u) captures the agent’s belief
about how faulty the teacher is and allows the agent
to therefore reason about whether TC(a, u) actu-
ally means that CC(a, u). In essence, it answers
the question “if it is coherent to correct a with u,
how likely is it that the teacher actually says u”.
So, if the agent believes that the teacher forgets
to utter a correction with probability p = 0.1 then
P (TC(a, u) = False|CC(a, u) = True) = 0.1.
Or if the agent believes that the teacher will falsely
correct an action which was actually correct 5% of
the time then P (TC(a, u) = True|CC(a, u) =
False) = 0.05. This allows the agent to make
use of the fact that the teacher did (or didn’t) utter
something to still update its beliefs about which
rules are in the goal and what the colour of objects
are.

The agents beliefs about the teacher’s fallibility
could be estimated from data or could potentially
be updated on the fly given the agent’s observation
of the interaction. However, for the purpose of the
experiments in this paper we have direct access
to the true probability of teacher fallibility since
we explicitly set this probability ourselves. We
therefore set the agent’s belief about the teacher’s
fallibility to the true value.

The final change made to the system compared
to Appelgren and Lascarides (2020) is to the way
inference is done. In their paper they perform ex-
act inference in a manner which was optimised
for the structure of the graphical model and the
incremental nature of the inference. However, the
method relied on the fact that the majority of prob-
ability states had zero probability due to the deter-
ministic factors in the model. When the teacher
is fallible the number of zero probability states
greatly falls. This leads to a situation where ex-
act inference becomes impractical. To deal with
this we deploy approximate inference, based on

Red(o1)

F (o1)

Blue(o2)

F (o2)

rr,b1 ∈ G V (rr,b1 , a) rr,b2 ∈ GV (rr,b2 , a)

CC(a, u)

TC(a, u)

Figure 5: The nodes added to the graphical model after
a correction u = “no, red blocks should be on blue
blocks”. Grey is observed and white latent.

a simple Bayesian Update together with a beam
search method which relies on the fact that the
model grows incrementally. We first find the prob-
ability for every atomic state in the newly added
model chunk. This establishes a set of possible non-
zero probability atomic states. These are combined
with atomic states from the previous inference steps
which we call the beam. The beam is the N most
likely states from the previous state. Each new non-
zero atomic state is combined with states from the
beam if they are compatible, determined by both
states having the same value for any overlapping
variables. These new combined atomic states are
evaluated on the full model and the N most likely
are kept as a new beam, which is normalised to cre-
ate a consistent probability distribution. Specific
probabilities can then be calculated by summing
all atomic states that match the chosen value, eg,
where Redo1 = True.

6 Experiments

In §4 we mentioned four types of teacher error
and in our experiments we vary the level of the
teacher’s error in these different types. We be-
lieve the most likely is missing indirect errors (MI)
since spotting these requires search on all possible
future actions. So our first faulty teacher varies
PMI ∈ {0.0, 0.1, 0.25, 0.5, 1.0}: ie, from no er-
rors to never correcting any indirect violations at
all. Our second teacher makes mistakes with di-
rect violations. We believe missing and adding
direct violations will be linked, so we experiment
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Figure 6: Cumulative regret for teachers making mis-
takes with direct violations. The dotted lines show the
baseline agent while the solid lines show the mistake
aware agent.

Figure 7: Cumulative regret for teachers making mis-
takes with indirect violations. The dotted lines show
the baseline agent while the solid lines show the mis-
take aware agent.

with: PD = PMD = PAD ∈ {0.0, 0.1, 0.25}. We
study two types of agents in our experiments. The
first, baseline agent, BA, ignores the fact that the
teacher may be faulty. It simply uses the model de-
scribed in Appelgren and Lascarides (2020). The
only difference is that since the teacher is actu-
ally making mistakes, sometimes the agent may be
given contradictory evidence which would cause
the inference to fail. In such a situation the agent
would simply ignore everything that was said in the
current scenario and move on to the next planning
problem instance. The second agent is a mistake-
aware agent, MA, which makes inferences using
the model from §5.3, matching its belief about the
teacher’s faultiness to the true probability.

In our experiments each agent is given 50 plan-
ning problems. Each planning problem has a differ-
ent goal and a different set of 50 planning problem
instances. The agent is reset between each plan-
ning problem, but retains knowledge between the

50 problem instances. We measure the number of
mistakes the agent makes, which we call regret. A
mistake is counted when an action takes a tower
from a state where it is possible to complete it in a
rule compliant way to one where it isn’t without un-
stacking blocks. In Figures 6 and 7 we present the
mean performance over the 50 planning problems,
and we use paired t-tests to establish significance.

Let’s begin by looking at the results for agents
learning from teachers that fail to make corrections
for indirect violations, shown in Figure 7. Clearly
when the teacher is faulty the agent performs worse
(a result which is shown significant through a pair-
wise t-test and significance threshold p < 0.01).
However, two interesting things can be observed.
First, the slope of the curves are about the same
for the agents learning from the faulty teacher and
those learning from the faultless teacher. What this
implies is that although the agent takes longer to
learn the task when the teacher misses indirect vio-
lations it does seem to reach an equal proficiency
by the end. We can explain the fact that the agent
makes more mistakes by the fact that it is unaware
of several mistakes it is making, however, when it
is made aware of a mistake it still manages to learn.
The second point is that the BA and MA agents
are equally good at learning at all levels of teacher
error. There is a good reason for this. When the
teacher misses indirect violations the agent can ac-
tually trust all other information it receives. If it is
given a direct correction then it knows for certain
that the teacher give a coherent correction. This is
true for all the feedback the agent receives when
the only error the teacher makes is missing indi-
rect violations. For this reason there isn’t actually
any need to change the way in which the agent
learns, which is reassuring given that we believe
the indirect violations to be more likely to happen
in practice.

Looking at the results when the teacher will
both miss and add corrections for direct violations,
shown in Figure 6, we see that the agent’s per-
formance is much worse, both compared to the
faultless agent and to the agents learning from the
teachers making direct violations (these results are
also significant given a pairwise t-test and signifi-
cance threshold p < 0.01). The big difference in
this case is that the agent BA performs much worse
than MA, especially when the likelihood of failure
is higher. This is true both if we look at the final
number of mistakes, but also at the slope of the
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Figure 8: The difference in terminal regret when deal-
ing with a faulty teacher vs. a faultless teacher, compar-
ing the baseline BA to the mistake-aware agent MA.

curve, indicating that the agent is still making more
mistakes by the end of training. Figure 8 shows
why: it compares the difference between the termi-
nal regret for the faultless teacher vs. the faulty one.
For BA there is a much larger spread of outcomes,
with a long tail of very high regrets. The results
for MA reside in a much narrower region. This im-
plies that in contrast to MA, BA performs extremely
badly in a significant number of cases. The high re-
gret scenarios can be explained by situations where
the agent has failed to learn the task successfully
and is therefore acting almost randomly. So, mak-
ing the agent mistake-aware stabilises the learning
process, allowing the agent to recover from the
teacher’s mistakes without completely failing to
learn the task, as seen in the baseline.

7 Conclusion

In this paper we present an ITL model where the
agent learns constraints and concepts in a tower
building task from a teacher uttering corrections
to its actions. The teacher can make mistakes, and
to handle this we introduce a separation between
the teacher uttering a correction (observable) vs.
whether that correction coherently relates to the
latest action (latent). Our experiments showed that
this separation significantly reduces the proportion
of situations where the agent fails to learn; with-
out the separation, learning can go catastrophically
wrong when the teacher’s mistakes involve direct
violations.
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remaining errors are our own.
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Abstract

Robust situated dialog requires the ability to
process instructions based on spatial informa-
tion, which may or may not be available. We
propose a model, based on LXMERT, that
can extract spatial information from text in-
structions and attend to landmarks on Open-
StreetMap (OSM) referred to in a natural lan-
guage instruction. Whilst, OSM is a valuable
resource, as with any open-sourced data, there
is noise and variation in the names referred
to on the map, as well as, variation in natural
language instructions, hence the need for data-
driven methods over rule-based systems. This
paper demonstrates that the gold GPS location
can be accurately predicted from the natural
language instruction and metadata with 72%
accuracy for previously seen maps and 64%
for unseen maps.

1 Introduction

Spoken dialog systems are moving into real world
situated dialog, such as assisting with emergency
response and remote robot instruction that require
knowledge of maps or building schemas. Effec-
tive communication of such an intelligent agent
about events happening with respect to a map re-
quires learning to associate natural language with
the world representation found within the map.
This symbol grounding problem (Harnad, 1990)
has been largely studied in the context of mapping
language to objects in a situated simple (MacMa-
hon et al., 2006; Johnson et al., 2017) or 3D pho-
torealistic environments (Kolve et al., 2017; Savva
et al., 2019), static images (Ilinykh et al., 2019;
Kazemzadeh et al., 2014), and to a lesser extent
on synthetic (Thompson et al., 1993) and real ge-
ographic maps (Paz-Argaman and Tsarfaty, 2019;
Haas and Riezler, 2016; Götze and Boye, 2016).
The tasks usually relate to navigation (Misra et al.,
2018; Thomason et al., 2019) or action execution
(Bisk et al., 2018; Shridhar et al., 2019) and as-

Figure 1: User instruction and the corresponding im-
age, displaying 4 robots and landmarks. The users were
not restricted or prompted to use specific landmarks on
the map. The circle around the target landmark was
added for clarity for this paper; users were not given
any such visual hints.

sume giving instructions to an embodied egocen-
tric agent with a shared first-person view. Since
most rely on the visual modality to ground natural
language (NL), referring to items in the immediate
surroundings, they are often less geared towards
the accuracy of the final goal destination.

The task we address here is the prediction of
the GPS of this goal destination by reference to a
map, which is of critical importance in applications
such as emergency response where specialized per-
sonnel or robots need to operate on an exact lo-
cation (see Fig. 1 for an example). Specifically,
the goal we are trying to predict is in terms of: a)
the GPS coordinates (latitude/longitude) of a refer-
enced landmark; b) a compass direction (bearing)
from this referenced landmark; and c) the distance
in meters from the referenced landmark. This is
done by taking as input into a model: i) the knowl-
edge base of the symbolic representation of the
world such as landmark names and regions of inter-
est (metadata); ii) the graphic depiction of a map
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(visual modality); and iii) a worded instruction.
Our approach to the destination prediction task

is two-fold. The first stage is a data collec-
tion for the “Robot Open Street Map Instructions”
(ROSMI) (Katsakioris et al., 2020) corpus based
on OpenStreetMap (Haklay and Weber, 2008), in
which we gather and align NL instructions to their
corresponding target destination. We collected 560
NL instruction pairs on 7 maps of different vari-
ety and landmarks, in the domain of emergency
response using Amazon Mechanical Turk. The
subjects are given a scene in the form of a map
and are tasked to write an instruction to command
a conversational assistant to direct robots and au-
tonomous systems to either inspect an area or extin-
guish a fire. The setup was intentionally emulating
a typical ‘Command and Control’ interface found
in emergency response hubs, in order to promote
instructions that accurately describe the final desti-
nation, with regards to its surrounding map entities.

Whilst OSM and other crowdsourced resources
are hugely valuable, there is an element of noise as-
sociated with the metadata collected in terms of the
names of the objects on the map, which can vary for
the same type of object (e.g. newsagent/kiosk, con-
fectionary/chocolate store etc.), whereas the sym-
bols on the map are from a standard set, which one
hypothesizes a vision-based trained model could
pick-up on. To this end, we developed a model that
leverages both vision and metadata to process the
NL instructions.

Specifically, our MAPERT (Map Encoder Rep-
resentations from Transformers) is a Transformer-
based model based on LXMERT. It comprises
of up to three single-modality encoders for each
input (i.e., vision, metadata and language), an
early fusion of modalities components and a cross-
modality encoder, which fuses the map representa-
tion (metadata and/or vision) with the word embed-
dings of the instruction in both directions, in order
to predict the three outputs, i.e., reference landmark
location on the map, bearing and distance.

Our contributions are thus three-fold:

• A novel task for final GPS destination predic-
tion from NL instructions with accompanying
ROSMI dataset1.

• A model that predicts GPS goal locations from
a map-based natural language instruction.

1We make our code and data available at https://
github.com/marioskatsak/mapert.

• A model that is able to understand instructions
referring to previously unseen maps.

2 Related Work

Situated dialog encompasses various aspects of in-
teraction. These include: situated Natural Lan-
guage Processing (Bastianelli et al., 2016); situ-
ated reference resolution (Misu, 2018); language
grounding (Johnson et al., 2017); visual question
answer/visual dialog (Antol et al., 2015); dialog
agents for learning visually grounded word mean-
ings and learning from demonstration (Yu et al.,
2017); and Natural Language Generation (NLG),
e.g. of situated instructions and referring expres-
sions (Byron et al., 2009; Kelleher and Kruijff,
2006). Here, work on instruction processing for
destination mapping and navigation are discussed,
as well as language grounding and referring expres-
sion resolution, with an emphasis on 2D/3D real
world and map-based application.

Language grounding refers to interpreting lan-
guage in a situated context and includes collabo-
rative language grounding toward situated human-
robot dialog (Chai et al., 2016), city exploration
(Boye et al., 2014), as well as following high-level
navigation instructions (Blukis et al., 2018). Map-
ping instructions to low level actions has been
explored in structured environments by mapping
raw visual representations of the world and text
onto actions using using Reinforcement Learning
methods (Misra et al., 2017; Xiong et al., 2018;
Huang et al., 2019). This work has recently been
extended to controlling autonomous systems and
robots through human language instruction in a
3D simulated environment (Ma et al., 2019; Misra
et al., 2018; Blukis et al., 2019) and Mixed Reality
(Huang et al., 2019) and using imitation learning
(Blukis et al., 2018). These systems perform goal
prediction and action generation to control a single
Unmanned Aerial Vehicles (UAVs), given a natural
language instruction, a world representation and/or
robot observations. However, where this prior work
uses raw pixels to generate a persistent semantic
map from the system’s line-of-sight image, our
model is able to leverage both pixel and metadata,
when it is available in a combined approach. Other
approaches include neural mapping of navigational
instructions to action sequences (Mei et al., 2015),
which does include a representation of the observ-
able world state, but this is more akin to a maze
rather than a complex map.
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With respect to the task, our model looks to pre-
dict GPS locations. There are few related works
that attempt this challenging task. One study, as
part of the ECML/PKDD challenge (de Brébisson
et al., 2015), uses Neural Networks for Taxi Des-
tination Prediction as a sequence of GPS points.
However, this does not include processing natu-
ral language instructions. SPACEREF (Götze and
Boye, 2016) is perhaps the closest to our task in
that the task entails both GPS tracks in OSM and
annotated mentions of spatial entities in natural lan-
guage. However, it is different in that these spatial
entities are viewed and referred to in a first person
view, rather than entities on a map (e.g. “the arch
at the bottom”).

In terms of our choice of model, attention mecha-
nisms (Bahdanau et al., 2015; Vaswani et al., 2017;
Xu et al., 2015) have proven to be very powerful
in language and vision tasks and we draw inspira-
tion from the way (Xu et al., 2015) use attention
to solve image captioning by associating words to
spatial regions within a given image.

3 Data

As mentioned above, the task is based on Open-
StreetMap (OSM) (Haklay and Weber, 2008).
OSM is a massively collaborative project, started
in 2004, with the main goal to create a free ed-
itable map of the world. The data is available under
the Open Data Commons Open Database Licence
and has been used in some prior work (Götze and
Boye, 2016; Hentschel and Wagner, 2010; Haklay
and Weber, 2008). It is a collection of publicly
available geodata that are constantly updated by
the public and consists of many layers of various
geographic attributes of the world. Physical fea-
tures such as roads or buildings are represented
using tags (metadata) that are attached to its basic
data structures. A comprehensive list of all the pos-
sible features available as metadata can be found
online2. There are two types of objects, nodes and
ways, with unique IDs that are described by their
latitude/longitude (lat/lon) coordinates. Nodes are
single points (e.g. coffee shops) whereas ways can
be more complex structures, such as polygons or
lines (e.g. streets and rivers). For this study, we
train and test only on data that uses single points
(nodes) and polygons (using the centre point), and
leave understanding more complex structures as
future work.

2wiki.openstreetmap.org/wiki/Map Features

We train and evaluate our model on ROSMI, a
new multimodal corpus. This corpus consists of
visual and natural language instruction pairs, in
the domain of emergency response. In this data
collection, the subjects were given a scene in the
form of an OSM map and were tasked to write
an instruction to command a conversational assis-
tant to direct a number of robots and autonomous
systems to either inspect an area or extinguish a
fire. Figure 1 shows an example of such a writ-
ten instruction. These types of emergency sce-
narios usually have a central hub for operators to
observe and command humans and Robots and
Autonomous Systems (RAS) to perform specific
functions, where the robotic assets are visually ob-
servable as an overlay on top of the map. Each
instruction datapoint was manually checked and if
it did not match the ‘gold standard’ GPS coordi-
nate per the scenario map, it was discarded. The
corpus was manually annotated with the ground
truth for, (1) a link between the NL instruction and
the referenced OSM entities; and (2) the distance
and bearing from this referenced entity to the goal
destination. The ROSMI corpus thus comprises
560 tuples of instructions, maps with metadata and
target GPS location.

There are three linguistic phenomena of note that
we observe in the data collected. Firstly, Land-
mark Grounding where each scenario has 3-5
generated robots and an average of 30 landmarks
taken from OSM. Each subject could refer to any of
these objects on the map, in order to complete the
task. Grounding the right noun phrase to the right
OSM landmark or robot, is crucial for predicting
accurately the gold-standard coordinate, e.g. send
husky11 62m to the west direction or send 2 drones
near Harborside Park.

Secondly, Bearing/Distance factors need to be
extracted from the instruction such as numbers (e.g.
500 meters) and directions (e.g. northwest, NE)
and these two items typically come together. For
example, “send drone11 to the west about 88m”.

Thirdly, Spatial Relations are where preposi-
tions are used instead of distance/bearing (e.g. near,
between), and are thus more vague. For example,

“Send a drone near the Silver Strand Preserve”.

4 Approach

4.1 Task Formulation

An instruction is taken as a sequence of word
tokens w =< w1, w2, . . . wN > with wi ∈ V ,
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Figure 2: Architecture of MAPERT. Map representations, i.e., names of landmarks found in OSM (metadata) and
Faster-RCNN predicted objects (visual modality), along with an instruction (sequence of tokens) are a) encoded
into the model, b) fused together (see also Fig. 4) and c) bidirectionally attended. The output comprises of three
predictions, recast as classification tasks: a landmark, a bearing and a distance.

where V is a vocabulary of words and the
corresponding geographic map I is represented
as a set of M landmark objects oi = (bb, r,n)
where bb is a 4-dimensional vector with bounding
box coordinates, r is the corresponding Region
of Interest (RoI) feature vector produced by
an object detector and n =< n1, n2 . . . nK >,
is a multi-token name. We define a function
f : V N ×R4∗M ×R2048∗M × V M∗K → R×R
to predict the GPS destination location ŷ:

ŷ = f
(
w, {oi = (bb, r,n)}M

)
(1)

Since predicting ŷ directly from w is a harder
task, we decompose it into three simpler compo-
nents, namely predicting a reference landmark lo-
cation l ∈M , the compass direction (bearing) b3,
and a distance d from l in meters. Then we triv-
ially convert to the final GPS position coordinates.
Equation 1 now becomes:

ŷ = gps(l, d, b) = f
(
w, {oi = (bb, r,n)}M

)

(2)

4.2 Model Architecture

Inspired by LXMERT (Tan and Bansal, 2019), we
present MAPERT, a Transformer-based (Vaswani
et al., 2017) model with three separate single-
modality encoders (for NL instructions, metadata
and visual features) and a cross-modality encoder
that merges them. Fig. 2 depicts the architecture.
In the following sections, we describe each compo-
nent separately.

Instructions Encoder The word sequence w is
fed to a Transformer encoder and output hidden
states hw and position embeddings posw; its

3b ∈ {N,NE,NW,E, SE, S, SW,SE,W,None}.

weights are initialized using pretrained BERT (De-
vlin et al., 2019). hw0 is the hidden state for the
special token [CLS].

Metadata Encoder OSM comes with useful
metadata in the form of bounding boxes (around
the landmark symbols) and names of landmarks
on the map. We represent each bounding box as
a 4-dimensional vector bbmetak

and each name
(nk) using another Transformer initialized with pre-
trained BERT weights. We treat metadata as a bag
of names but since each word can have multiple
tokens, we output position embeddings posnk

for
each name separately; hnk

are the resulting hidden
states with hnk,0

being the hidden state for [CLS].

Visual Encoder Each map image is fed into
a pretrained Faster R-CNN detector (Ren et al.,
2015), which outputs bounding boxes and RoI fea-
ture vectors bbk and rk for k objects. In order
to learn better representation for landmarks, we
fine-tuned the detector on around 27k images of
maps to recognize k objects {o1, .., ok} and classify
landmarks of 213 manually-cleaned classes from
OSM; we fixed k to 73 landmarks. Finally, a com-
bined position-aware embedding vk was learned
by adding together the vectors bbk and rk as in
LXMERT:

vk =
FF (bbk) + FF (rk)

2
(3)

where FF are feed-forward layers with no bias.

4.3 Variants for Fusion of Input Modalities
We describe three different approaches to combin-
ing knowledge from maps with the NL instructions:

Metadata and Language The outputs of the
metadata and language encoders are fused by con-
ditioning each landmark name ni on the instruction
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Figure 3: Metadata and Language fusion module.
Multi-token names correspond to the BERT-based em-
beddings of landmarks names. The output is the em-
bedding used to represent the landmarks names from
OSM metadata.

sequence via a uni-directional cross attention layer
(Fig. 3). We first compute the attention weights Ak

between the name tokens nk,i of each landmark
ok and instruction words in hw

4 and re-weight the
hidden states hnk

to get the context vectors cnk
.

We then pool them using the context vector for the
[CLS] token of each name:

Ak = CrossAttn(hw,nk) (4)

cnk
= Ak � nk (5)

hmeta = BertPooler(cnk
) (6)

We can also concatenate the bounding box
bbmetak

to the final hidden states:

hmeta+bb = [hmeta;FF (bbmetak
)] (7)

Metadata+Vision and Language All three
modalities were fused to verify whether vision can
aid metadata information for the final GPS des-
tination prediction task (Fig. 4). First, we filter
the landmarks oi based on the Intersection over
Union between the bounding boxes found in meta-
data (bbmetak

) and those predicted with Faster
R-CNN (bbk), thus keeping their corresponding
names ni and visual features vi. Then, we com-
pute the instruction-conditioned metadata hidden
states hmetai

, as described above, and multiply
them with every object vi to get the final hmeta+vis

context vectors:

hmeta+visi = hmetai
⊗ vi (8)

4Whenever we refer to hidden states hw we assume
concatenation with corresponding positional embeddings
[hw;posw], which we omit here for brevity.

Figure 4: Fusion of metadata, vision and language
modalities. Metadata are first conditioned on the in-
struction tokens as shown in Fig. 3. Then, they are mul-
tiplied with the visual features of every landmark.

4.4 Map-Instructions Fusion
So far we have conditioned modalities in one di-
rection, i.e., from the instruction to metadata and
visual features. In order to capture the influence
between map and instructions in both ways, a cross-
modality encoder was implemented (right half of
Fig. 2). Firstly each modality passes through a
self-attention and feed-forward layer to highlight
inter-dependencies. Then these modulated inputs
are passed to the actual fusion component, which
consists of one bi-directional cross-attention layer,
two self-attention layers, and two feed-forward lay-
ers. The cross-attention layer is a combination
of two unidirectional cross-attention layers, one
from instruction tokens (hw) to map representa-
tions (either of hmetak

, vk or hmeta+visk ; we re-
fer to them below as hmapk

) and vice-versa:

h̃w = FF (SelfAtt(hw)) (9)

h̃mapk
= FF (SelfAtt(hmapk

)) (10)

Cmapk
= CrossAtt(h̃w, h̃mapk

) (11)

Cw = CrossAtt(h̃mapk
, h̃w) (12)

hcross,w = Cw � h̃w (13)

hcross,mapk
= Cmapk

� h̃mapk
(14)

outw = FF (SelfAtt(hcross,w)) (15)

outmapk
= FF (SelfAtt(hcross,mapk

))
(16)

Note that representing hmapk
with vision fea-

tures vk only is essentially a fusion between the
vision and language modalities. This is a useful
variant of our model to measure whether the visual
representation of a map alone is as powerful as
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metadata, specifically for accurately predicting the
GPS location of the target destination.

4.5 Output Representations and Training

As shown in the right-most part of Fig. 2, our
MAPERT model has three outputs: landmarks, dis-
tances, and bearings. We treat each output as a
classification sub-task, i.e., predicting one or the
k landmarks in the map; identifying in the NL in-
struction the start and end position of the sequence
of tokens that denotes a distance from the refer-
ence landmark (e.g., ‘500m’); and a bearing label.
MAPERT’s output comprises of two feature vec-
tors, one for the vision and one for the language
modality generated by the cross-modality encoder.

More specifically, for the bearing predictor, we
pass the hidden state outw,0, corresponding to
[CLS], to a FF followed by a softmax layer. Pre-
dicting distance is similar to span prediction for
Question Answering tasks; we project each of the
tokens in outw down to 2 dimensions correspond-
ing to the distance span boundaries in the instruc-
tion sentence. If there is no distance in the sentence
e.g., “Send a drone at Jamba Juice”, the model
learns to predict, both as start and end position, the
final end of sentence symbol, as an indication of
absence of distance. Finally, for landmark predic-
tion we project each of the k map hidden states
outmapk

to a single dimension corresponding to
the index of the ith landmark.

We optimize MAPERT by summing the cross-
entropy losses for each of the classification sub-
tasks. The final training objective becomes:

L = Lland +Lbear +Ldist,start +Ldist,end (17)

5 Experimental Setup

Implementation Details We evaluate our model
on the ROSMI dataset and assess the contribution
of the metadata and vision components as described
above. For the attention modules, we use a hidden
layer with size of 768 as in BERTBASE and we
set the numbers of all the encoder and fusion layers
to 1. We initialize pretrained BERT embedding
layers (we also show results with randomly ini-
tialized embeddings). We trained our model using
Adam (Kingma and Ba, 2015) as the optimizer with
a linear-decayed learning-rate schedule (Tan and
Bansal, 2019) for 90 epochs, a dropout probability
of 0.1 and learning rate of 10−3.

10-fold Cross Validation
(unseen examples)

Acc50[SD] T Err(m) [SD]
Oraclelower 80 [5.01] 23.8 [51.9]
Vision
bbox 46.18 [5.59] 44.7 [51.7]
RoI+bbox 60.36 [5.3] 36.4 [51.1]
Meta+Vision
RoI+bbox+names 69.27 [6.68] 26.9 [47.7]
Meta
bbox 46.18 [5.59] 44.7 [51.7]
names 71.81 [7.37] 26.7 [47.7]
bbox+names 70.73 [6.58] 26.3 [48.7]
Oracleupper 100 [0.0] 0 [0]
Meta
bbox 60.36 [5.26] 29.8 [44.9]
names 87.64 [4.8] 9.6 [29.9]
bbox+names 87.09 [5.66] 9.5 [27.2]

Table 1: Ablation results on ROSMI using a 10-fold
cross validation. Accuracy (Acc) with IoU of 0.5 and
Targer error (T Err) in meters. The results in the top
half of the table use names conditioned on the lower
bound of the Vision modality and so are compared
to Oraclelower. The bottom part of the table use the
true metadata names and so are to be compared to
Oracleupper.

Evaluation Metrics We use a 10-fold cross-
validation for our evaluation methodology. This
results in a less biased estimate of the accuracy
over splitting the data into train/test due to the mod-
est size of the dataset. In addition, we performed
a leave-one-map-out cross-validation, as in Chen
and Mooney (2011). In other words, we use 7-fold
cross-validation, and in each fold we use six maps
for training and one map for validation. We refer to
these scenarios as zero-shot5 since, in each fold, we
validate our data on an unseen map scenario. With
the three outputs of our model, landmark, distance
and bearing, we indirectly predict the destination
location. Success is measured by the Intersection
over Union (IoU) between the ground truth destina-
tion location and the calculated destination location.
IoU measures the overlap between two bounding
boxes and as in Everingham et al. (2010), must
exceed 0.5 (50%) to count it as successful by the
formula:

IoU =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
(18)

Since we are dealing with GPS coordinates but
also image pixels, we report two error evaluation

5We loosely use the term zero-shot as we appreciate that
there might be some overlap in terms of street names and some
objects
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metrics. The first is sized weighted Target error (T
err) in meters, which is the distance in meters be-
tween the predicted GPS coordinate and the ground
truth coordinate. The second is a Pixel Error (P er-
ror) which is the difference in pixels between the
predicted point in the image and the ground truth
converted from the GPS coordinate.

Comparison of Systems We evaluate our sys-
tem on three variants using different fusion tech-
niques, namely Meta and Language; Meta+Vision
and Language; and Vision and Language. Abla-
tions for these systems are shown in Table 1 and
are further analyzed in Section 6. We also com-
pare MAPERT to a strong baseline, BERT. The
baseline is essentially MAPERT but without the
bidirectional cross attention layers in the pipeline
(see Fig. 2).

Note, the Oracle of the Meta and Language has
a 100% (upper bound) on both cross-validation
splits of ROSMI, whereas the oracle of any model
that utilizes visual features, is 80% in the 10-fold
and 81.98% in the 7-fold cross-validation (lower
bound). In other words, the GPS predictor can
only work with the output of the automatically pre-
dicted entities outputed from Faster R-CNN, of
which 20% are inaccurate. Table 1 shows results
on both oracles, with the subscript lower indicating
the lower bound oracle and upper indicating the
“Upper Bound” oracle. In Table 2, all systems are
being projected on the lower bound oracle, so as to
compare them on the same footing.

6 Results

Table 2 shows the results of our model for Vision,
Meta and Meta+Vision on both the 10-fold cross
validation and the 7-fold zero-shot cross validation.
We see that the Meta variant of MAPERT outper-
forms all other variants and our baseline. However,
looking at the 10-fold results, Meta+Vision’s accu-
racy of 69.27% comes almost on par with Meta’s
71.81%. If we have the harder task of no meta-
data, with only the visuals of the map to work with,
we can see that the Vision component works rea-
sonably well, with an accuracy to 60.36%. This
Vision component, despite being on a disadvantage,
manages to learn the relationship of visual features
with an instruction and vice-versa, compared to our
baseline, which has no crossing between the modal-
ities whatsoever, reaching only 33.82%. When we
compare these results to the zero-shot paradigm,
we see only a 10.5% reduction using Meta, whereas

Figure 5: Examples of instructions with the correspond-
ing maps and the accompanied predictions of the best
performing either Vision or Meta models conditioned
on Oraclelower. Underlined words are words corre-
sponding to the target output of the model.

17



10-fold Cross Validation 7-fold Cross Validation
(unseen examples) (unseen scenarios)

Accuracy50 [SD] T err [SD] P err [SD] Accuracy50 [SD] T err (m)[SD] P err (m) [SD]
Oraclelower 80 [5.01] 23.8 [51.9] 39.1 [96.3] 81.98 [17.09] 20.14 [39] 33.29 [66.43]
Baseline 33.82 [5.16] 64 [57.1] 119.8 [112.3] 34.90 [11.13] 60.71 [57.14] 110.43 [109.71]
Meta 71.81 [7.37] 26.70 [47.7] 48.2 [91.2] 64.30 [14.16] 32.71 [50.14] 65.71 [88.4]
Vision 60.36 [5.30] 36.40 [51.1] 64.40 [99.6] 49.75 [8.06] 46.00 [54.57] 87.86 [106.0]
Meta+Vision 69.27 [6.68] 26.90 [47.7] 48.30 [91.4] 58.33 [12.24] 36.14 [46.14] 70.71 [93.29]

Table 2: Results on both cross-validations of the best performing ablations of each variant and the baseline. The
predictions have been made under the Oraclelower. Accuracy (Acc) with IoU of 0.5, Target error (T Err) and Pixel
Error (P Err) in meters.

the Vision only component struggles more, with
a 17.6% reduction and Vision+Meta a 15.8% re-
duction. This is understandable since on the 7-fold
validation, we tackle unseen maps, which is very
challenging for the Vision-only model.

Ablation Study We show ablations for all three
model variants in Table 1 and corresponding abla-
tions. We show here just the 10-fold as the 7-fold
has similar performance ordering. Depending on
the representation of the map for each variant, we
derive three ablations for the Meta and two for the
Vision. Meta+Vision does not have ablations, since
it stands for all possible representations (bb, r, n).
Compared to the Oraclelower, Meta outperforms
the rest, as seen in Table 2. In addition, it re-
quires only the names of the landmarks to score the
71.73%. When we fuse the names and the bboxes,
the accuracy decreases slightly, whereas the T err
decreases slightly from 26.7 meters to 26.3 meters.
The full potential of the Meta model is shown on
the Oracleupper, which reaches 87.64 % accuracy
and T Err of only 9.6 meters, proof that for our
task and dataset metadata has the upper hand. It
is worthwhile noting that the Vision variant would
not have reached 60.36% accuracy, without the r
features, since with no fusion of RoI, the accuracy
drops to 46.18%.

Error Analysis In order to understand where the
Vision and Meta models’ comparative strengths lie,
we show some example outputs in Fig. 5. In ex-
amples 1&2 in this figure, we see the Meta model
is failing to identify the correct landmark because
the instruction is formulated in a way that allows
the identification of two landmarks. It’s a mat-
ter of which landmark to choose, and the bearing,
distance that comes with it, to successfully pre-
dict the destination location. However, the Meta
model is mixing up the landmarks and the bear-

ings. We believe it is that perhaps the Meta model
struggles with spatial relations such as “near”. The
Vision model, on the other hand, successfully picks
up the three correct components for the predic-
tion. This might be helped by the familiarity of the
symbolic representation the robots (husky, drones,
auvs), which it is able to pick up and use as land-
marks in situations of uncertainty such as this one.
Both models can fail in situations of both visual and
metadata ambiguity. In the third example, the land-
mark (Harborside Park) is not properly specified
and both models fail to pinpoint the correct land-
mark, since further clarification would be needed.
The final example in Fig. 5 shows a situation in
which the Meta model works well without the need
of a specific distance and bearing. The Vision
model manages to capture that, but it fails to iden-
tify the correct landmark.

7 Conclusion and Future Work

We have developed a model that is able to process
instructions on a map using metadata from rich map
resources such as OSM and can do so for maps that
it has not seen before with only a 10% reduction
in accuracy. If no metadata is available then the
model can use Vision, although this is clearly a
harder task. Vision does seem to help in exam-
ples where there is a level of uncertainty such as
with spatial relations or ambiguity between entities.
Future work will involve exploring this further by
training the model on these type of instructions and
on metadata that are scarce and inaccurate. Finally,
these instructions will be used in an end-to-end di-
alog system for remote robot planning, whereby
multi-turn interaction can handle ambiguity and en-
sure reliable and safe destination prediction before
instructing remote operations.
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Abstract
In this paper, we define and evaluate a method-
ology for extracting history-dependent spatial
questions from visual dialogues. We say that
a question is history-dependent if it requires
(parts of) its dialogue history to be interpreted.
We argue that some kinds of visual questions
define a context upon which a follow-up spa-
tial question relies. We call the question that
restricts the context: trigger, and we call the
spatial question that requires the trigger ques-
tion to be answered: zoomer. We automati-
cally extract different trigger and zoomer pairs
based on the visual property that the questions
rely on (e.g. color, number). We manually an-
notate the automatically extracted trigger and
zoomer pairs to verify which zoomers require
their trigger. We implement a simple baseline
architecture based on a SOTA multimodal en-
coder. Our results reveal that there is much
room for improvement for answering history-
dependent questions.

1 Introduction

The development of multimodal conversation
agents is a long standing challenge (e.g. (Winograd,
1972)). In recent years, much has been achieved on
the challenge of Visual Question Answering (VQA)
(e.g. (Antol et al., 2015; Goyal et al., 2017).) The
rapid advancements have brought researchers to
further increase the difficulty of the task by propos-
ing Visual Dialogue datasets (e.g. (Das et al., 2017;
de Vries et al., 2017)) suitable to train multimodal
dialogue systems. With this switch from VQA to
Visual Dialogue, the challenge has increased in
difficulty. First of all, while VQA involves only un-
derstanding the multimodal input (image and ques-
tion), Visual Dialogues also require visual ques-
tion generation and the acquisition of a dialogue
strategy. Moreover, while VQA involves visual
grounding of the question to be answered, Visual
Dialogues require grounding the question against

Questioner Oracle
Q1. Is it a fruit? Yes
Q2. Is it in the foreground? No
Q3. Are there two of them
on the branch? Yes
Q4. Is it the top one? Yes

Figure 1: Through the dialogue the focus shifts from
all the mandarins to just one. To answer Q4 (the

zoomer), “top” needs to be interpreted relatively to
the group of two mandarins identified by Q3 (the

trigger).

both the visual and language contexts. As such this
multi-folded challenge is rather ambitious. Our
work focuses on identifying Follow-up Questions
(FuQs) in Visual Dialogue. Namely, our goal is
to construct a dataset of questions that we know
require grounding both on the visual input and the
dialogue history.

Work carried out on modeling the role of dia-
logue history in visual dialogue (Agarwal et al.,
2020) has used the chit-chat dialogues of Vis-
Dial (Das et al., 2017) as a case study. However,
it has been shown that in this dataset the role of
grounding the question on the dialogue history is
limited: models that take history into account do
better, but the dataset contains a small percentage
of questions that require dialogue history to be in-
terpreted correctly. Based on these findings, Agar-
wal et al point out the need for data which captures
dialogue history dependence. Our work is a contri-
bution to this data collection challenge. We aim to
identify FuQs which require (part of) the dialogue
history to be interpreted.

Schlangen (2019) claims that goal-oriented set-
tings will contain more dialogue phenomena. Fol-
lowing this claim, we run our analysis on Guess-
What?! (de Vries et al., 2017), a multimodal dataset
in which the goal of the dialogues is to identify a
referent in an image.
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In referential dialogues, the questions aim to
collect information so as to narrow the set of poten-
tial candidates and univocally identify the referent
among them. Interestingly, in referential multi-
modal game, this progressive refinement happens
both through the language and visual contexts by
incrementally zooming the joint attention to the
conjectured referent. For instance in Figure 1, Q1
focuses on the full image and all objects are po-
tential candidates. As the dialogue proceeds the
attention is moved on the mandarins (Q1), then
on those two mandarins in background (Q2) and
finally on the mandarin on the top of the group of
mandarins in the lower branch (Q3 and Q4). In
this view, the data collection challenge launched
in (Agarwal et al., 2020) can be rephrased by look-
ing for a method to extract FuQs which require
to zoom on a specific region of the image by nar-
rowing the set of entities on which the dialogue
focuses. We claim that FuQs requiring multimodal
grounding can be extracted by identifying patterns
of trigger-zoomer questions.

By manual inspection of the human dialogues,
we have observed that often, after a positively an-
swered question, the questioner tries to narrow
down the choice by asking further details that dis-
criminate the candidate. This happens in particular,
when first a question (the trigger) identifies a
group of objects that share some property and then
the FuQ (the zoomer) focuses on one or more of
the members of the identified referential set. In
most cases, the zoomer requires the dialogue his-
tory to be answered. For instance, in Figure 1,
the positively answered Q3 acts as a trigger which
identifies the group of oranges under discussion
and Q4 zooms on one of those. Notice that the
question Q4 would be answered incorrectly if an-
swered without considering Q3 and Q2 because
the referent is not at the top of the picture. In this
paper, we investigate the role of spatial questions
in the identification of such patterns and focus on
the evaluation of the Oracle player of the Guess-
What?! game. We show that the method we pro-
pose facilitates data collection of follow-up ques-
tions that need to be grounded on the visual and di-
alogue context to be answered correctly or at least
with higher confidence. The dataset is publicly
available at https://github.com/tianaidong/

2021SpLU-RoboNLP-VISPA for future model devel-
opments and evaluations.

2 Related Work

Clark (1996) defines dialog common ground to
be the commitments that the dialog partners have
agreed upon during the dialog. An important part
of the common ground is the Question under Dis-
cussion (QuD) (Ginzburg, 2012; De Kuthy et al.,
2020). QuD is an analytic tool that has become pop-
ular among linguists and language philosophers as
a way to characterize how a sentence fits in its con-
text (Velleman and Beaver, 2016). The idea is that
each sentence in discourse is interpreted with re-
spect to a QuD. The QuD is defined by the dialog
or discourse history. The linguistic form and the
interpretation of an utterance, in turn, may depend
on the QuD that provides the constraints that define
the utterance’s context. We reinterpret this theory
to analyse referential visual dialogue: we take the
QuD to be the objects conjectured to be the tar-
get. The interpretation of a question depends on its
QuD.

Most of the work on the GuessWhat?! game has
focused attention on the Questioner player; as a
consequence, the issue of dialogue history needed
by the Oracle has never been considered. Since
the first baseline model (de Vries et al., 2017), the
Oracle receives just the question without the pre-
vious turns. Furthermore, this baseline model is
blind: it takes the question, the target’s category
and its location as inputs. This simple model has
been widely used as the Oracle agent by all work
on the Questioner (eg. (Strub et al., 2017; Shekhar
et al., 2019; Pang and Wang, 2020).) Testoni et al.
(2020) compared the LSTM baseline with a vi-
sually grounded LSTM (V-LSTM) and with an
adaptation of LXMERT (Tan and Bansal, 2019).
They show LXMERT based Oracle improves over
the baseline achieving a new SOTA for the Guess-
What?! Oracle. Yet the model does not use di-
alog history as an input. We evaluate LSTM, V-
LSTM and LXMERT against our dataset of context-
dependent questions.

Agarwal et al. (2020) argues that although com-
plex models that encode history for visual dialogs
have been proposed (Yang et al., 2019), such work
has not demonstrated that history matters for vi-
sual dialogs. Agarwal et al. propose and apply
a new methodology for evaluating history depen-
dence of questions in visual dialog. They show
crowdsourcers a question with its image without
the dialog history and ask the crowdsourcer “would
you be able to answer this question by looking at
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the image only or you need more information from
the previous conversation?”. However, it could hap-
pen that workers could be confident in answering
the question just by looking at the image, but that
they would give a different answer if the dialogue
history is provided. This difference is crucial for
studying context-dependent questions. In this pa-
per, we proposed a new methodology for detecting
history-dependent visual questions.

3 Dataset

We aim to identify Follow-up Questions (FuQs)
that need the previous turn to be answered correctly
or at least with higher confidence. We claim that
FuQs which zoom in a specific region of the image
to identify an object (or a set of objects) in it satisfy
this request. This might hold in particular when the
region contains more objects of the same category
(e.g., more instances of mandarins, as in Figure 1)
and the question refers to one (or more) member(s)
of such a group. Moreover, we conjecture that most
of such questions might also need to be visually
grounded since the answer to it could change if the
specific visual region they refer to is not properly
identified and the question is mistakenly grounded
over the full image. These challenging questions
that zoom into a group are usually triggered by a
question that refers to the whole group, the latter is
identified by its location, the number or the color of
its members. For instance, in Figure 1 the question
that zooms on the target object of the game, “Is
the top one?’, is triggered by the previous question
that identifies the group itself by referring to the
number of its members “Are there two of them on
the branch?”. Interestingly, the zoomer question
would be answered incorrectly without the previous
turn since the target is at the top of the zoomed
region and not on the top of the full image.

We focus on games in the test set in which there
are more candidates of the same category of the
target; we obtain 13,024 unique games containing
57,241 questions. We refer to these questions as
the full test set. Shekhar et al. (2019) has clas-
sified GuessWhat?! questions into entity and at-
tribute questions, the latter are subdivided into spa-
tial, color, action, size, texture and shape. Testoni
et al. (2020) further divided the spatial questions
into group, absolute and relational questions. We
build on these classifications to extract trigger and
zoomer pairs. We see group and color questions as
potential triggers for collecting history-dependent

questions: for instance, group questions that con-
tain explicit numbers indicate groups (e.g., "One
of the three oranges?" refers to a group containing
3 members) and color questions might identify a
group of objects which differ with respect to the
color (e.g., "Is it blue?" may refer to a group of
objects one of which is blue). For the zoomer ques-
tions, we consider group and absolute questions.
Absolute questions are those spatial questions that
contain an absolute location adjective (e.g., "Is it
in the middle?" contains "middle"). Other types of
questions, such as size ("Is it one of the big bot-
tles?" which contains "big") and shape ("Is it kind
of round?" which contains "round") could be used
as triggers and zoomers as well. In this paper we
do not use them because they are not frequent in
the Guesswhat?! dataset and a preliminary analy-
sis showed we would not extract sufficient trigger
zoomer pairs through them.

Using the automatic annotation of Testoni et al.
(2020), which is based on keyword matching, we
extract group and absolute questions, 4342 and
11,743, respectively. Moreover, we extract the dia-
logues containing context-dependent group ques-
tions using the following patterns: a positively an-
swered group question followed by another group
question (Group-Group) and a positively answered
color question followed by a group question (Color-
Group); we obtained 364 and 145 pairs, respec-
tively; and similarly for absolute questions obtain-
ing 919 context-dependent absolute questions (530
from the Group-Absolute and 389 from the Color-
Absolute patterns).

We randomly retrieve 200 samples for each sub-
set1 and manually checked them. We filtered out
those pairs in which the zoomer question could
be correctly interpreted without the dialogue his-
tory. We also removed samples that were noisy
(the image was blurry or the target was too small,
the question was not clear, etc). Each datapoint
was annotated by two annotators (the four authors),
and we maintained only those on which there was
an agreement between the two annotators. After
this filtering, we obtained in total 271 context-
dependent questions manually checked: 164 group
questions (103 group-group and 61 color-group)
and 107 absolute questions, the latter are all from
the group-absolute pattern.2

1For the Color-Group we took all the 145 datapoints.
2We are not considering questions extracted by color-

absolute pattern in our evaluation, because the manual inspec-
tion of 200 samples randomly chosen from the automatically
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We will refer to the set of visually grounded spa-
tial questions that are context-dependent as VISPA.
To gain a better understanding of the linguistic fea-
tures of our dataset, we collect the statistics of ques-
tion length, nouns and function words (prepositions
pronouns, determiners, conjunctions, auxiliaries)
for questions in each subset.3 As we can see in
Table 1 and Table 2, the context-dependent group
and absolute questions do not show distinguishing
surface features from the questions of the same
type. Therefore they would have not be captured
by using surface heuristics, such as searching for
pronouns.

3.1 Examples
Figure 2 and Figure 3 report examples of context-
dependent questions we have identified through our
automatic process and further manual filtering. As
we can see, when the previous turn is given, we
can be much more confident in providing a cor-
rect answer. The previous turn is the question we
have used to trigger the context-dependent FuQ,
in one case its a group question (“is it between
the two players in black?’ “Yes”’) and in the sec-
ond case it is a color question (“one of the two
gray ones?” “Yes”). The example on the upper
part (group-group) is particularly interesting since
the FuQ further specifies the previous turn, hence
it should be properly integrated with it and inter-
preted as saying “Is it between the two players in
black closest to the bat?”. Only models that truly
ground questions within the previous linguistic con-
text can properly answer it. The latter example re-
quires the Oracle to understand the group of objects
the question refers to, the previous turn identifies
this group through the color of its members.

Figure 3 provides an example of absolute ques-
tions in our manually filtered subset; the zoomer
question would be answered negatively if the previ-
ous turn is not given, since “middle” would refer to
the middle of the image. When the previous turn is
given, “middle” should be instead interpreted as the
middle of the 3 planes in front. This FuQ should
be grounded on the linguistic and visual context to
be properly answered.

4 Models

LSTM The first model we consider is the
language-only baseline model proposed in

extracted color-absolute questions provided too few cases of
history-dependent questions.

3We utilize NLTK Python Package for the analysis

(de Vries et al., 2017). This Oracle model receives
as input the embeddings of the target object’s
category, its spatial coordinates, and the question
to be answered encoded via an LSTM network.
These three embeddings are concatenated and fed
to a Multi-Layer Perceptron that gives the answer
(Yes, No, or N/A).

V-LSTM We also consider a multimodal Oracle
model. V-LSTM (Testoni et al., 2020) receives as
input the embeddings of the target object’s crop
features, its spatial coordinates, the features of the
image, and the question to be answered encoded
via an LSTM network. All these embeddings are
concatenated as in LSTM. The visual features are
extracted with the frozen ResNet-152 network pre-
trained on ImageNet (Russakovsky et al., 2015).
Differently from LSTM, this model does not have
access to the target object category.

LXMERT We additionally considered the Ora-
cle model proposed in Testoni et al. (2020). This
model is based on LXMERT (Learning Cross-
Modality Encoder Representations from Trans-
formers)(Tan and Bansal, 2019), a powerful multi-
modal transformer-based model. LXMERT repre-
sents an image by the set of position-aware object
embeddings for the 36 most salient regions detected
by a Faster R-CNN, and it processes the text input
by position-aware randomly-initialized word em-
beddings. Both the visual and linguistic represen-
tations are processed by a specialized transformer
encoder based on self-attention layers; their outputs
are then processed by a cross-modality encoder that
through a cross-attention mechanism generates rep-
resentations of the single modality (language and
visual output) enhanced with the other modality as
well as their joint representation (cross-modality
output). LXMERT uses the special tokens CLS and
SEP. Testoni et al. (2020) fine-tuned the pre-trained
version of LXMERT on the GuessWhat?! Oracle
task by feeding the visual features and the spatial
coordinates of the target object as the last region
in the visual input. They took the representation
corresponding to the special token CLS and fed it
to a Multi-Layer Perceptron to obtain the answer
to the input question. The authors show that this
model outperforms the baseline model to a large
extent.
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Nr Length Nouns Function W Pronoun
All questions 57,241 4.89 1.23 3.08 0.75

Group Q 4342 7.27 1.51 4.31 0.61
Absolute Q 11,743 5.79 1.52 3.57 0.64

CD group Q 509 7.28 1.45 4.28 0.62
Group-Group 364 7.03 1.36 4.16 0.58
Color-Group 145 7.92 1.66 4.59 0.71

CD absolute Q 919 5.95 1.46 3.75 0.65
Group-Absolute 530 5.84 1.43 3.73 0.63
Color-Absolute 389 6.10 1.50 3.77 0.68

Table 1: Automatically extracted datapoints: Length: average question length; Nouns: average number of nouns
per question; Function W: average number of function words per question; Pronouns: average number of

pronouns per question

Nr Length Nouns Function W Pronoun
CD Group Q

Group-Group 103 6.89 1.26 4.10 0.66
Color-Group 61 7.50 1.49 4.55 0.72

CD Absolute Q
Group-Absolute 107 5.59 1.31 3.76 0.57

Table 2: Manually filtered questions: Length: average question length; Nouns: average number of nouns per
question; Function words: average number of function words per question; Pronouns: average number of

pronouns per question

5 Experiments

We evaluated the models described above when
receiving just the question or the question and the
previous QA turn, we refer to the latter setting by
marking the model names by -DH. We run each
model three times (seed: 1, 50 and 100) and report
their average together with the significance test re-
sults about the difference across runs. Table 3 and
Table 4 report the model task accuracy on auto-
matically extracted sets and manually filtered sets,
respectively.

We claim the FuQs identified through the trigger-
zoomer patterns need (at least) the previous turn
to be answered properly or at least with higher
confidence, this need should be even stronger for
the manually filtered subsets.

As expected, LXMERT is the model that reaches
the highest accuracy of the full test set (Ta-
ble 3). Our results confirm what had been noticed
by Testoni et al. (2020), namely that spatial ques-
tions are harder than average, and group questions
are harder than absolute questions. This is reflected
both by the baseline and the SOTA model: LSTM
drops from 77.31 (All) to 70.45 (Absolute) to 67.11
(Group) and similarly does LXMERT – from 82.40
to 79.42 to 74.48. Even the accuracy of the best

performing model, LXMERT-DH, further drops
on the context-dependent questions reaching 74.43
and 71.12 for absolute and group questions, respec-
tively.

When looking at the context-dependent ques-
tions, the standard-deviation among the accuracies
reached by the three runs is rather high, hence in
order to understand its effect on the comparison be-
tween models when receiving just the question and
the question together with the previous turn, we
have run a statistical significance paired t-test (fol-
lowing the suggestions in Dror et al. (2018).) The
result shows that the difference between the two set-
tings is never significant, except for LSTM/LSTM-
DH on the absolute questions (p-value < 0.05). This
shows that model performance is rather unstable
and hence the selection of the binary answer is not
properly grounded. This instability is not due to
the size of the set: we have computed accuracy of
the three runs of LXMERT on subsets of 500 and
100 randomly chosen questions and obtained a very
low standard deviation.

Since the questions we have accurately selected
are context-dependent, ideally a model should in-
crease confidence in its answers when receiving the
context (we simplify by giving just the the previ-
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Questioner Oracle
Q10. Is it between the two players in black? Yes
Q11.The two players closest to the bat? Yes

Questioner Oracle
Q4. one of the three gray ones? Yes
Q5. first one counting from left to right? Yes

Figure 2: Context-dependent group questions: group-group (up) color-group (down)

Questioner Oracle
Q2. One of the 3 planes in front? Yes
Q3. is the one in the middle? Yes

Figure 3: Context-dependent absolute questions: group-absolute

ous turn). To verify this hypothesis, we computed
the confidence of LXMERT/LXMERT-DH (see Ta-
ble 5) by using the average probability assigned
to the answers in the manually filtered set. In our
results, we find rather the opposite of our assump-
tion: while both LXMERT and LXMERT-DH show
relatively high confidence (>0.80) in providing cor-
rect answers, LXMERT-DH’s confidences do not
increase on LXMERT with the addition of the pre-
vious turn. On the positive side, we observe that
for those cases where the model failed to provide
the correct answer, LXMERT-DH is usually more
uncertain than LXMERT about its own predictions.
We consider this as a positive behavior of the model,
since it suggests it is “aware” of what it does not
know.

5.1 LXMERT attention

To understand the possible reasons that prevent the
model from learning to exploit the dialogue history,
we have analysed how LXMERT-DH puts atten-
tion to different parts of the input sequence through
the computation of the cross-attention layers from
language to vision (Figure 4). Ideally, context-
dependent questions would require the model to
put more attention to the trigger questions com-
pared to questions that could be answered without
the context. Model’s attention on the previous turn
in the manually selected subset should therefore

Figure 4: LXMERT-DH attention: all questions vs.
context-dependent FuQs and the previous turn.

be higher than in the full test set, if the model
takes advantage of it as it should. However, this
does not happen with LXMERT-DH: its attention
on the previous turn does not change, and it actu-
ally slightly increases its attention on the zoomer
question instead. This result confirms our claim
that the current Oracle architecture fails in exploit-
ing the trigger question while answering context-
dependent questions and suggests that the model
should be designed and trained to better attend the
dynamically changing multimodal context.
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Controlled sets Context Depedent
All Absolute Group Absolute Group

LSTM 77.31 70.45 67.11 60.57∗ 59.39
LSTM-DH 77.88 71.03 67.75 64.09∗ 59.06
V-LSTM 74.65 70.87 67.42 58.43∗ 62.15
V-LSTM-DH 73.82 70.13 65.12 63.33∗ 62.27
LXMERT 82.40 79.42 74.48 74.21 70.01
LXMERT-DH 82.79 80.19 74.49 74.43 71.12

Table 3: Models task accuracy when they receive vs. do not receive the previous turn. Context-Dependent
Absolute questions are the only one for which statistically significant difference is found whe the DH is taken into

accout (t-test among the runs of LSTM/LSTM-DH and V-LSTM/V-LSTM-DH, p-value < 0.05).

Group-Group Color-Group Group-Absolute
LXMERT 65.84 71.58 76.95
LXMERT-DH 66.34 74.32 76.63

Table 4: Task accuracy on manually filtered sets of (271) Context-Dependent questions.

5.2 Qualitative Analysis

We have looked into the errors LXMERT does in
three runs and compared them with those made by
LXMERT-DH runs. Figure 5 illustrates the trigger-
zoomer pairs in images that contain a color trigger
question followed by a zoomer group question. We
report three examples, in the first one all three runs
of LXMERT-DH answers correctly while in two
runs LXMERT does not; while in the others two
examples both models fail in all runs.

The first example includes the spatial question
1 that is in the left? that is answered incorrectly
by LXMERT without history. Without history, we
suspect it is answered with “Yes” since the target
is indeed on the left of the image. However, if
the previous trigger turn, are there 2 black cars?
Yes, is considered, the objects that are relevant to
answering the spatial question are the 2 black cars;
withing this group, the target is not on the left but
on the right. LXMERT with our simple history
encoding is able to answer this spatial question
correctly.

The second and third examples include spatial
questions that our simple history encoding cannot
capture. The second one (is it the 1st one from
right?) is a spatial question that orders the objects
in the inverse order. Usually objects are ordered
from left to right but this question counts from right
to left. The third example includes a group with
four objects in the question is it in the center row
of 4 birds?. We hypothesize that larger numbers
are harder to interpret and answer correctly for
LXMERT.

Some of the questions in our history-dependent
dataset VISPA could be answered correctly by a
human without reading the trigger question since
they (being an Oracle) have access to the identity
of the target and its attributes (such as category,
color, etc). For instance, in the second game in
Figure 5 the target is the red light on the right of
the image (in the green box). A human Oracle can
correctly answer the question is it the 1st one from
the right assuming it considers only the red lights
in the image, but without being sure the questioner
is also making this assumption.. We also consider
these questions to be history-dependent because
they can be answered with more certainty consid-
ering the trigger question and its answer. We think
that investigating whether history-dependent mod-
els become more certain of their correct answers
(for the wrong reasons) is an interesting line for
future research.

6 Discussion and Conclusions

Visual Dialogues are an interesting challenge be-
cause of the interplay between the language and
visual modality. When focusing on answering vi-
sually grounded questions in dialogues, the main
challenge they pose in addition to visual question
answering is the need of grounding the question
against the dialogue history. In our work we define
and evaluate a methodology for extracting visually
grounded history-dependent spatial questions from
visual dialogues.

Our methodology does not capture all history
dependencies in the dataset but it assures that
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Color-Group Group-Group Group-Absolute
Succeded Failed Succeded Failed Succeded Failed

LXMERT 80.97 72.72 84.68 83.45 85.95 73.23
LXMERT-DH 81.37 63.95 80.54 71.37 82.30 65.51

Table 5: Confidence of models in answering FuQs in the manually filtered set. Succeeded: computed over the
subsets in which the model provides the correct answer; Failed: computed over the subsets in which the model

gives the wrong answer.

those pairs that are identified are indeed history-
dependent.

The "trigger-zoomer" methodology we propose
is evaluated here on the Guesswhat?! dataset. One
possible question is how generic and applicable
this model is in longer and open-world dialogues.
We think that this method can be extended to longer
dialogues by making the "trigger-zoomer" recur-
sive. Moreover, it could be extended to datasets
that not only contain questions, but also other forms
of language. As far as a "trigger" affects a zoomer
question by requiring the dynamic change of the
multimodal attention to properly interpret it, the
trigger can take any form. For instance, the trigger
could be provided in the form of a caption refer-
ring to a specific region of an image. We believe
that the "trigger-zoomer" methodology would be
applicable to all open-word subdialogues that focus
on reference resolution. Reference resolution is a
frequent task in dialogue which takes up a large
part of the turns in domains that are complex or
need search. See for instance da Silva Rocha and
Paraboni (2020).

We release both the automatically extracted ques-
tion pairs as well as the subset of such questions
which have been manually verified for context de-
pendence. Some of these questions cannot be an-
swered correctly without the previous trigger turn
or at least confidence in answering them should be
higher when the previous turns are provided. We
evaluate the simple oracle models proposed so far
in the literature and show that the architecture does
not profit from the previous turn as it should. We
pose the problem of interpreting follow-up ques-
tions as an open problem for the community.

References
Shubham Agarwal, Trung Bui, Joon-Young Lee, Ioan-

nis Konstas, and Verena Rieser. 2020. History for
visual dialog: Do we really need it? In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8182–8197, On-
line. Association for Computational Linguistics.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,
and Devi Parikh. 2015. VQA: Visual question an-
swering. In International Conference on Computer
Vision (ICCV).

Herbert Clark. 1996. Using Language. Cambridge
University Press, New York.

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi
Singh, Deshraj Yadav, José M.F. Moura, Devi
Parikh, and Dhruv Batra. 2017. Visual Dialog. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Kordula De Kuthy, Madeeswaran Kannan, Haemanth
Santhi Ponnusamy, and Detmar Meurers. 2020. To-
wards automatically generating questions under dis-
cussion to link information and discourse structure.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 5786–5798.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Re-
ichart. 2018. The hitchhiker’s guide to testing statis-
tical significance in natural language processing. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1383–1392, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Jonathan Ginzburg. 2012. The Interactive Stance. Ox-
ford Press.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2017. Making the
V in VQA matter: Elevating the role of image under-
standing in Visual Question Answering. In Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Wei Pang and Xiaojie Wang. 2020. Visual dialogue
state tracking for question generation. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Appli-
cations of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 11831–
11838. AAAI Press.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An-
drej Karpathy, Aditya Khosla, Michael Bernstein,
et al. 2015. Imagenet large scale visual recognition

29



Questioner Oracle
1. is it a car? no
2. is it white color? no
3. is it red? no
4. black? yes
5. are there 2 black cars? yes
6. 1 that is in the left? no

1. is it a car? no
2. is it something on a building? no
3. is it some light? no
4. is it the street light? no
5. can you see 5 or 6 of them on the right side? no
6. ok..so it is a light but may be the red lamps? yes
7. is it the 1st one from right? yes

1. is it a bird? yes
2. is it white? yes
3. is it in the center row of 4 birds? yes
4. Is it second from the front? no
5. is it third from the front? yes
6. from the top white birds it is in second? yes
7. is it the top first? yes

Figure 5: The two questions in italics in each dialogue correspond to pairs that start with a color question and
continue with a group question. The first is an example in which LXMERT-DH answers correctly while

LXMERT does not. The second and third ones illustrate kinds of spatial questions that are too challenging for our
simple history encoding.

challenge. International journal of computer vision,
115(3):211–252.

David Schlangen. 2019. Grounded agreement games:
Emphasizing conversational grounding in visual dia-
logue settings. CoRR, abs/1908.11279.

Ravi Shekhar, Aashish Venkatesh, Tim Baumgärtner,
Elia Bruni, Barbara Plank, Raffaella Bernardi, and
Raquel Fernández. 2019. Beyond task success: A
closer look at jointly learning to see, ask, and Guess-
What. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2578–2587.

Danillo da Silva Rocha and Ivandré Paraboni. 2020.
Building referring expression corpora with and with-
out feedback. Lang. Resour. Evaluation, 54(4):875–
891.

Florian Strub, Harm De Vries, Jeremie Mary, Bilal
Piot, Aaron Courville, and Olivier Pietquin. 2017.
End-to-end optimization of goal-driven and visually
grounded dialogue systems. In Proceedings of in-
ternational joint conference on artificial intelligenc
(IJCAI).

Hao Tan and Mohit Bansal. 2019. LXMERT: Learning
cross-modality encoder representations from trans-
formers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5103–5114.

Alberto Testoni, Claudio Greco, Tobias Bianchi, Mauri-
cio Mazuecos, Agata Marcante, Luciana Benotti,
and Raffaella Bernardi. 2020. They are not all alike:
Answering different spatial questions requires dif-
ferent grounding strategies. In Proceedings of the
Third International Workshop on Spatial Language
Understanding, pages 29–38, Online. Association
for Computational Linguistics.

Leah Velleman and David Beaver. 2016. Question-
based models of information structure. In Caroline
Féry and Shinichiro Ishihara, editors, The Oxford
Handbook of Information Structure. Oxford Univer-
sity Press.

Harm de Vries, Florian Strub, Sarath Chandar, Olivier
Pietquin, Hugo Larochelle, and Aaron C. Courville.
2017. GuessWhat?! Visual object discovery
through multi-modal dialogue. In 2017 IEEE Con-

30



ference on Computer Vision and Pattern Recogni-
tion, pages 5503–5512.

Terry Winograd. 1972. Understanding natural lan-
guage. Cognitive Psychology, 3:1–191.

Tianhao Yang, Zheng-Jun Zha, and Hanwang Zhang.
2019. Making history matter: History-advantage
sequence training for visual dialog. In 2019
IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October
27 - November 2, 2019, pages 2561–2569. IEEE.

31



Proceedings of Second International Combined Workshop on Spatial Language Understanding andGrounded Communication for Robotics, pages 32–41
August 5–6, 2020. ©2021 Association for Computational Linguistics

Modeling Semantics and Pragmatics of Spatial Prepositions via
Hierarchical Common-Sense Primitives

Georgiy Platonov Yifei Yang Haoyu Wu Jonathan Waxman

Marcus Hill Lenhart K. Schubert

Department of Computer Science, University of Rochester
gplatono@cs.rochester.edu

{yyang99, hwu36, jwaxman2, mhill24}@u.rochester.edu
schubert@cs.rochester.edu

Abstract

Understanding spatial expressions and using
them appropriately is necessary for seamless
and natural human-machine interaction. How-
ever, capturing the semantics and appropri-
ate usage of spatial prepositions is notori-
ously difficult, because of their vagueness and
polysemy. Although modern data-driven ap-
proaches are good at capturing statistical reg-
ularities in the usage, they usually require sub-
stantial sample sizes, often do not generalize
well to unseen instances and, most importantly,
their structure is essentially opaque to analysis,
which makes diagnosing problems and under-
standing their reasoning process difficult. In
this work, we discuss our attempt at model-
ing spatial senses of prepositions in English
using a combination of rule-based and statis-
tical learning approaches. Each preposition
model is implemented as a tree where each
node computes certain intuitive relations asso-
ciated with the preposition, with the root com-
puting the final value of the prepositional rela-
tion itself. The models operate on a set of artifi-
cial 3D “room world” environments, designed
in Blender, taking the scene itself as an in-
put. We also discuss our annotation framework
used to collect human judgments employed in
the model training. Both our factored models
and black-box baseline models perform quite
well, but the factored models will enable rea-
soned explanations of spatial relation judge-
ments.

1 Introduction

Prepositions in general and spatial prepositions in
particular form a notoriously difficult lexical class
because of their inherent vagueness and polysemy.
Pragmatics plays crucial role in determining both
which prepositions are licensed for usage in a given
situation and the range of configurations (i.e., lo-
cations of the arguments) of which the licensed

preposition holds true. Spatial senses of preposi-
tions are sensitive to miscellaneous factors such as
shapes and salience of the argument objects, pres-
ence of meronymy (part-of) relations, typicality,
etc. On provides a good example of such a semanti-
cally rich preposition. When we say that one object
is on another one, we strongly imply the relation
of physical support between them. But support re-
lation comes in many forms and occurs in diverse
physical configurations:

a) an apple on the table
b) a book on the shelf
c) a picture on the wall
d) a fly on the ceiling
e) a shirt on the person
f) a lamp on the post
g) a fish on a hook
h) a sail on a ship

Such variety makes capturing the meaning in
a computational model difficult. Yet, locative ex-
pressions involving prepositions are pervasive in
natural languages and, therefore, interpretation and
understanding of their meaning is important for
AI, especially in use cases involving grounded
human-machine interactions. Another important
requirement for modern AI systems is interpretabil-
ity and explainability. While neural networks can
efficiently learn complex statistical distributions
from large datasets, they are predominantly opaque
from the common-sense analysis perspective.

Our approach to computational models for spa-
tial prepositions is based on the following consid-
erations. To begin with, even though the range of
senses of spatial relations together with the heavy
dependence on pragmatic considerations make cap-
turing their meaning with simple mathematical cri-
teria difficult, it is still possible to account for many
of the above aspects in a principled way. People’s
judgments about whether a particular relation holds

32



in a given case can be quite variable; therefore it
should suffice to provide models that estimate the
probability that arbitrary judges would consider the
relation to hold. This approach is aligned with a
view of predicate vagueness as variability in ap-
plicability judgments (Kyburg, 2000; Lassiter and
Goodman, 2017), enabling Bayesian interpretation.
Next, since the usage of locative expressions is
pragmatic, the ultimate success criterion in assess-
ing models of prepositional predicates should also
be pragmatic; i.e, in physical settings we often use
such predicates to identify a referent (the blue book
in front of the laptop) or to specify a goal (put the
laptop on the table), so our models should allow a
natural language system to interpret such usages as
a human would.

Last, but not least, our approach facilitates ex-
plainability. Each relation is built from a combi-
nation of simpler relations, whose value can be
retrieved and used to provide a justification for a
particular judgement. For example, in order for
one object to be next to another, they need to be
close to each other and at about the same elevation.
Thus, the latter criteria are included as factors in
determining the value of the next-to relation, and
their values could be used to generate meaningful
explanations for any particular judgement made by
the model.

In the following sections, we discuss related
work, and then outline our modeling framework by
examining the primitive concepts that are used as
building blocks, and showing how these concepts
come together in modeling a specific preposition.
We then evaluate our approach in a “room world”
domain, making use of Blender graphics software.
We discuss two different sets of models, one purely
neural network-based, implemented as a collec-
tion of multi-layer perceptrons, and another where
models are implemented as trees, where each node
computes a probabilistic rule. We describe our an-
notation framework for collecting human spatial
judgments and evaluate our models. We summarize
our contributions, and directions for future work,
in the concluding section.

2 Related Work

In what follows, the first and second arguments of
a preposition are referred to as figure and ground,
respectively, when used in locative settings (Talmy,
1975).

The 3D approach to modeling spatial relations,

as opposed to modeling based on 2D images, is
informed by the cognitive science perspective. It
is likely that people conceptualize their immediate
surroundings as a 3D space defined by the three
principal orientation axes of the body (Tversky
et al., 1999). Moreover, 2D map-like space rep-
resentations employed in navigation can be easily
computed from a 3D “mental image” of the en-
vironment. It seems reasonable to assume that a
potential embodied agent, such as robot, would
also benefit from constructing such 3D “mental
images” of its surroundings. Indoor scenarios for
spatial modeling are particularly conducive to such
approach (Bower and Morrow, 1990).

Developing computational models for spatial
prepositions is a long-standing problem in the field
of computational linguistics and NLP, and the at-
tempts date back to the late 1960s. Early work fol-
lowed mainly geometric intuitions, relying on the
concepts of contiguity, surface, etc. (Cooper, 1968).
A very good review of the semantic and pragmatic
issues involved in spatial expressions is contained
in Herskovits (1985). Herskovits’ analysis iden-
tified a variety of important factors that influence
correctness judgments in the application of spatial
prepositions, illustrating these factors with many
striking examples (e.g., the role of object types and
typicality in contrasts such as the house on the lake
vs. *the truck on the lake, or the role of the fig-
ure/ground distinction and object size and type in
contrasts like The bicycle is near Mary’s house vs.
?Mary’s house is near the bicycle). Herskovits also
proposed various abstract principles constraining
the meaning and use of spatial prepositions. Our
work borrows many of the elements of Herskovits’
analysis, but is more narrowly focused on applica-
tion to a particular setting (the room world), and is
distinguished by our emphasis on developing com-
putational models capable of actually evaluating
the truth of prepositional relations in the chosen
domain.

A number of methodologies rooted in applica-
tion of topological notions to defining semantics
of spatial prepositions arose aiming at spatial rea-
soning using abstract qualitative primitives to en-
code relations between objects (Cohn and Renz,
2008; Cohn, 1997). One example of such an ap-
proach is the Region Connection Calculus (RCC)
and its modifications (Chen et al., 2015; Li and
Ying, 2004). At the heart of RCC lies the notion
of connectedness. Two nonempty regions are con-
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nected if and only if their topological closures have
a nonempty intersection. Starting with this primi-
tive, one may proceed to define more useful spatial
relations such as part-of (x is a part of y if every
object that is connected to x is also connected to
y) and overlapping (x and y overlap if there is a z
that is a part of both x and y). Continuing in the
same fashion one can define several other topolog-
ical notions and then use them to describe spatial
configurations of objects. While mathematically
appealing and facilitating rigorous inference, these
qualitative methods are too strict and unable to
capture the semantic richness of natural language
descriptions of spatial configurations of objects,
since they neglect aspects such as orientation, size,
shape, and argument types.

Conceptually, the way we define the spatial rela-
tions in our model is similar to the spatial template
approach, discussed in Logan and Sadler (1996).
This approach is based on the idea of defining a
region of acceptability around the reference object
that captures the typical locations of the relatum for
this relation and determining how well the actual
relatum fits this region. Our work is also similar
in spirit and goals to the work by Bigelow et al.
(2015), which combined the imagistic space rep-
resentations with spatial templates and applied it
to a story understanding task. In their approach,
the authors used explicit Blender graphics model-
ing of a scene to represent the objects in question
and their relative configurations. In their model,
each region of acceptability is a three dimensional
rectangular region (more precisely, a prism with a
rectangular base) representing the set of points for
which the given spatial relation holds. For exam-
ple if one has a pair of two objects, A and B, and
wants to determine whether A is on top of B, A is
checked to determine whether it is in the region of
acceptability located directly above B. Probabilis-
tic reasoning is supported by using values from 0
to 1 to represent the portion of the relatum that falls
into a particular region of acceptability.

In recent years, attempts have been made to use
statistical learning models, especially deep neu-
ral networks, to learn spatial relations. The work
by Bisk et al. (2018) is concerned with learning
to transduce verbal instructions, e.g., “Move the
McDonald’s block so it’s just to the right (not touch-
ing) the Twitter block” into block displacements in
a simulated environment. This system, unlike ours,
relies on deep learning and does not use high-level

cognitively-motivated spatial relation models. The
CLEVR dataset (Johnson et al., 2017) and its modi-
fied versions, such as (Liu et al., 2019), lays out an
explicit spatial question answering challenge that
has inspired a flurry of visual reasoning works, e.g.,
(Kottur et al., 2019) and (Mao et al., 2019), which
achieves near-perfect scores on the CLEVR ques-
tions. Common shortcomings of these approaches
are reliance on synthetic data of limited variety
(only a few simple geometric shapes are present),
two-dimensional image-based model of the world,
very limited ground-truth models of spatial rela-
tions (e.g., left means any amount laterally to the
left, regardless of depth or intervening objects, etc.),
and use of domain-specific procedural formalisms
for linguistic semantics.

Other noteworthy recent examples of dataset-
driven work are (Chang et al., 2014) and (Yu and
Siskind, 2017). The former inverts the learning
problem, in a sense; the task was not to learn how
to describe object relationships, but rather to au-
tomatically generate a scene based on a textual
description. The latter employed models of spatial
relations to locate and identify similar objects in
several video streams.

We should separately mention the spatial mod-
elling studies by Malinowski and Fritz (2014) and,
especially, Collell et al. (2017), which apply deep
neural networks to learning spatial templates for
triplets of form (relatum, relation, referent). The
latter work does this in an implicit setting, that is, it
uses relations that indirectly suggest certain spatial
configurations, e.g., (person, rides, horse). Their
model is capable not only of learning a spatial tem-
plate for specific arguments but also of generalizing
that template to previously unseen objects; e.g., it
can infer the template for (person, rides, elephant).
These approaches, however, rely on the analysis
of 2D images rather than attempting to model rela-
tions in an explicitly represented 3D world.

Our approach can be seen as an attempt at quan-
titative implementations inspired by the criteria
that have been discussed in psychologically and
linguistically oriented studies (Garrod et al., 1999;
Herskovits, 1985; Tyler and Evans, 2003). Stud-
ies of human judgements of spatial relations show
that overly formal qualitative models with sharp
boundaries generally cannot do justice to the usage
of locative expressions in natural settings. We pre-
viously mentioned a study (Bigelow et al., 2015)
that applied 3D graphics scene modeling to a story
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understanding task, allowing reasoning about the
relative configuration and visibility of objects in
the scene. Another example of an imagistic reason-
ing system was implemented as part of the plan-
ning system for the robot Ripley (Roy et al., 2004).
Ripley used three-dimensional representation of
its body, operator and workspace, reconstructed
from two-dimensional view coming from Ripley’s
cameras.

Our work is very similar in spirit and execution
to (Platonov and Schubert, 2018) and (Richard-
Bollans et al., 2020b,a). All these studies model
prepositions using specially designed 3D environ-
ments in Blender or Unity and employ similar sets
of metrics to define the meaning of the prepositions.
The studies by Platonov & Schubert differ from
the present work in that the rules were less flexi-
ble (fewer parameters) and parameter values were
hand-adjusted, while in our work we use gradient
descent-based optimization to learn optimal val-
ues. The studies by Richard-Bollans ete al. relied
on the prototype and exemplar approaches, using
learning from data to estimate the prototype param-
eters or the exemplar configuration. Our work is,
by contrast, rule-based (although one might argue
that the parameters in our rules implicitly encode
prototype properties). None of the prior studies
explore generation of justifications for the spatial
judgements.

3 Task Description

We explore spatial prepositions as applied to the so-
called “room worlds” - 3D scenes depicting room
interiors filled with common everyday items such
as furniture, appliances, food items, etc.

The objects in the scene are designed in a partic-
ular way, so that their meronomy corresponds to
that of the real objects. That is, the mesh consists
of parts that are usually distinguished by people
(e.g., for a chair, its seat, legs, back, ets., are sep-
arate objects that can be accessed by our system).
This is useful for part-based inferences, e.g., a book
is on a bookshelf when it is on one of the shelves.
The objects are also annotated with other additional
tags such as frontal vectors that indicate where the
“front” of an object is, object type, etc. We have
designed 52 scenes containing about 10-30 objects
admissible for annotation as figure objects. Since
our annotation task involves describing the loca-
tion of a figure object in relation to other objects
(grounds), objects that form the environment (walls,

ceiling, floor) are not admissible as figures (how-
ever, they can be used as grounds as in the poster
is on the north wall).

This serves as a realistic domain for evaluating
spatial relations. We designed the annotation task
so as to achieve a balance between obtaining a
significant number of annotations and collecting
some information about human preferences. In
each annotation instance the annotator is presented
with a screenshot of a room world scene and is
asked to describe the location of a highlighted fig-
ure object. First, the annotator is to pick a single
best-fitting preposition and a corresponding ground
object. After that, they are to indicate all other re-
lations that they believe to hold between the figure
and the ground (if the most appropriate relation
chosen was between, they are to indicate which re-
lations hold between the figure and the first ground
object). They are then asked to repeat the same
procedure for up to two more times. The reason for
such an approach is that while the second part of
the annotation (choosing all the relations holding
between the given and the selected objects) pro-
duces coverage of pairwise relations, many such
judgements feel forced and unnatural to human an-
notators (during earlier explorations it was noted
that vagueness of locative expressions leads to an-
notators overthinking when making judgements).
The laws of conversational implicature predict that,
in everyday usage, various locatives will not occur
with uniform frequencies. When several possible
prepositions are applicable, people tend to choose
those prepositions that disambiguate better or imply
stronger relations, e.g., on is preferable to touching
or near even though these relations often co-occur.
Hence, the first part of the annotation process al-
lows annotators to freely choose the most natural
or “obvious” options.

At the moment, because of the scarcity of data
(see Table 2 for the number of collected annota-
tions), we don’t distinguish between the two anno-
tation types when training and testing our models.
In principle, one can assign different weights to
different annotations to skew the model towards
relying on the best-choice annotations more.

4 Model Details

We have developed two kinds of models. The first
one is a series of simple multi-layer perceptrons
(one per each relation), and the second is our main
rule-based model, which is implemented as a net-
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Figure 1: An example of a room world scene and the accompanying annotation controls. Best viewed in color.

work (more precisely, an arborescence) of nodes
that compute meaningful hand-crafted relations
used for determining the values of the prepositions.
Each node realizes one or more differentiable op-
erations which allows us to train the model using
standard gradient descent-based optimization. The
main reasons for developing the pure NN-based
solution are to provide the baseline performance
metric against which we compare our main models.
Each model is essentially a binary classifier used
to predict the likelihood that a particular relation
holds between given objects.

4.1 Neural Baseline

Our baseline model consists of a number of in-
dependent binary classifiers (one for each spatial
relation) and employs a 2-hidden layer architecture
for each network. The baseline models take figure
and ground objects’ centroids, bounding boxes, and
frontal vectors as input features. For each relation
we iteratively tested different hidden layer struc-
tures in the 15-36 units range and selected one that
performs the best (on average, across 5 randomized
re-runs). We chose SELU activations (Klambauer
et al., 2017) in the hidden layers and the logistic
sigmoid function as an output non-linearity, which
was the best combination based on our empirical
exploration. We used binary cross-entropy as the
standard binary classification loss. The model was
trained using the PyTorch stochastic gradient de-
scent optimizer with learning rate η = 0.003 and
momentum α = 0.9. We experimented with dif-
ferent regularization terms, but didn’t notice any

consistent performance gains (probably due to the
small size of our networks and dataset). Main rea-
son for the simplicity of the neural baseline is the
small size of the dataset of annotations (under 7000
in total).

4.2 Rule-Based Model

We rely on a soft rule-based approach and imagis-
tic scene representation for computing spatial rela-
tions. Each spatial preposition is implemented as a
binary or ternary probabilistic predicate computed
hierarchically as a combination of more primitive
relations that we call factors. These factors encode
typical more basic relations that affect whether a
particular spatial preposition holds. They are usu-
ally either different senses of the same preposition
or they co-occur with the preposition in most/all
configurations that license the usage of that prepo-
sition. The set of factors ranges from those com-
puting geometric properties (e.g., locations, sizes,
and distances) to ones computing non-geometric,
or functional ones (e.g., physical properties of the
relata, such as part structure, or the location of the
“front” of an object). There are several combinatory
rules that determine how the factors are combined
to produce a composite value. Typically, the factor
values are linearly combined, multiplied together,
or the maximum among them is taken, depending
on the relation. For example, when one object
is “on” another, it is often higher than the second
object, and typically supported by it. The factors
that we compute represent such primitive relations
that often accompany higher-level relations of “on-
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ness”, “above-ness”, etc. A list of example factors
is presented in the Table. 1 below.

Figure 2: Structure of the factor network for near.

The factor tree for each relation is different, how-
ever, the general underlying principles can be un-
derstood by considering an example. One such ex-
ample factor network is presented in Fig. 2. When
computing Near(A, B), we start by computing the
absolute distance, d(A,B), between A and B. How
this distance is computed depends on the geometry
of the arguments. In the default case, assuming that
both objects are roughly compact, d(A,B) is sim-
ply the Euclidean distance between the centroids
of A and B since, in this case, the centroid is a
good approximation of the “general location” of
an object. On the other hand, if, say, A or B is
planar (extended in any two dimensions compared
to the third, e.g., a wall, a book, a TV, etc.), lin-
ear (extended in one dimension, e.g., a pen), or
generally concave (e.g., a table), then d(A,B) is
the minimum between the centroid distance and
the distance between two closest points of A and
B. We then compute scaled distance dsc(A,B) by
dividing the absolute distance by the sum of the
argument sizes, which are approximated by the ra-
dius of the circumscribed sphere. Intuitively, scaled
distance provides a “size invariant” measure of the
closeness of the two objects. Its value should be
close to 1 when the objects are adjacent to each
other, regardless of the their sizes. Next, we com-
pute the distance decay factor, Fdd, as

Fdd(A,B) = σ(θdddsc(A,B)),

where σ is logistic sigmoid and θdd is a learned
parameter. The value of this factor gives a context-
independent measure of nearness, which is then se-

quentially modified by a rescaling that takes into ac-
count context information. We compute the scene-
adjusted nearness, Fsan, as a linear combination

Fsan(A,B) = θ1Fdd(A,B) + θ2Ffsr(A,B),

where θ1, θ2 ≥ 0, θ1 + θ2 = 1, and

Ffsr = 1− d(A,B)

frame size

is the frame-size rescale factor. The latter gives an
estimate of nearness by considering the absolute
distance between the objects relative to the size of
the frame, i.e., psychologically salient part of the
world. Currently, frame size is taken to be the size
of the entire scene. However, in principle this can
be extended to be chosen depending on argument
locations, e.g., if two small objects are on top of
a table, we can make the frame be the area of the
table top. The final nearness score is computed as

Near(A,B) = Fsan(A,B)Fasr(A,B)Farr(A,B).

Here, Fasr is the argument size-rescaling factor,

Fasr(A,B) = 0.9+0.1·σ(θasr(B.size−A.size)),

if A.size > B.size, and Fasr(A,B) = 1 other-
wise. This factor encodes the intuition that, when
using near to locate objects, the ground object is
typically chosen to be bigger and fixed. Com-
pare ?the house is near the car vs. the car is
near the house. Thus, when the figure is bigger
than the ground we reduce the nearness score a
bit, so that Near(Bookshelf,Banana) returns
a lower value than Near(Banana,Bookshelf)
(other things being equal). However, as should be
clear from the formula for Fasr, we only allow the
size difference adjustment to vary in the interval
[0.9, 1.0]. In this way, the system would prefer to
use the correct order of the arguments when making
a nearness judgement on its own, while still recog-
nizing that the relation might hold for the reverse
order of the arguments.

The Farr is the argument ranking rescaling fac-
tor. This factor lowers the nearness score if there
are other objects that have a higher value of Fsan.
That is, it lowers the score in proportion to how
far the current figure object is from being the best
candidate figure object for a given selection of the
ground and the relation. It is computed as

Farr = e−θarr(rank−1),
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Factor Description

to the right of deictic(a, b, o) Represents the deictic (here - viewer-specific) sense of the to the right of with respect to the observer o
in front of intrinsic(a, b) Represents the intrinsic (object-centered) sense of in front of
frame size rescale(a, b) Relative distance between a and b based on the size of the current perceptual frame
supporting(a, b) Direct support relation, i.e., whether a supports b
indirectly supporting(a, b) Indirect support relation, i.e., whether a supports some c which, in turn, supports b
touching(a, b) Whether a and b are in contact with each other
in direction(a, b, v) Computes whether b is in the general direction defined by a vector v with respect to a
higher than centroidwise(a, b) Determines whether a is higher than b in terms of their centroid locations
at same height(a, b) Computes whether a and b are roughly at the same elevation (in terms of centroids or their base level)

Table 1: Some of the factors used in computing spatial relations. In our system, we use the term observer to refer
to the properties of the viewer, i.e., viewer location and gaze direction.

where rank is the number of other objects C such
that Fsan(C,B) > Fsan(A,B).

Regarding sense ambiguity, different relations
can be evaluated with respect to different coordi-
nate frames. For example, for several projective re-
lations, e.g., to the right of, we consider three cases,
deictic, extrinsic and intrinsic. The so-called deic-
tic to the right of is computed based on viewer’s
perspective. Here, one object is considered to be
to the right of another, if its projection onto the
viewer’s visual plane is to the right of that of the
latter. The extrinsic to the right of is based on the
global coordinate system imposed by the world, i.e.,
front-right sides of the room. Finally, the intrinsic
to the right of is determined based on the intrinsic
coordinate system of the ground object, i.e., A is
intrinsically to the right ofB if it is on the right side
of B. Note that not all objects have intrinsic orien-
tations, and in these cases this sense of the relation
is assigned 0. These different senses are evaluated
based on the known observer properties (location
and gaze direction), global orientation vectors of
the world (fixed and always known), and frontal
vector of an object (when applicable, i.e., the ob-
ject has inherent orientation), respectively. When
dealing with multiple senses, the model selects the
one with the maximal value as an output.

The rule-based models are implemented as cus-
tom computational graphs using the PyTorch frame-
work. We use binary cross-entropy loss and Adam
as an optimizer, with the learning rate η = 0.01
and L2 regularization coefficient 0.1. The models
are trained using back-propagation of error. Each
object (3D mesh) in the scene is encapsulated in
a separate Python object. It should be noted that
we use these Python objects as input features, and
not the numerical vectors as is common in the ML
work.

5 Evaluation and Discussion

Evaluation data for both types of models are pre-
sented in Table. 2. Overall, both models performed
reasonably well, apart from the cases such as in
front of, behind and touching where the rule-based
model performed better thanks to additional avail-
able information. The results clearly show that it
is possible to produce reasonable judgments for
most spatial relations even with purely geomet-
ric information. However, our main goal was to
demonstrate that even when they fall short, our
rule-based models still compare reasonably well
with pure neural network-based approaches, with
the added benefit of being interpretable thanks to
their formulation in terms of meaningful decision
criteria that correspond to human intuitions about
spatial relations. Another important aim of our ex-
ploration was to evaluate whether the factors we
selected are appropriate and sufficient for modeling
the semantics of the locative senses of prepositions.
While it is difficult to extrapolate our performance
results to novel settings, we believe that our room
worlds are representative of a significant subset of
everyday settings where locative expressions are
apt to be used. The annotation process is still on-
going and we are working on an additional set of
scenes depicting outdoor environments. As such,
the numbers in the table are subject to change, as
the breadth of configurations covered and annota-
tion data is increased. Scale differences between
the two domains might affect the boundaries of
applicability of the prepositions as well as their rel-
ative psychological preference ordering. Whenever
possible we rely on approximations to the real 3D
meshes of objects, using centroids and bounding
boxes. This allows us to focus on the most salient
features of objects’ shapes and maintain relatively
high performance. The system generates responses
in real time which is relevant to the responsive-
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Pure NN model Rule-based model

relation total instances accuracy precision recall F1 accuracy precision recall F1

to the right of 214 0.94 1.00 0.89 0.94 0.94 0.97 0.92 0.94
to the left of 152 0.89 0.85 1.00 0.92 0.95 1.00 0.90 0.95
in front of 127 0.73 0.66 0.90 0.76 0.85 0.81 0.93 0.87

behind 97 0.76 0.68 0.91 0.78 0.86 0.80 0.91 0.85
above 74 1.00 1.00 1.00 1.00 0.90 1.00 0.85 0.92
below 86 0.82 0.92 0.80 0.85 0.87 0.97 0.78 0.87

between 220 0.96 1.00 0.93 0.96 0.95 1.00 0.87 0.93
next to 331 0.97 0.97 1.00 0.98 0.95 0.94 1.00 0.97

touching 82 0.76 0.74 0.83 0.78 0.99 1.00 0.97 0.98
near 296 0.90 0.91 0.95 0.93 0.93 0.95 0.93 0.94
on 346 0.8 0.81 0.89 0.85 0.89 0.94 0.88 0.91

Table 2: Performance statistics for the rule-based (RB) and pure MLP (NN) models. We excluded the data for
under, over and in, as the number of collected annotations was insufficient. The total instances column refers to the
test set instances, which constitute between 20% and 30% of all collected annotations, depending on the relation.

ness during a dialogue with the user (see the next
subsection).

5.1 On Explainability

The main reason for using the rule-based approach
is its interpretability. Specifically, our tree-of-
factors implementation of spatial models allows
backwards-generated justification of the final judg-
ment. Each factor represents some higher-level
semantic concept which can be readily translated
into natural language. The tree of factors computed
during the forward computation phase is preserved
and is traversed in the backward direction starting
from the root (representing the final output, i.e., the
result of the evaluation of the preposition model).
The mechanism for selecting the relevant factors
for each node of the tree is as follows. If the combi-
nation rule for the current node (the way the factors
of its immediate children are combined) is a prod-
uct, then if the node value ≥ 0.5, return all the
child nodes; otherwise, return the child node with
the smallest value. If the combination rule for the
children is a weighted linear combination of factor
values, then if the current node value is ≥ 0.5, re-
turn the highest contributing factor node or nodes
(total contribution includes their value and weight);
otherwise, return the value of the node with the
largest weight. Finally, if the combination rule is
the max operation, then if the current node value
is ≥ 0.5, return the child node with maximum
value; otherwise return all the child nodes. One
exception is the touching relation, for which the
explanation procedure returns a particular part of

the ground object as a justification (if the relation
holds, that is). For example, the relation Touch-
ing(Green Book, Bookshelf) holds because the re-
lation Touching(Green Book, shelf 2) holds, where
shelf 2 is part of the Bookshelf. In this case, rela-
tion between parts is considered a primitive, i.e.,
non-decomposable into more primitive relations,
and so the justification process ends there. We are
currently working on incorporating our models into
an existing dialogue system that, given the returned
factor(s), will generate an output in English. The
interpretability of our models is to be evaluated in
a dialogue-based setting.

As an example of the operation of the explana-
tion procedure, consider simplified factor network
for to the right of in Fig. 3.

Figure 3: An example of an explanation procedure.
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The numbers in the nodes are the respective val-
ues of the factors that the node computes. Assume
that the system is being asked whether A is to the
right of B. Assume further that the final output
value is right of = 0.72, which corresponds to “yes”.
Now, if the user inquires why the system arrived at
that conclusion, the following process unfolds. The
node for the final score for to the right of takes the
maximum over three values: deictic right of deic, in-
trinsic right of intr and extrinsic right of extr. Since
the maximum is taken, one of those nodes must be
equal to the final value. Hence, the explanatory rou-
tine returns the corresponding node and its value
(right of intr, 0.72). The corresponding interpre-
tation will be (when bridging with the dialogue
system is completed) something like “A is to the
right of B because A is located on the right side of
B”. If asked further as to why the intrinsic relation
holds, the system will analyze the intrinsic score’s
contributing factors, namely Fdir (directional fac-
tor that defines the “right-side” region for an ob-
ject) and Fdd (distance decay, measuring how far
apart the objects are). Since the combination rule
used is multiplication and the value of the current
node (intrinsic right) is 0.72 (i.e., relation holds),
it follows that both factors must hold as well. The
system will return the list of the nodes and their
values, i.e., [(Fdir, 0.9), (Fdd, 0.8)] as a result. The
straightforward interpretation of the latter would
be “A is on the right side of B, because it is located
in the general rightward direction w.r.t. to B and it
is close enough”. This process can continue until
leaf nodes are reached, which do not admit further
decomposition and are treated as primitives. Alter-
natively, assume that the value Fdd is only 0.4 (A
is too far from B). This low value will propagate
downstream and affect the intrinsic right of intr and
the final right of score. In this case, the system will
supply a negative answer to the original question.
When asked why A is not to the right of B, it will
return the list of all senses [(right ofdeic, 0.48), ...]
which has a straightforward interpretation of “A is
not to the right of B because none of the senses
apply”. If queried why, say, the intrinsic sense
does not apply, the system returns the lowest-value
node contributing to the intrinsic sense node, i.e.,
[(Fdd, 0.4)], which translates into “A is too far from
B to be on its right side”.

Note the contrast with standard approaches to
explainability in deep neural networks (e.g., modu-
lar neural networks), where the model can usually

only answer “what” questions about its decisions
(i.e., we know what kind of thing a module com-
putes), but not the “why” or “how” questions about
the reasons a given module arrived at a particular
output.

6 Conclusion

We considered the problem of designing intuitive
computational models of spatial prepositions that
combine geometrical information as well as some
pieces of commonsense knowledge and contextual
information about the arguments. Our main aim
was to develop spatial semantic models that rely
on psychologically plausible criteria and facilitate
justification of spatial judgements produced by the
models, and to compare such an approach against
a more mainstream black box statistical learning
architecture acting as a baseline. We believe that
combining the power of data-driven methods and
interpretable, algorithmic models is the way for-
ward in AI in general and, in particular, is neces-
sary in order to incorporate context and background
knowledge information needed to model spatial ex-
pressions properly. This work is one step in that
direction.
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Abstract

We deal with the navigation problem where
the agent follows natural language instructions
while observing the environment. Focusing on
language understanding, we show the impor-
tance of spatial semantics in grounding navi-
gation instructions into visual perceptions. We
propose a neural agent that uses the elements
of spatial configurations and investigate their
influence on the navigation agent’s reasoning
ability. Moreover, we model the sequential ex-
ecution order and align visual objects with spa-
tial configurations in the instruction. Our neu-
ral agent improves strong baselines on the seen
environments and shows competitive perfor-
mance on the unseen environments. Addition-
ally, the experimental results demonstrate that
explicit modeling of spatial semantic elements
in the instructions can improve the grounding
and spatial reasoning of the model.

1 Introduction

The ability to understand and follow natural lan-
guage instructions is critical for intelligent agents
to interact with humans and the physical world.
One of the recently designed tasks in this direction
is Vision-and-Language Navigation (VLN) (Ander-
son et al., 2018), which requires an agent to carry
out a sequence of actions in a photo-realistic simu-
lated environment in response to a sequence of nat-
ural language instructions. To accomplish this task,
the agent should have three abilities: understand-
ing linguistic semantics, perceiving the visual envi-
ronment, and reasoning over both modalities (Zhu
et al., 2020; Wang et al., 2019). While understand-
ing vision and language are difficult problems by
themselves, learning the connection between them
without direct supervision makes this task even
more challenging (Hong et al., 2020).

To address this challenge, some neural agents
establish the connection using attention mechanism

to relate the tokens from a given instruction to
the images in a panoramic photo (Anderson et al.,
2018; Fried et al., 2018; Ma et al., 2019; Yu et al.,
2018). Surprisingly, although those models can im-
prove the performance, Hu et al. (2019) found they
ignore the visual information. There is no clear
evidence that the agent can correspond the com-
ponents of the visual environment to the instruc-
tions (Hong et al., 2020). Based on these results,
recent research started to improve the agent’s rea-
soning ability by explicitly considering the struc-
ture of language and image. From the language
side, Hong et al. (2020) annotated fine-grained sub-
instructions and their corresponding trajectories
and used the co-grounded features of a part of in-
struction and the image to predict the next action.
From the image side, Hu et al. (2019) induced
a high-level object-based visual representation to
ground the language into the visual context.

In the same direction, we propose a neural agent,
namely Spatial-Configuration-Based-Navigation
(SpC-NAV), and consider the structure of both
modalities, that is, spatial semantics of the instruc-
tions and the objects in the images. We use the
notion of Spatial Configuration (Dan et al., 2020)
to model the instructions and design a state atten-
tion to ensure the execution order of spatial con-
figurations. Then, we utilize the spatial semantics
elements, namely motion indicator, spatial indi-
cator and landmark in spatial configuration to es-
tablish the connection with the visual environment.
Specifically, we use the similarity score between
the landmark representation in the spatial configura-
tions and the object representation in the panoramic
images to control the transitions between configu-
rations. Also, we align object representations with
the configuration representations enriched with mo-
tion indicator, spatial indicator and landmark repre-
sentations to finally select the navigable image.

A spatial configuration is the smallest linguistic
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(a) Spatial Configuration Scheme

(b) Spatial Configuration Annotation

Figure 1: Spatial Configuration example. The in-
struction ”Move to the table with chair, and stop.” can
be split into two spatial configurations: ”move to the
table with chair” and ”stop”. In configuration1, ”move”
is motion indicator; ”to” is spatial indicator; ”table” is
landmark. ”table with chair” is a nested spatial configu-
ration of configuration1. The role of ”table” is trajector;
”with” is spatial indicator; and ”chair” is landmark. In
configuration2, ”stop” is motion indicator.

unit that describes the location/trans-location of an
object with respect to a reference or a path that can
be perceived in the environment. It contains fine-
grained spatial roles, such as motion indicator, land-
mark, spatial indicator, trajector. Essentially, each
spatial configuration forms a sub-instruction in our
setting. Figure 1 shows an example of splitting an
instruction into its corresponding spatial configu-
rations and the extracted spatial roles. Previous
research argues representing the semantic structure
of the language could improve the reasoning capa-
bilities of deep learning models (Dan et al., 2020;
Zheng and Kordjamshidi, 2020). There are relevant
work modeling the meaning of spatial semantics
in probabilistic models (Kollar et al., 2010; Tellex
et al., 2011) and neural models (Regier, 1996; Gha-
nimifard and Dobnik, 2019). However, its impact
on deep learning models for navigation remains an
open research problem.
The contribution of this paper is as follows:
1. We consider the spatial semantic structure of
the instructions explicitly in terms of spatial con-
figurations and their spatial semantic elements, i.e.,
spatial/motion indicators, and landmarks to enrich
the configuration representations.
2. We introduce a state attention to guarantee that
configurations are executed sequentially. Also, we
utilize the grounding between the extracted spatial
elements and the object representation to help con-
trol the transitions between configurations.
3. Our experiment results show that considering the
explicit representation of semantic elements of the
spatial configurations improves the strong baselines

significantly in the seen environments and yields
competitive results in the unseen environments.

2 Related Work

Older studies on navigation before the deep learn-
ing era are mostly symbolic grounding methods,
which are based on parsing the semantics of
the instruction and learning probabilistic models.
MacMahon et al. (2006) used the parser to associate
the linguistic elements in free-form instruction to
their corresponding action, location and object in
the environment. Tellex et al. (2011) represented
the spatial language as a hierarchy of Spatial De-
scription Clauses (SDC) and proposed a discrimina-
tive probabilistic graphical model to find the most
probable path with the extracted SDC and the de-
tected visual landmark. Mei et al. (2016) provided
a good overview of the past classical work on navi-
gation. However, one of the biggest limitations of
those methods is that they required prior linguistic
structure and manual annotations.

In recent years, given the new capabilities cre-
ated by deep learning architectures, the navigation
task is extended to the photo-realistic simulated
environments (Anderson et al., 2018; Thomason
et al., 2019; Chen et al., 2019). Based on this, a
Sequence-to-Sequence (Seq2seq) baseline model
was proposed by Anderson et al. (2018) to encode
the instructions and decode the embeddings to iden-
tify the corresponding output action sequence with
the observed images. Fried et al. (2018) proposed
to train a speaker model to augment the instruc-
tions for the follower model. Ma et al. (2019) intro-
duced a visual and textual co-attention mechanism
and a progress monitor loss to track the execution
progress. Although those agents achieved better
performance, the semantic structures on both lan-
guage and vision sides were ignored.

We aim to exploit both symbolic grounding and
neural models in the spatial domain. Regier (1996)
designed the neurons to learn the meaning of spa-
tial prepositions. Ghanimifard and Dobnik (2019)
explored the effects of spatial knowledge in a gener-
ative neural language model for the image descrip-
tion. We mainly work on incorporating the spatial
semantics in navigation neural agent. Hong et al.
(2020) recently provided a method to segment the
long instruction into sub-instructions. They used
a shifting attention module to infer whether the
current sub-instruction has been completed. Sub-
instructions differ from us as they manually aligned
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the instructions and viewpoints to learn the align-
ments, while we modeled spatial semantics to guide
the alignment automatically. Moreover, their pro-
posed shifting attention module is hard attention,
and a threshold is set to decide whether the agent
should execute the next sub-instruction. However,
we utilize the grounding between the landmarks
and the objects to control the transitions between
sub-instructions.

3 Navigation Model

3.1 Problem Formulation

In this task, the agent follows an instruction to nav-
igate from a start viewpoint to a goal viewpoint in
a photo-realistic environment. Formally, the agent
is given a natural language instruction S, which is
a sequence of tokens, and {s1, s2, · · · } is its corre-
sponding token embeddings. The agent observes
a 360-degree panoramic view of its surrounding
scene at the current viewpoint. Here, we follow Ma
et al. (2019) to map the n navigable viewpoints to
discrete images from the current panoramic view1.
We obtain n images corresponding to each navi-
gable viewpoint I = {I1, I2, · · · , In}. The task is
to select the next viewpoint among the navigable
viewpoints or the current viewpoint (indicating the
stop), and finally, to generate the trajectory that
takes the agent close to an intended goal location.

3.2 Sequence-to-Sequence

We model the agent with a LSTM-based sequence-
to-sequence architecture (Sutskever et al., 2014)
to control the flow of information, as illustrated
in Fig 2. The encoder computes a contextual
embedding s̄j of each token embedding sj in S
by s̄j = LSTMencode(sj). At each step t of
navigation, the decoder receives the grounded in-
struction representation C∗t and the aligned im-
age representation I∗t to update its context ht by
ht = LSTMdecode([C

∗
t , I
∗
t ]). Finally, we predict

the probability distribution of the next navigable
viewpoint pt by ht. We introduce the method to
obtain C∗t and I∗t in Section 3.5 and Section 3.6, as
well as the next viewpoint prediction in Section 3.7.

3.3 Spatial Configurations Representation

To obtain the configurations in a navigation instruc-
tion, we first split the instructions into sentences.
Then we design a parser with rules applied on an

112 headings and 3 elevations with 30 degree interval.

off-the-shelf dependency parser2 to extract all the
verb phrases and noun phrases in each sentence. In
general, each configuration contains at most one
motion indicator. Since we aim to process instruc-
tions and look for motions, we split the sentences
with the extracted verb phrases as motion indica-
tors to obtain spatial configurations. We do not
separate the nested configurations with no motion
indicator and keep them attached to the dynamic
configurations (i.e. the ones with motion-indicator).
As shown in Figure 1, ”table with chair” is the
nested spatial configuration of ”move to the table
with chair”. Here, we only consider the prepo-
sitions that are attached to verbs, and merge the
spatial indicators and motion indicators such as
”move to” and use them together as the motion in-
dicator. After that, we insert a pseudo delimiter
token after each configuration and identify their
contained noun phrases as landmarks. Each navi-
gation instruction S is split into m configurations.
We re-organize the contextual embeddings of to-
kens [s̄1, s̄2, · · · ] generated by the encoder into
the array of spatial configurations representation
C = [C1, C2 . . . Cm], where m is the number of
configurations in the instruction. In the i-th config-
uration representation Ci =

[
ci1, c

i
2 · · · , ciP

]
, the

j-th element cij is the contextual embedding of
the corresponding k-th tokens in the instruction:
cij = s̄k. The last token of each configuration is
always the pseudo delimiter indexed by P, which
contains the most comprehensive context informa-
tion about the preceding words. Soft attention is
widely used to merge a collection of representa-
tions V into one by weighted sum based on the
relevance indicated by their associated keys repre-
sentations K and a query Q, calculated by Eq. 1.

SoftAttn(Q;K;V ) = softmax
(
QTWK√

dk

)
V

(1)
where W is a trainable linear mapping, and dk is
the dimension of each representation in K. We
apply a soft attention to each configuration repre-
sentation with the pseudo delimiter representation
ciP, which can be calculated by Eq. 2.

C̄i = SoftAttnconfig(Q = ciP;K = Ci;V = Ci)
(2)

After obtaining configuration representations, an
agent needs to identify which configuration to fol-

2https://spacy.io/

44



Figure 2: Model Architecture. The input to the encoder is the instruction text. The inputs to the decoder are
the grounded language C∗t calculated by state attention and the aligned visual representations I∗t obtained from
navigable images at each step t. The decoder predicts the distribution of next viewpoint pt with the updated context
ht. The high-level view at the top-left shows the information flow in the model aligning with the circled numbers.

low at each step. To achieve this, we incorpo-
rate the intra-configuration and inter-configuration
knowledge. Concretely, intra-configuration knowl-
edge is the motion indicator that guides the
agent movement and the landmarks that could
be grounded into the objects in visual images;
inter-configuration knowledge is that configura-
tions should be processed one after another.

As mentioned above, we identify verbs and noun
chunks in configurations as motion indicator and
landmarks respectively. Each configuration can
contain only one motion indicator and multiple
landmarks. Formally, for the i-th configuration Ci,
the motion indicator representation is denoted as
ciM and the landmark representation is denoted as

ciL =
[
ciL1

, ciL2
, · · · , ciLp

]
, where p is the number

of landmarks. If there is no landmark in the con-
figuration, the value of ciL will be set as zeros. To
enhance the motion indicator and landmark infor-
mation, we concatenate their word embedding with
the configuration representation. In case there are
multiple noun chunks in configuration, to simplify,
we select the noun closest to the root of the parsing
tree as the main landmark, denoted as p̂. Then the
enriched configuration representation is denoted as
C̃i =

[
C̄i; c

i
M; ciLp̂

]
.

3.4 Visual Representation

To execute a series of configurations, the agent
needs to keep track of the sequence of im-
ages observed along the navigation trajectory.

We firstly transform the low-level image fea-
tures from ResNet of n navigable images I =

{I1, I2, . . . , In} to I ′ =
[
I
′
1, I

′
2, · · · , I

′
n

]
by a

fully-connected layer I
′
j = FCimg(Ij). Then, a

soft attention is applied to I
′

with the previous
context ht−1, as shown in Eq. 3.

Ī = SoftAttnimg(Q = ht−1;K = I
′
;V = I

′
)
(3)

Furthermore, we equip the agent with object-
based representation. Specifically, we get top-K
object representations from each image with an
object detection model3. In this paper, we con-
sider two kinds of object representation: object
label representation and object visual representa-
tion. Specifically, the label representation uses the
GloVe embedding (Pennington et al., 2014) of the
type of the object, and visual representation uses
the region-of-interest (ROI) pooling of the object
detection model. We will compare the two repre-
sentations and a hybrid representation of them in
Appendix A.1. Formally, the object representations
could be denoted as O = [O1, O2 . . . On], where
for image Ij , there is Oj = [oj,1, oj,2, · · · , oj,K ].
oj,k is the k-th object representation in j-th image.

3.5 Spatial Configuration Grounding
To guarantee the sequential execution, we design a
state attention mechanism over the configurations.

3We employ Faster R-CNN pre-trained on Visual Genome,
and use at most 36 objects that have an area greater than 10
pixels.
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We consider the attention weight at each step as
a state that measures navigation progress and is
updated by a controller. Formally, the i-th configu-
ration at step t is denoted as αt,i. At the first step,
the attention weight is initialized to be focused on
the first configuration α0 = [1, 0, · · · ]. At each of
the following steps, the attention weight is updated
by a controller γt with discrete convolution. γt is a
two dimensional probability distribution indicating
to what extent the agent should execute the current
configuration or move to the next. The updating
process is formally defined in Eq. 4.

αt,i =
i∑

ı=i−1
αt−1,ı · γt,i−ı (4)

Using a set of rules to determine the value of the
controller γ is not practical. For example, for the
instruction ”move to the table” or ”move past the
table”, it is hard for an agent to decide whether
to execute the current configuration or to move to
the next one only based observing or not-observing
the ”table”. To address this issue, we let the agent
learn the value of γ based on three aspects of infor-
mation. The first one is the previous hidden state
ht−1; the second one is the attended image repre-
sentation Īt at the current step; the third one is the
similarity score St between the landmark represen-
tations and the object representations, Eq. 5 shows
how to get the similarity score St, and αt−1 is the
attention weight at the previous step.

St = C̃L ·O · αt−1 (5)

Then, we use a fully connected layer to predict the
distribution γt = FCγ

([
ht−1; Īt;St

])
. Finally, we

apply the state attention to C̃ to get the grounded in-
struction representation based on the configuration
Ĉ =

∑
i αt,i · C̃i, which is used as the language

input to the decoder C∗t = Ĉ.

3.6 Visual Representation Alignment
The intuition to leverage the object representation
is to select navigable images by aligning the object
representation with the configuration representa-
tion. We use two levels of soft attention, first over
the objects in each image by configuration repre-
sentation Ĉ, and second over all images guided by
the previous context ht−1.

Ôj = SoftAttnobj(Q = Ĉ;K = Oj ;V = Oj)

Î = SoftAttnobjimg(Q = ht−1;K = Ô;V = I
′
)

(6)

where Ô =
[
Ô1, Ô2, · · · , Ôn

]
. We use the image

representation Î , that has aligned the objects with
the configurations, as the visual input to the decoder
I∗t = Î .

3.7 Navigable Viewpoint Selection
We obtain a new decoder context ht, as described
in Section 3.2, with configuration input C∗t and vi-
sual input I∗t , where t is the current step. The
next step is to predict the viewpoint with the
image that has the highest correlation with the
current context and configuration, calculated by
zt,j =

〈
I
′
j ,FCpred ([C∗t ;ht])

〉
, where FCpred(·)

is a fully-connected layer. We sum the scores of
the three elevations for each navigable viewpoint k
as ζt,k =

∑
j∈κk zt,j , where κk is the set of three

elevations’ image indexes. The predicted navigable
viewpoint distribution pt can be calculated with
pt = softmax(ζt).

3.8 Training and Inference
We train our model with two state-of-the-art train-
ing strategies in this task. (1) T1: We follow Self-
Monitor (Ma et al., 2019) optimizing the model
with a cross-entropy loss to maximize the likeli-
hood of the ground-truth navigable viewpoint given
by the model, and a mean squared error loss to min-
imize the normalized distance in units of length
from the current viewpoint to the goal destination.
At each step, the next viewpoint is selected by sam-
pling the predicted probability of each navigable
viewpoint. (2) T2: We follow (Tan et al., 2019)
training the model with the mixture of Imitation
Learning and Reinforcement Learning, where Imi-
tation Learning minimizes the cross-entropy loss of
the prediction and always samples the ground-truth
navigable viewpoint at each time step, and Rein-
forcement Learning uses policy gradient to update
the parameters of the model.

During inference, we conduct a greedy search
with the highest probability of the next viewpoints
to generate the trajectory. It should be noticed that
beam search with a beam size greater than one is
not practical because the agent needs to move for-
ward and backward in the physical world, resulting
in a long trail trajectory before making a decision.

4 Experimental Setup

Dataset We evaluate our model with Room-to-
Room (R2R) dataset (Anderson et al., 2018), which
is built upon the Matterport3D dataset (Chang et al.,
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Validation-Seen Validation-Unseen Test(Unseen)
Method NE ↓ SR ↑ SPL ↑ NE ↓ SR ↑ SPL ↑ NE ↓ SR ↑ SPL ↑

1 Random (Anderson et al., 2018) 9.45 0.16 - 9.23 0.16 - 9.77 0.13 0.12
2 Student-forcing (Anderson et al., 2018) 6.01 0.39 - 7.81 0.22 - 7.85 0.20 0.18
3 Speaker-Follower (Fried et al., 2018) 4.36 0.54 - 7.22 0.27 - - - -
4 Speaker-Follower* 3.66 0.66 0.58 6.62 0.36 - 6.62 0.35 0.28
5 Self-Monitor* (Ma et al., 2019) 3.22 0.67 0.58 5.52 0.45 0.32 5.67 0.48 0.35
6 Environment Dropout* (Tan et al., 2019) 4.19 0.58 0.55 5.43 0.48 0.44 - 0.52 0.47
7 Environment Dropout + BERT* 4.40 0.61 0.57 5.54 0.46 0.43 - - -
8 SpC-NAV* 4.09 0.65 0.61 5.92 0.45 0.42 6.22 0.46 0.44

Table 1: Experimental Result comparing with baseline models. * means data augmentation.

Val-Seen Val-Unseen Test(Unseen)
Method NE ↓ SR ↑ SPL ↑ NE ↓ SR ↑ SPL ↑ NE ↓ SR ↑ SPL ↑

Self-Monitor (T1) 3.72 0.63 0.56 5.98 0.44 0.30 - - -
Sub-Instruction(T1) - - - 6.16 0.42 0.32 - - -

SpC-NAV+T1 3.95 0.65 0.59 6.51 0.39 0.32 6.22 0.42 0.35
EnvDrop (T2) 4.71 0.55 0.53 5.49 0.47 0.43 - - -

Sub-Instruction(T2) - - - 5.67 0.47 0.43 - - -
SpC-NAV+T2 4.68 0.59 0.56 6.68 0.44 0.39 6.25 0.45 0.43

Table 2: Experimental Result with Different Train-
ing Strategies. T1 and T2 are two training strategies.

2017). This dataset has 7,189 paths and 21,567 in-
structions with an average length of 29 words. The
whole dataset is divided into training, seen valida-
tion, unseen validation, and (unseen) test sets. The
seen validation set shares the same visual environ-
ments with the training set, while unseen validation
and test sets contain different environments.
Evaluation Metrics We report three evaluation
metrics. (1) Navigation Error (NE): the mean of the
shortest path distance between the agent’s final po-
sition and the goal location. (2) Success Rate (SR):
the percentage of the cases where the predicted fi-
nal position lays within 3m from the goal location.
(3) Success rate weighted by normalized inverse
Path Length (SPL): SPL normalize Success Rate
by trajectory length (Anderson et al., 2018). SPL
is recommended as the primary metric because it
considers both the effectiveness and efficiency of
navigation performance.

4.1 Baseline Models

We mainly compare Spc-NAV with the follow-
ing baseline models. Seq2Seq (Anderson et al.,
2018) trained an encoder-decoder model with two
learning strategies of random and student-forcing.
Speaker-Follower (Fried et al., 2018) introduced
a speaker module to synthesize new instructions
to train the follower module. Self-Monitor (Ma
et al., 2019) co-grounded instructions and image
based on soft attention mechanism. Environmen-
tal Dropout (Tan et al., 2019) proposed a neural
agent trained with the method of the mixture of
Imitation Learning and Reinforcement Learning.

Sub-instruction (Hong et al., 2020) segmented the
instruction into sub-instructions and designed a
shifting attention module to ensure the sequential
execution order between sub-instructions. The dif-
ferences between Sub-instruction and our model
has been discussed in Section 2.

4.2 Implementation Details

We implement SpC-NAV using PyTorch 4 We use
768-d BERT-base (Devlin et al., 2018) (frozen) as
the embedding of the raw instruction, and get its
512-d contextual embedding by LSTM. We encode
the representations of the motion indicator and the
landmark in each configuration with 300-d GloVe
embedding respectively, and concatenate them with
the 512-d configuration representation to obtain
the enriched configuration representation (1112-d).
We use 300-d GloVe embedding of object label
representation to calculate similarity score S with
configuration representation. We trained an auto-
encoder to map 2048-d object visual representation
from Faster R-CNN to 152-d, and use it to obtain
the attended object representation Ô. We optimize
using ADAM with learning rate 1e−4 in batches of
64. We used a rule-based parser to obtain the spatial
configuration and spatial semantic elements. This
provides some noisy extractions. Appendix A.2
includes the details about the accuracy of the parser
based on our manual annotations of a subset of
instructions.

5 Results and Analysis

Table 1 shows the main performance metrics of our
proposed SpC-NAV, compared with the baseline
models on seen/unseen validation set and unseen
testing set. To achieve the best result, SpC-NAV
is trained with the training strategy T2 (see Sec-
tion 3.8) and the data augmentation proposed in
(Tan et al., 2019). Our model improves the perfor-
mance in the seen environment and obtains com-

4https://github.com/zhangyuejoslin/SpC-NAV
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petitive results in the unseen environment. Since
we use BERT as the input to the encoder while the
baseline models use basic word embeddings, we
replace the word representations in Environment
Dropout with BERT for a fair comparison. Al-
though the richer language representations help the
performance, our model still achieves better results,
especially in the seen environments. It indicates
that the spatial configuration and spatial elements
indeed improve the agent’s reasoning ability.

Training strategies are orthogonal to our work,
and our model is friendly to the strategies widely
used in the literature (T1/T2) (see Section 3.8). We
evaluate SpC-NAV with both T1 and T2 and com-
pare the results with their baseline models as well
as Sub-Instruction. We do not apply data augmenta-
tion in this setting. As shown in Table 2, SpC-NAV
achieves consistent improvement in the seen envi-
ronment compared with all the baselines. In the
unseen environment, training with T1, SpC-NAV
outperforms Self-monitor (and is even comparable
to it with data augmentation) and performs simi-
larly as Sub-Instruction. However, training with
T2, our model does not outperform Environment
Dropout and Sub-Instruction in unseen environ-
ments. We analyze the errors in Section 5.2.

5.1 Ablation Analysis

Table 3 shows how various spatial semantic el-
ements influence the performance of the model.
The model is trained with the training strategy T1.
Row#1 is our model without considering spatial el-
ements. From row#2 to row#3, we incorporate the
representations of the motion indicator and the land-
mark into spatial configuration representation in-
crementally. In row#4, we use the similarity score
between the landmark representations in the con-
figuration and the object label representations in
the image to control the transitions between spatial
configurations. All motion indicator, landmark and
similarity score improve the performance. After
applying the similarity score, the large gain indi-
cates that the connection between landmarks and
objects is important in language grounding.

5.2 Qualitative Analysis

Seen Environment
We analyze some qualitative examples to find out
how the spatial semantics improve the model. For
the semantics of motion, we find that our model
can improve the cases that motions contain ”up”

Validation-Seen Validation-Unseen
Model NE↓ SR↑ SPL↑ NE↓ SR↑ SPL↑

1 SpC-NAV 4.11 0.62 0.53 6.49 0.39 0.29
2 SpC-NAVM 3.88 0.62 0.53 6.21 0.40 0.28
3 SpC-NAVM+L 4.01 0.62 0.54 6.27 0.39 0.29
4 SpC-NAVM+L+S 3.95 0.65 0.59 6.51 0.39 0.32

Table 3: Ablation study with different spatial seman-
tics. The subscription letters mean the model took
those information into account; M: motion indicator;
L: landmark; S: similarity score.

and ”down” after adding the representation of mo-
tion indicator. Figure 3 (a) shows an example of
such a scenario. The spatial configuration is ”walk
up the stairs”, and the agent could find the right
viewpoints after we incorporated the representation
of the motion indicator ”walk up”. However, the
model makes more mistakes in the cases that the
motion indicators are highly related to the objects,
such as ”walk through”, ”walk past”, and ”walk
towards”, which need the landmark information.
In these latter cases, the model should consider
both motions and landmarks together. In another
experiment, we added the landmark representation.
Figure 3 (b) shows an example that the spatial con-
figurations is ”walk past the dining room table”.
The agent can select the correct viewpoints when
we incorporate the representation of landmark ”din-
ing room table”. We also analyze the influence of
the similarity score, and found that when the infor-
mation in the current configuration is not sufficient
to make a decision, the similarity score will assist
in choosing the next configuration. For example,
in Figure 3 (c), the spatial configurations are ”turn
right” and ”walk past the couch”. Without using
the similarity score in controlling the transitions
between configurations, the agent tends to select a
viewpoint in the ”right” direction. But with similar-
ity score, the agent will consider both ”turn right”
and ”walk past the couch”, and selects the correct
viewpoint that the ”couch” can be seen.

Unseen Environment
Table 1 and Table 2 show that our model does not
outperform Environment Dropout in the unseen en-
vironments. We noticed that the main error is that
some objects can not be detected in the image by
the object detection model. This is more problem-
atic for our model because we explicitly align the
landmark phrases with the detected objects. For
example, in Fig 4 (a), the agent selects the correct
viewpoint when the configuration is ”Walk to the
glass door” because the connection between the
landmark ”glass door” and the object ”door” has
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(a) ±Motion Indicator
Walk up the stairs.

(b) ±Landmark
Walk past the dining room table.

(c) ±Similarity Score
Turn right, and walk past the couch.

Figure 3: Analysis of Seen examples. In these three scenarios, the corresponding spatial configurations are
provided. Green arrows in the above figures show the correct trajectory was selected after the additional spatial
semantics; red arrows show without that information the agent went wrong.

(a) Walk to the glass door.

(b) Go to the pottery.

Figure 4: Analysis of an Unseen example

been learned in training set. In Fig (b), the agent is
wrong when the configuration is ”Go to the pottery.”
because the ”pottery” is not detected at the initial
perspective and the word ”pottery” never appears
in the training set. However, the agent selects a
viewpoint that a bounding box contains a pottery.
The gap between seen and unseen become larger
after data augmentation since our model is able to
capture the structure of the language by observing
more examples. It can deal with the variations in
the instructions and improve the performance in
the seen environment, but it fails to deal with the
novel objects and visual variations in the unseen en-
vironments. This is an orthogonal issue addressed
in zero-shot learning (Blukis et al., 2020).

5.3 State Attention Visualization

We visualize the state attention and the soft atten-
tion weights over configurations. As shown in
Fig 5a and Fig 5c, our designed state attention
demonstrates that the grounded configuration shifts
gradually from the first configuration to the last
in both seen and unseen environments. We apply
the soft attention used in Self-Monitor on spatial
configurations, as shown in Fig 5b and Fig 5d, it
can not preserve the sequential execution order. We
also show the soft attention weights of the grounded
instruction in the Self-Monitor by splitting the in-
structions with the boundaries of our configurations.
As shown in Fig 5e and Fig 5f, although their at-
tention weights show the gradual shift, many con-
figurations are skipped.

(a) State Seen (b) Soft Seen (c) State Unseen (d) Soft Unseen

(e) Soft seen of Self-Monitor

(f) Soft unseen of Self-Monitor

Figure 5: Attention weights of various attention
strategies with seen and unseen examples. The hori-
zontal axis is the configuration order, and the vertical
axis is the temporal order of the steps taken by the
agent. Each row in sub-figures show the attention dis-
tribution over the configurations (or tokens) in an in-
struction at each time step. The green vertical lines in
Figure (e) and Figure (f) indicate the split points of the
configurations in the instruction.

6 Conclusion

We propose a neural agent that incorporates the
semantic elements of spatial language for vision-
and-language navigation. We use the notion of spa-
tial configurations as the main linguistic unit of the
instructions and enhance the spatial configuration
representation with the representations of motion
indicator and landmark. We design a state attention
to guarantee the sequential execution order of con-
figurations and use the similarity score between the
representations of landmarks and objects to control
the transitions between configurations. Based on
our results, incorporating the spatial semantics im-
proves reasoning ability over navigation. Future
work could investigate more fine-grained spatial
semantics and the geometry of spatial relations.
Also, we will deal with novel objects in a zero-shot
setting to improve the unseen environments results.
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A Appendix

A.1 Visual Representation Analysis
In this section, we experiment with three types of
object representations introduced in Section 3.6,
which are object label representation and object
visual representation and the combination of these
two types of object representation. As shown in
Table 4, object visual representation performs bet-
ter in unseen environments, and we use it to get
attended object representation Ô in our best model.
This experiment does not consider the similarity
score between the representations of landmarks and
objects.

Validation-Seen Validation-Unseen
Repr. NE↓ SR↑ SPL↑ NE↓ SR↑ SPL↑
Label 4.51 0.58 0.52 6.43 0.37 0.28
Visual 4.01 0.62 0.54 6.27 0.39 0.29

Label + Visual 4.45 0.59 0.53 6.54 0.37 0.28

Table 4: Result with Different Visual Representations.

A.2 Parsing Analysis
The performance of our rule-based parser influ-
ences the result of navigation. To evaluate it, we
manually annotated 845 spatial configurations for
200 instructions. We annotated motion indicators,
spatial indicators and landmarks in those configu-
rations. Our parser achieves an accuracy of 85% in
extracting the spatial configurations. For the extrac-
tion of spatial elements, the accuracy is 73% for
motion/spatial indicators, and 77% for landmarks.

In the following, we analyze two types of error
in getting spatial configurations (Split Error and
Order Error), and other errors that generated in the
extraction of motion indicator, spatial indicator and
landmark.

Split Error
The split configuration may only convey the spatial
position of objects rather than executable naviga-
tion information. For example, in the instruction,
“Turn left. There is a rocking chair in it,” two con-
figurations are generated based on our split method:
“Turn left” and “There is a rocking chair in it.” How-
ever, the second configuration is not an independent
spatial configuration because it indicates no motion,
and it is attached to the previous configuration.

Order Error
We order the configurations based on their occur-
rence in the sentence. However, there are cases

that the configurations have an inverted order. For
instance, “Stop once you pass the counter on the
right” is split as “stop” and “you pass the counter
on the right.” However, the implied sequence is
inverted because of “once”.

Motion Indicator and Spatial Indicator
We build a vocabulary based on training data to
collect the commonly used verb phrases, and the
vocabulary size is 241. Table 5 shows some exam-
ples. If the motion indicator and spatial indicator
does not show in the vocabulary, we will treat the
verbs as the motion indicators and prepositions
as spatial indicators in configurations. With this
method, we can get 73% accuracy since there are
expressions that never appear in the training dataset,
and it is hard to extract the complete verb phrases
only based on pos-tag.

Landmark
We extract the noun phrases of each configuration
as landmark and can get 77% accuracy. However,
there are some special cases, for example, ”a left”
in ”make a left” is extracted as noun chunk, but
it can not be treated as a landmark. Also, for the
expression ”middle of the doorway”, ”the middle”
and ”the doorway” are both noun chunks, but the
whole phrase is the landmark instead of separated
ones.

head straight, walk through, walk down, walk into,
walk inside, turn around, turn left, make a left turn,

jump over, move forward, turn slightly right

Table 5: Verb Phrases Examples
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Abstract

In semantic parsing of geographical queries
against real-world databases such as Open-
StreetMap (OSM), unique correct answers do
not necessarily exist. Instead, the truth might
be lying in the eye of the user, who needs to
enter an interactive setup where ambiguities
can be resolved and parsing mistakes can be
corrected. Our work presents an approach to
interactive semantic parsing where an explicit
error detection is performed, and a clarifica-
tion question is generated that pinpoints the
suspected source of ambiguity or error and
communicates it to the human user. Our ex-
perimental results show that a combination of
entropy-based uncertainty detection and beam
search, together with multi-source training on
clarification question, initial parse, and user
answer, results in improvements of 1.2% F1
score on a parser that already performs at
90.26% on the NLMaps dataset for OSM se-
mantic parsing.

1 Introduction

Semantic Parsing has the goal of mapping natu-
ral language questions into formal representations
that can be executed against a database. If real-
world large-scale databases such as OpenStreetMap
(OSM)1 need to be accessed, the creation of gold
standard parses by humans can be complicated and
requires expert knowledge, and even reinforcement
learning from answers might be impossible since
unique correct answers to OSM queries do not nec-
essarily exist. Instead, uncertainties can arise due
to open-ended lists (e.g., of restaurants), fuzzily
defined geo-positional objects (e.g., objects “near”
or “in walking distance” of other objects), or by
ambiguous mappings of natural language to OSM
tags2, with the truth lying in the eye of the beholder

1www.openstreetmap.org
2For example, recreation grounds can map to tags reserved

for leisure purposes or for official landuse registration; bars

who asked the original question. Semantic pars-
ing against OSM thus asks for an interactive setup
where an end-user inter-operates with a semantic
parsing system in order to negotiate a correct an-
swer, or to resolve parsing ambiguities and to cor-
rect parsing mistakes, in a dialogical process.

Previous work on interactive semantic parsing
(Labutov et al., 2018; Yao et al., 2019; Elgohary
et al., 2020) has put forward the following dialogue
structure: i) the user poses a natural language ques-
tion to the system, ii) the system parses the user
question and explains or visualizes the parse to the
user, iii) the user generates natural language feed-
back, iv) the parser tries to utilize the user feedback
to improve the parse of the original user question.
In most cases, the “explanation” produced by the
system is restricted to a rule-based reformulation
of the parse in a human intelligible form, whereas
the human user has to take guesses about where the
parse went wrong or is ambiguous.

The goal of our paper is to add an explicit step
of error detection on the parser side, resulting in
an automatically produced clarification question
that pinpoints the suspected source of ambiguity
or error and communicates it to the human user.
Our experimental results show that a combination
of entropy-based uncertainty detection and beam
search for differences to the top parse yield con-
cise clarification questions. We create a dataset
of 15k clarification questions that are answered by
extracting information from gold standard parses,
and complement this with a dataset of 960 exam-
ples where human users answer the automatically
generated questions. Supervised training of a multi-
source neural network that adds clarification ques-
tions, initial parses, and user answers to the in-
put results in improvements of 1.2% F1 score on

map to tags bar and pub that differ in that only the latter sells
food; off-license shops can have licenses to sell only wine or
all kinds of alcohol.
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a parser that already performs at 90.26% on the
NLMaps dataset for OSM semantic parsing.

2 Related Work

Yao et al. (2019) interpret interactive semantic pars-
ing as a slot filling task, and present a hierarchical
reinforcement learning model to learn which slots
to fill in which order. They claim the automatic
production of clarification questions by the agent
as a main feature of their approach, however, what
is actually used in their work is a set of 4 prede-
fined templates. Elgohary et al. (2020) show an
interpretation of the parse that is understandable
for laypeople with a template-based approach, and
present different approaches to utilize the user re-
sponse to improve the parser. In their work, the
explantion on the parser side is purely template-
based, whereas our work explicitly informs the
clarification question by possible sources of parse
ambiguities or errors.

Considerable effort has been invested in the cre-
ation of large datasets for parsing into SQL repre-
sentations. Yu et al. (2018) created a dataset called
Spider which is a complex, cross-domain semantic
parsing and text-to-SQL dataset. Their annotation
process was very extensive, and involved 11 com-
puter science students who invested a total of 1,000
hours into asking natural language queries and cre-
ating the corresponding SQL query. Extensions
of the Spider dataset, SParC (Yu et al., 2019b), or
Co-SQL (Yu et al., 2019a) involved even more com-
puter science students. Our work attempts an au-
tomatic construction of concise clarification ques-
tions, allowing for faster dataset construction.

3 (Multi-Source) Neural Machine
Translation

Our work employs as a semantic parser a sequence-
to-sequence neural network (Sutskever et al., 2014)
that is based on an recurrent encoder and decoder
architecture with attention (Bahdanau et al., 2015).

Given a corpus of aligned data D =
{(xn, yn)}Nn=1 of user queries x and semantic
parses y, standard supervised training is per-
formed by minimizing a Cross-Entropy objec-
tive − 1

N

∑N
n=1

∑T
t=1 log p(yn,t|yn,<t, xn), where

the probability of the full output sequence y =
y1, y2, ..., yn is calculated by the product of the
probability for every timestep where p(y|x) =∏T

t=1 p(yt|y<t, x).

This model can be easily extended to multi-
source learning (Zoph and Knight, 2016) by us-
ing not only one, but multiple encoders. This
means that there are actually multiple sequences
of hidden states. The decoder hidden state is con-
sequently initialized by a linear projection of the
average of the last hidden states of all encoders
c = 1

N

∑N
i=1 hiWl, and needs to implement a sep-

arate attention mechanism for every encoder.
To be able to fine-tune a model with feedback

from a user, the standard cross-entropy objective
cannot be used because the desired target is not a
gold parse, but a parse ỹ predicted by the system,
that has been annotated with positive and negative
markings by a human user. This can be formalized
as assigning a reward δt that is either positive or
negative to every token in the parse (δt+ = 0.5 and
δt− = −0.5). It is then possible to maximize the
likelihood of the correct parts of the parse by op-
timizing a weighted supervised learning objective
∑
x,ỹ

T∑
t=1
δt log p(ỹt|x, y<t). (Petrushkov et al., 2018)

4 Neural Semantic Parsing of OSM

4.1 Data
Our work is based on the NLmaps v2 dataset.3

NLmaps builds on the Overpass API which allows
the querying of the OSM database with natural
language queries. This dataset includes template-
based expansions leading to duplicates in train and
test sets. However, these expansions introduced
problematic features into the data in that OSM tags
were inserted which, according to the documen-
tation in the OSM developer wiki, should not be
used:

• Is there Recreation Grounds in Marseille
→ query(area(keyval(’name’,’Marseille’)),

nwr(keyval(’leisure’,’recreation ground’),
qtype(least(topx(1))))

• Recreation Ground in Frankfurt am Main
→ query(area(keyval(’name’,’Frankfurt

am Main’)),
nwr(keyval(’landuse’,’recreation ground’)),
qtype(latlong))

While leisure=recreation ground certainly ex-
ists as a tag4, its use is heavily discouraged5. Fur-
thermore, several mistakes were introduced in the

3www.cl.uni-heidelberg.de/
statnlpgroup/nlmaps/

4https://wiki.openstreetmap.org/wiki/
Tag:leisure%3Drecreation_ground.

5https://wiki.openstreetmap.org/wiki/
Tag:landuse%3Drecreation_ground.
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data by the augmentation with the help of a wordlist.
For example, an automatically generated natural
language question based on this wordlist asks for
bars, whereas the gold parse associated to that ques-
tion asks for pubs instead:

• Where Bars in Bradford
→ query(area(keyval(’name’,’Bradford’)),

nwr(keyval(’amenity’,’pub’)),
qtype(latlong))

Conceptually, bars and pubs may not be that
different to each other, but OSM advises a strict
distinction between bars and pubs 6. While a pub
sells alcohol on premise, a pub also sells food, the
athmosphere is more relaxed and the music is qui-
eter compared to a bar.

Lastly, ambiguity was introduced because natu-
ral language words now map to multiple different
OSM tags. This leads to the following data occur-
rences:

• shop Off Licenses in Birmingham
→ query(area(keyval(’name’,’Birmingham’)),

nwr(keyval(’shop’,’alcohol’)),
qtype(findkey(’shop’)))

• How many closest Off License from Wall Street in Glas-
gow

→ query(around(center(area(
keyval(’name’,’Glasgow’)),
nwr(keyval(’name’,’Wall Street’))),
search(nwr(keyval(’shop’,’wine’))),
maxdist(DIST
INTOWN),
topx(1)),qtype(count))

The previous examples show that for the same
keyword ”Off License” both shop=alcohol and
shop=wine are valid interpretations.

Finally, since the data was augmented first, and
only afterwards split into train, development and
test sets, there is a lot of overlap between the train
and test data. This is problematic because a proper
evaluation should also test for overfitting, which
does not work if data is shared between different
splits, as shown in the following examples:

• Train: cinema in Nantes

• Dev: cinema in Paris

• Test: cinemas in Paris

We applied a dataset de-duplication by remov-
ing all datapoints from the development and test
sets which are identical to training datapoints when

6https://wiki.openstreetmap.org/wiki/
Tag:amenity%3Dbar.

System F1

Lawrence (2018) 80.36
Lawrence (2018)+NER 90.09
token-based 83.43
character-based 93.77

Table 1: F1 results of single-source models on the orig-
inal NLmaps v2 dataset.

location (e.g., Paris) and POI (e.g., cinema) are
masked. This results in the dataset described in
table 3.

4.2 Semantic Parsing

We use the Joey NMT (Kreutzer et al., 2019) as
framework to build a baseline parser. The basic
Joey NMT architecture is modified to allow for a
multi-source setup (see Figure 3 in the appendix)
and for learning from markings.7

As evaluation metrics we use exact match ac-
curacy, defined as 1

N

∑N
n=1 δ(predicted, gold) of a

predicted parse and the gold parse. Furthermore,
we report F1 score as harmonic mean of recall,
defined as the percentage of fully correct answers
divided by the set size, and precision, defined as
the percentage of correct answers out of the set of
answers with non-empty strings.

A character-based Joey NMT semantic parser is
able to improve the results reported in Lawrence
and Riezler (2018) on the dataset without de-
duplication, as shown in Table 1. All results pre-
sented in the following are relative improvements
over our own baseline parser, reported on the de-
duplicated dataset for which no external baseline is
available.

5 Generation of Clarification Questions

On of the goals of error-aware interactive seman-
tic parsing is to alert to user about suspected
sources of ambiguity and error by initiating a
dialogue. The parser thus needs to detect un-
certainty in its output, and generate a clarifica-
tion questions on the detected source of uncer-
tainty. We use entropy-based uncertainty mea-
sures. Firstly, entropy per timestep t is measured
as −∑

ỹt
p(ỹt|x, y<t) log p(ỹt|x, y<t). This is em-

ployed to calculate the entropy of a token as the
mean of the character entropies for each of a

7Meta-parameter settings are reported in the appendix.
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Figure 1: Annotation setup for human interaction
study.

System Accuracy F1

baseline 83.50 90.26
baseline + hyps 83.66 90.85
baseline + dia 84.74 92.02

baseline + hyps + dia 84.84 91.47

baseline + hyps + dia + log 85.01 91.61

Table 2: Results of the multi-source models compared
to the single-source model taking only the source into
account on the modified test data.

token’s characters.8 Based on entropy informa-
tion, we generate simple questions by employing
a template-based method which incorporates the
least certain token: ”Did you mean $token?”. Fur-
thermore, we offer alternative answers for the user
based on beam search of size 2. This heuristic
is justified experimentally since always taking the
first beam yields an accuracy of 92.7%, while an-
other 5% of accuracy can be gained by choosing
the second beam. This verifies the usefulness of
proposing entries in the second beam as alternative
in clarification questions: ”Did you mean $token
or $alternative?”.

8A visualization of entropy is reported in the appendix.

Split Count

Train 15,658
Dev 961
Test 4156

Table 3: Statistics of dialogue-enriched data.

6 Experiments on Synthetic Dialogues

In a first experiment, we generated entire dialogues
synthetically, that is, the clarification question from
the parser and synthetic user answers. The latter
were constructed by checking if either the original
token or the alternative is contained in the given
gold parse. Dataset statistics for train, development
and test splits are given in Table 3.

Model training is performed by extending the
character-based baseline model by additional en-
coders for the dialogue (question and answer) and
the predicted parse hypothesis. Experiments show
that the character-based multi-source model includ-
ing hypothesis and dialogue as additional input
(line 4) outperforms the baseline (line 1) by more
than 1 point in accuracy and F1 score (Table 2).
This difference is statistically significant with a
p-value of 0.0483 determined by approximate ran-
domization.

7 Human Interaction Study

We furthermore performed a small field study
where human users interacted with the system.
Parses for queries from both train and development
parts of the dataset were generated and augmented
with automatically created clarification questions
based on the uncertainty model. Examples were
then filtered to keep only those parses that con-
tained a parse mistake or parse ambiguity. This
resulted in a total of 930 annotation tasks.9

The annotation interface shown in Figure 1 il-
lustrates the system-user interaction: Human an-
notators are presented with a natural language
query (”closest Off License from Lyon”), the parse
(shown below in linearized form), and the result of
the generated parse (show as the map extract on top
of the figure). In addition to the linearized form of
the predicted parse, a human-intelligible list format
of the key-value pairs in the parse10 is presented,
following the annotation interface of Lawrence and

9Both synthetic and user data will be publicly released.
10https://wiki.openstreetmap.org/wiki/

Map_Features
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Figure 2: Workflow for the interaction process.

Riezler (2018). The task of the human users is to
mark the errors in the list of keys and values, and
to answer or correct the clarification question. The
markings are used as feedback in the weighted fine-
tuning objective of Petrushkov et al. (2018). As
the outputs of the model are on character-level, the
token-level reward of the annotations is distributed
onto them for training. The final model is trained
on the weighted objective in a multi-source fashion,
taking parse hypothesis, clarification question, and
logged user answer as additional inputs. Line 5
in Table 2 shows that fine-tuning a multi-source
model that takes hypothesis, dialogue, and logged
answer as additional input increases the sequence
accuracy by another 0.15%. This difference is
statistically significant with a p-value of 0.0027
determined by approximate randomization. The
interaction process can be seen in Figure 2.11

11Additional experiments using the human annotations as
test data are reported in the appendix.

8 Conclusion

Ambiguities or errors in real-world semantic OSM
parsing arise because of different tagging prefer-
ences of developers and users, an issue that can
only be solved by an interactive setup where a
parser is aware of its errors, and a satisfactory an-
swer is found by the user marking parse errors and
communicating alternatives. Our current work is
a first step towards precise communication and of-
fline learning in interactive semantic parsing. An
interesting future direction of work is to move to
online learning in interactive semantic parsing.

Acknowledgments

We would like to thank Christian Buck and Mas-
similiano Ciaramita for initial fruitful discussions
about this work. We would like to thank Chris-
tian Buck and Massimiliano Ciaramita for initial
fruitful discussions about this work. The research
reported in this paper was supported by a Google
Focused Research Award on ”Learning to Negoti-
ate Answers in Multi-Pass Semantic Parsing”.

57



References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In Proceedings of
the 3rd International Conference on Learning Rep-
resentations.

Ahmed Elgohary, Saghar Hosseini, and Ahmed Has-
san Awadallah. 2020. Speak to your Parser: In-
teractive Text-to-SQL with Natural Language Feed-
back. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 2065–2077.

Julia Kreutzer, Jasmijn Bastings, and Stefan Riezler.
2019. Joey NMT: A Minimalist NMT Toolkit for
Novices. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing: System Demonstrations,
pages 109–114.

Igor Labutov, Bishan Yang, and Tom Mitchell. 2018.
Learning to Learn Semantic Parsers from Natural
Language Supervision. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 1676–1690.

Carolin Lawrence. 2018. Response-Based and Coun-
terfactual Learning for Sequence-to-Sequence Tasks
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A Supplementary Material for ”Towards
Error-Aware Interactive Semantic
Parsing”

A.1 Hyperparameter Settings

A.2 Evaluation on the human annotated data

In an additional experiment, we evaluated the mod-
els that were trained on the synthetically generated
dataset on the data resulting from the human inter-
action study. The result of comparing the baseline
model with the multi-source model trained on parse
hypothesis and synthetic dialogue as additional in-
puts is shown in Table 5. The astonishing gains of
over 15% in F1 score can be explained by the fact
that the data for human annotation set were filtered
to include only examples for which the baseline
parser did not match the gold standard parse (thus
producing an accuracy score of 0).

Parameter Lawrence and Riezler (2018) token-based character-based
Attention mechanism bahdanau bahdanau bahdanau

RNN type gru gru gru
Embedding size 1000 620 620

Encoder layer count 1 1 1
Encoder hidden size 1024 400 400
Decoder layer count 1 1 1
Decoder hidden size 1024 800 800

Table 4: Parameter overview compared to Lawrence
and Riezler (2018).

Figure 3: Multi-source semantic parsing.

Figure 4: Character entropy for parse of query ”How
many Off License in Heidelberg”.

System Accuracy F1
char 0 43.07

char+ hyps + dia 25.09 60.85

Table 5: Test results on human-annotated data.

A.3 Entropy visualization
The entropy of the parse of the sentence ”How
many Off License in Heidelberg” can be seen in
Figure 4. The character-based model shows un-
certainty with respect to the token wine. This is
the desired result because the alternative for this
position would be alcohol.
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Abstract
Ideally, people who navigate together in a com-
plex indoor space share a mental model that
facilitates explanation. This paper reports on
a robot control system whose cognitive world
model is based on spatial affordances that gen-
eralize over its perceptual data. Given a target,
the control system formulates multiple plans,
each with a model-relevant metric, and selects
among them. As a result, it can provide read-
ily understandable natural language about the
robot’s intentions and confidence, and gener-
ate diverse, contrastive explanations that ref-
erence the acquired spatial model. Empirical
results in large, complex environments demon-
strate the robot’s ability to provide human-
friendly explanations in natural language.

1 Introduction

Inspired by recent recommendations for spoken lan-
guage interaction with robots (Marge et al., 2020),
this paper introduces WHY, an approach to commu-
nicate a robot’s planning rationales, intentions, and
confidence in human-friendly spatial language. Our
thesis is that a plan based on spatial representations
acquired from travel experience can ground its ob-
jectives and support explainable path planning. The
principal results of this paper are empirical demon-
strations of WHY’s ability to explain and contrast
plans in readily-understandable natural language.

Given sensor data and a metric map (e.g., a floor
plan), the task of our autonomous robot naviga-
tor is to travel to target locations in a large, com-
plex, human-centric, indoor space (henceforward,
world). The robot’s control system integrates ac-
quired spatial knowledge into a cognitively-based
architecture that combines planning with reactivity,
heuristics, and situational reasoning. Given a tar-
get, the control system creates a plan, a sequence
of intermediate locations (waypoints) to reach it.
This plan is expected to balance multiple objectives,
combine continuous and discrete spatial represen-
tations, and encourage a human’s trust.

Traditional navigation planners use a cost graph
(also known as a costmap) where each node is a
point in unobstructed space and each edge connects
a pair of nodes with a weight for the cost to move
between them. A popular cost graph is based on an
occupancy grid, uniform square cells superimposed
on a two-dimensional metric map. Each edge in the
graph represents two adjacent unobstructed cells,
labeled with the Euclidean distance between their
centers. In a fine-grained grid, however, optimal
planners (e.g., A* (Hart et al., 1968)) hug obstacles
so tightly that their plans require tight maneuvers
to reach some waypoints and may fail as actuator
and sensor errors accumulate near them.

To bias plans toward its particular objective (a
spatial representation or commonsense rationale), a
planner modifies the weights in its own copy of the
occupancy-grid graph. The fixed underlying graph
structure allows our approach to evaluate a plan
within any such modified graph. Voting then selects
the plan that best satisfies all the objectives. This
approach facilitates contrastive natural-language
explanations of the chosen plan with respect to each
objective. The control system reports on its beliefs,
intentions, and confidence with spatial language.
For example, “Although there may be another way
that is somewhat shorter, I think my way is a lot
better at going through open areas.”

The next sections provide related work and de-
scribe the acquired spatial model. Subsequent sec-
tions cover the modified graphs, vote-based plan-
ning, and how WHY explains plans. The last sec-
tions describe empirical results and future work.

2 Related work

A spatial representation of its world is essential to a
robot control system that navigates efficiently and
explains its behavior clearly. Grounded commu-
nication between a robot and a person, however,
requires a shared spatial representation. This sec-
tion first describes work on human cognitive maps
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that inspired our control system’s spatial model. It
then details approaches that describe and explain
the robot’s behavior.

A cognitive map is a compact, mental spatial
representation of a world, built by a person as
she moves through that world (Golledge, 1999).
To reduce her cognitive load, a person reasons
from a cognitive map that incorporates landmarks,
route knowledge, and survey knowledge (Tversky,
1993). Landmarks represent locations in the map,
routes represent lines that connect them, and survey
knowledge captures spatial relations. Although it
has been suggested that cognitive maps use met-
ric distances and angles (Gallistel, 1990), more re-
cent work indicates that cognitive maps have a non-
metric, qualitative topological structure (Foo et al.,
2005). Other recent work suggests that people use
a cognitive graph with labeled metric information
that captures connectivity and patterns (Chrastil
and Warren, 2014; Warren et al., 2017).

An affordance is a characteristic of the world
that enables the execution of some action (Gibson,
1977). Affordance-based theories of spatial cogni-
tion posit a tight relationship between the specific
dynamics of a world and the decisions made by an
individual there (Fajen and Phillips, 2013). Here,
a spatial affordance is an abstract representation
of the world that facilitates navigation. This pa-
per introduces path planning in cost graphs based
on acquired spatial affordances. People general-
ize structured representations across domains on
similar tasks (Pouncy et al., 2021) much the way
the spatial model described here generalizes affor-
dances for use in different worlds.

A control system can learn and use a cognitive
map of its world for robot navigation. For example,
the Spatial Semantic Hierarchy (SSH) modeled a
cognitive map with hierarchical metric and topo-
logical representations (Kuipers, 2000). Although
SSH’s cognitive map bears some similarity to the
one used here, it did not explain plans. Other ap-
proaches used semantics to create a meaningfully-
labeled metric map (Kostavelis and Gasteratos,
2015). While these maps provide a qualitative con-
text in which to ground a controller’s language,
they do not necessarily align with human cognitive
maps. Moreover, control systems often use seman-
tic maps for communication but another represen-
tation for reasoning and decision-making. Instead,
this paper shows how a single, affordance-based
representation supports all of those processes.

Indoors, an autonomous robot may interact with
people as it navigates to its target. A human collab-
orator is more likely to accept, trust, and understand
a robot that can explain its behavior (Rosenfeld and
Richardson, 2019). Rather than describe an event
or summarize its causes, an explanation compares
counterfactual cases, includes causes selectively,
and recognizes people as social beings with be-
liefs and intentions (Miller, 2019). A contrastive
explanation compares the reason for a decision to
another plausible rationale (Hoffmann and Maga-
zzeni, 2019). Human subjects generally prefer such
explanations that focus on the difference between
the robot’s planned route and their own (e.g., “my
route is shorter, but overlaps more and produces
less reward”) (Perelman et al., 2020).

Detailed technical logs of a robot’s experi-
ence were originally available only to trained re-
searchers (Landsiedel et al., 2017; Scalise et al.,
2017). Recent work, however, has generated natu-
ral language descriptions of a robot’s travelled path
from them. These focus on abstraction, specificity,
and locality (Rosenthal et al., 2016; Perera et al.,
2016) or on sentence correctness, completeness,
and conciseness (Barrett et al., 2017). All, how-
ever, required a labeled dataset or a semantic map.
Other recent work partitions a plan into actions and
uses language templates to generate descriptions of
each action in the context of a collaborating robot
team (Singh et al., 2021). WHY focuses on expla-
nations for the reasons behind the robot’s decisions
rather than descriptions of the robot’s behavior.

To produce explanations, others have selected
potentially suboptimal plans (Fox et al., 2017;
Chakraborti et al., 2019) or readily understandable
behaviors (Huang et al., 2019), or relied on classi-
cal planning (Magnaguagno et al., 2017; Grea et al.,
2018; Krarup et al., 2019) or on logic (Seegebarth
et al., 2012; Nguyen et al., 2020). None of that
work, however, explains in natural language. The
approach closest to the one presented here provides
contrastive explanations for multi-objective path
planning in natural language as a Markov decision
process (Sukkerd et al., 2020), but considers fewer
objectives, requires a hand-labeled map, and has
been evaluated only in much smaller worlds.

3 Spatial affordances

The context of this work is SemaFORR, a
cognitively-based control system for autonomous
indoor navigation (Epstein et al., 2015; Epstein and

61



(a) Regions with doors and
exits

(b) A dotted path and its de-
rived solid trail

(c) Trails and conveyors (d) Diagonal hallways

Figure 1: Affordances in a simple artificial world

Korpan, 2019). At decision point d = 〈x, y, θ, V 〉,
SemaFORR records the robot’s location (x, y), its
orientation θ, and its view V , the data from its on-
board range finder. After each target, SemaFORR
identifies spatial affordances for its acquired model
of freespace, the unobstructed areas in a world. The
model can be used alone or with a metric map.

At decision point d, SemaFORR learns a region,
a circle in freespace with center at (x, y) and radius
equal to the minimum distance reported by V . Ac-
cumulated contradictory or overlapping regions are
resolved after each target. An exit represents access
to freespace, a point where the robot’s path once
crossed the region’s perimeter. A door is an arc on
a region’s perimeter, a continuous generalization
of finitely many, relatively close exits between its
endpoints. Figure 1(a) shows acquired regions with
exits and doors (drawn for clarity as secants to their
respective arcs). Although regions approximate
what appear to be rooms in the figure, they record
only freespace, not walls.

A trail is a refined version of the robot’s path
toward its target. The algorithm that creates trails
heuristically smooths the robot’s paths and elim-
inates digressions. The remaining (usually far
fewer) decision points are trail markers. As in
Figure 1(b), the sequence of line segments defined
by consecutive trail markers is typically more di-
rect than the original path, but rarely optimal. A
conveyor is a freespace cell in a 2× 2m grid super-

Table 1: SemaFORR’s planners and their objectives

Planner Objective
FASTP Minimize distance traveled
SAFEP Avoid obstacles
EXPLOREP Avoid paths
NOVELP Avoid spatial model
CONVEYP Exploit conveyors
HALLWAYP Exploit hallways
REGIONP Exploit regions, doors, exits
TRAILP Exploit trail markers

imposed on the world’s footprint. Conveyors tally
how often trails pass through them. Higher-count
cells represent locations that frequently support
travel. They appear darker in Figure 1(c).

A hallway represents well-travelled routes in
some angular direction (vertical, horizontal, major
diagonal, or minor diagonal). A hallway general-
izes line segments between consecutive decision
points to find relatively straight, narrow, continuous
freespace with both length and width. Figure 1(d)
shows some acquired minor-diagonal hallways.

4 Modified cost graphs

Planning for navigation requires a graphical repre-
sentation of the world’s freespace. To produces an
optimal plan, A* searches a cost graph G based on
an occupancy grid with edge weights for Euclidean
distance. SemaFORR constructs a set of graphs;
each begins with G but modifies its edge weights
to align with a particular objective. This biases
search toward that objective but still considers plan
length. In practice, an occupancy grid should be
sufficiently fine to represent obstacles accurately.

Table 1 lists SemaFORR’s planners and their
objectives. Given a target, each planner formu-
lates its own plan to reach it, one biased toward its
own objective. Two planners focus on common-
sense: FASTP searches the original G, but SAFEP
increases G’s edge weights based on an edge’s
proximity to obstacles. Two others focus on ex-
ploration to acquire more knowledge about their
world. EXPLOREP creates a grid that tallies how
frequently the robot’s path history passes through
each cell, and uses those values to increase edge
weights where it has already traveled. Because
the acquired spatial model summarizes experience
more compactly than a path, NOVELP explores ar-
eas not covered by the model. It increases a weight
if the edge overlaps an acquired affordance.
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Four planners exploit a particular kind of spatial
affordance with changes to edge weights. (Values
based on preliminary testing bias plans to pursue
but not overemphasize affordances.) REGIONP’s
cost graph modifies each edge’s weight w based
on the location of its endpoints. If both lie in the
same region, w goes unchanged; if neither lies in
a region w becomes 10w. Otherwise, for the one
endpoint v not in a region, w becomes 1.5w if v
is within 0.5m of a door and an exit, 1.75w if v is
within 0.5m of a door or an exit, and otherwise 2w.
This biases plans to pass through regions because
it increases edge costs outside them.

HALLWAYP and TRAILP modify their weights
similarly, with respective conditions “lie in one
hallway” and “lie within 0.5m of a trail marker.”
If both endpoints of an edge meet the condition,
w goes unchanged; if neither does, w becomes
10w. Otherwise, when just one endpoint meets
the condition, w becomes 1.5w. To bias plans to-
ward high-count conveyors, CONVEYP considers
the counters c1 and c2 for the cells where the end-
points of an edge with weight w lies. If both are
non-zero, w becomes w + 2/(c1 + c2); otherwise,
w becomes 10w.

Because SemaFORR’s spatial model focuses on
freespace, these modified cost graphs allow a robot
control system to encourage travel there but also
incorporate the metric cost graph where the model
lacks knowledge. The region-based cost graph, for
example, imposes relatively lower costs only for
doors and exits that the robot has successfully ex-
ploited earlier, and thus prioritizes them. Because
weights only increase, Euclidean distance remains
an admissible heuristic for A*, that is, it never over-
estimates the actual cost to the target’s location.

5 Voting among planners

To choose paths, people use many different objec-
tives that reflect their motivation (Golledge, 1999).
A cognitively-based robot navigator should also
incorporate and balance a variety of path-selection
heuristics. SemaFORR’s planners can be used to-
gether because they originate from the same cost
graph. This section explains Algorithm 1, pseu-
docode for how voting balances the planners’ ob-
jectives to select a plan.

SemaFORR constructs multiple plans that op-
timize a single objective and then uses voting to
select the plan that maximally satisfies the most
objectives. First, each planner j constructs an op-

Algorithm 1: Voting-based planning
Input: planners J , spatial model M , basic
cost graph G

for each planner j ∈ J do
Set j’s cost graph Gj to a copy of G
Modify Gj’s weights based on j and M
With A*, find optimal plan Pj in Gj

for each planner j ∈ J do
for each planner i ∈ J do

Cij ← cost of plan Pi in Gj
Normalize plan scores Cij in [0,10]

for each plan Pi do
Scorei ←

∑J
j=1Cij

best← argmini Scorei
return Pbest

timal plan Pj for its objective as a sequence of
waypoints in its modified cost graph Gj . This guar-
antees that each submitted plan is optimal for at
least one objective.

Next, each planner’s objective is used to evaluate
every plan. All the cost graphs have the same nodes
and edges, so to evaluate planner i’s plan Pi from
the perspective of planner j, SemaFORR simply
sums the edge weights in Gj for the sequence of
edges specified by Pi. The resultant scores Cij are
then normalized in [0, 10] for each j. SemaFORR
seeks to minimize its objectives. Thus a Cij value
near 0 indicates that plan Pi closely conforms to
objective j, while a score near 10 indicates that plan
Pi conflicts with objective j. Voting selects the plan
with the lowest total score across all objectives and
breaks ties at random.

6 Contrastive explanations

SemaFORR uses WHY to explain its long-range
perspective in natural language. WHY exploits dif-
ferences among planners’ objectives to produce
clear, concise, contrastive explanations for a plan
quickly. WHY assumes that the robot’s human com-
panion seeks a shortest-length plan, and compares
that to SemaFORR’s plan. Although we assume
here that a goal-directed human navigator would
seek to minimize travel distance, another objective,
including those in Table 1, could label the founda-
tional cost graph G instead.

Throughout this section,N represents a function
that translates its argument (a planner or a metric
value) into natural language. Given a real-valued
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Figure 2: WHY compares FASTP’s (red) plan to
TRAILP’s (blue) one biased by SemaFORR’s (green)
trails. It explains, “Although there may be another way
that is a lot shorter, I think my way is a lot better at
following ways we’ve gone before.”

metric m for some aspect (e.g., confidence or en-
thusiasm) of the decision process,M(m) bins m’s
value into an ordered partition of m’s range and
N (M(m)) translates that bin to a natural language
phrase. For example, m could measure the desire
to select one plan over the others, and the value
partition could distinguish a strong preference for
that plan from a weak one. Thus, if m ∈ (0,+∞)
were partitioned as {(0, 5), [5,+∞)}, N (m < 5)
could be “a little” and N (m ≥ 5) “a lot.” This
allows WHY to hedge in its responses, much the
way people explain their reasoning when they are
uncertain (Markkanen and Schröder, 1997).

6.1 Why does your plan go this way?
Human and robot plans to reach the same target
may differ because they lack a common objective.
WHY’s response to this question presumes that a
human plans from one perspective, objective βH ,
while the robot plans from another perspective, ob-
jective βR. Explanations for a plan assume a hu-
man has an alternative objective. Henceforward,
βH is “take the shortest path.”

WHY models the human questioner with βH to
produce plan PH , a prediction of the human’s im-
plicit plan. Algorithm 2 is pseudocode for WHY’s
plan-explanation procedure. WHY takes as input
the robot’s plan PR and objective βR, and the alter-
native plan PH and objective βH it attributes to the
human questioner. βH(P ) measures plan length
and βR(P ) measures plan cost in PR’s graph. In
the running example shown in Figure 2, WHY ex-

Algorithm 2: Explanation procedure
Input: planning objectives βR and βH ,
plans PR and PH

Output: explanation
DR = βR(PR)− βR(PH)
DH = βH(PR)− βH(PH)
switch mode(DR, DH ) do

case DR = DH = 0 do
explanation← sentence based on
template for equivalent plans

case DR < 0 and DH > 0 do
explanation← sentence for βR, βH

case DR < 0 and DH = 0 do
explanation← sentence for βR

return explanation

plains SemaFORR’s preference for its plan PR
from TRAILP where βR is TRAILP’s objective
(“exploit trail markers”). WHY translates βH and
βR with Table 2 as “short” and “follows ways
we’ve gone before,” respectively.

If voting selected the plan constructed by FASTP
(i.e., the shortest-length plan), then Why responds
with “I decided to go this way because I agree that
we should take the shortest route.” Otherwise, to
compare PR with PH , WHY calculates their differ-
ence from two perspectives: DH from the human’s
perspective (e.g., length), and DR from the robot’s
perspective (e.g., proximity to trails). WHY places
these differences in user-specified bins that repre-
sent a human perspective on the objectives. Table
3 provides language for these differences.

The relative size of the differences determines
an applicable template. If both DH and DR, as
defined in Algorithm 2, are 0, then the plans equally
address the two objectives, and WHY explains “I
decided to go this way because I think it’s just as
N (βH) and equally N (βR).” Otherwise, the plans
differ with respect to one or both objectives. If DR
is negative (e.g., PR is more aligned with trails),
then WHY instantiates this template:
1: Although there may be another way that is
N (M(DH)) N ∗(βH),
2: I think my way is N (M(DR)) N ∗(βR).
where N ∗(β) is a comparator for β (e.g., “shorter”
or “better at following ways we’ve gone before”).
For example, “Although there may be another way
that is somewhat shorter, I think my way is a lot
better at following ways we’ve gone before.” WHY

omits line 1 in the template ifDH = 0. Other cases,
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Table 2: Language for the planners’ objectives. N ∗(β) andN ′(β) values for FASTP and EXPLOREP are as shown.
For the others, N ∗(β) ≈ N ′(β), where N ∗(β) begins with “better at” and N ′(β) begins with “worse at.”

Planner N (β) N ∗(β) N ′(β)
FASTP short shorter longer
EXPLOREP goes a new way newer familiar
SAFEP stays far from obstacles staying far from obstacles
NOVELP learns something new learning something new
CONVEYP goes through well-traveled areas going through well-traveled areas
HALLWAYP follows hallways following hallways
REGIONP goes through open areas going through open areas
TRAILP follows ways we’ve gone before following ways we’ve gone before

Table 3: Language for value intervals for the difference
D. For affordance-based planners a=150 and b=25, for
SAFEP a=0.35 and b=0.15, for EXPLOREP a=100 and
b=15, and for NOVELP a=350 and b=100.

Planner IntervalsM(D) N (M(D))
(0, 1] a bit

FASTP (1, 10] somewhat
(10,+∞) a lot
(−∞,−a] a lot

All others (−a,−b] somewhat
(−b,+∞) a bit

where DH < 0 or DR > 0 cannot occur because
each planner is optimal with respect to its own cost
graph and objective, as described in Section 5.

6.2 Why do you prefer your plan?
WHY also addresses the question “Why do you
prefer your plan?” Unlike the previous response,
which contrasted the human’s objective with the
robot’s, this response has the robot explain its ob-
jective. If voting selects the FASTP plan, which the
robot assumes has the same objective as its human
companion, WHY would respond “Actually, I agree
that we should take the shortest route.” Otherwise,
WHY uses the differences DH and DR from Al-
gorithm 2. If they are both 0, then WHY replies,
“I think both plans are equally good.” Otherwise,
WHY responds with the template “I prefer my plan
because it’s N (M(DR)) N ∗(βR).” For example,
to explain why SemaFORR chose TRAILP’s plan,
WHY might say “I prefer my plan because it’s a lot
better at following ways we’ve gone before.”

6.3 What’s another way we could go?
Figure 3 shows an example where WHY responds
to “What’s another way we could go?” Because
WHY has access to two plans from SemaFORR

Figure 3: Acquired conveyors in green, with darker
higher-count cells. Voting chose CONVEYP’s (blue)
plan which is drawn to high-count cells. In response
to “What’s another way we could go?” WHY compares
the conveyor plan with FASTP’s (red) plan: “We could
go that way since it’s a bit shorter but it could also be a
bit worse at going through well-traveled areas.”

(PR and PH ), it can provide PH , the shortest-path
plan, as the alternative plan in response. If voting
selects the FASTP plan, which uses the same objec-
tive as the robot’s human companion, then WHY

responds “Yours is the best way to go.” Otherwise,
it instantiates the template: “We could go your
way since it’s N (M(DH)) N ∗(βH) but it could
also be N (M(DR)) N ′(βR).” Here N ′ denotes
an opposite comparator (e.g., “longer” or “worse at
following ways we’ve gone before”). For example,
an explanation is “We could go that way since it’s
somewhat shorter but it could also be a lot worse
at following ways we’ve gone before.”

6.4 How sure are you about your plan?

In response to “How sure are you about your plan?”
WHY explains its confidence that PR meets its ob-
jective. Figure 4 shows an example. WHY uses the
language forM(DR) andM(DH) from Table 3 to
extract a value C = N (M(DR,DH)) from Table
4. WHY then instantiates “I’m N (C) sure because”
followed by line C:
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Figure 4: Highlighted sections of FASTP’s (red) plan
and TRAILP’s (blue) plan to follow acquired (green cir-
cle) trail markers. WHY explains “I’m really sure be-
cause my plan is a lot better at following ways we’ve
gone before and only a bit longer than your plan.”

Table 4: Language N (M(DR,DH)) for confidence
compares M(DR) and M(DH) from Table 3. Here,
1 denotes “really,” 2 = “only somewhat,” and 3 = “not.”

N (M(DH))
N (M(DR)) “a lot” “somewhat” “a bit”

“a lot” 2 1 1
“somewhat” 3 2 1

“a bit” 3 3 2

1: my plan is N (M(DR)) N ∗(βR) and only
N (M(DH)) N ′(βH) than yours.
2: even though my plan is N (M(DR)) N ∗(βR),
it is also N (M(DH)) N ′(βH) than yours.
3: my plan is N (DH) N ′(βH) and only N (DR)
N ∗(βR) than yours

6.5 How are we getting there?

“How are we getting there?” shows a human com-
panion’s uncertainty about the route planned to
reach their shared target. Rather than reference the
planner’s objective, WHY treats this as a request
for a high-level description of PR itself, and uses
the segments between consecutive waypoints in Se-
maFORR’s plan PR to produces natural language
that describes it. Figure 5 shows an example.

WHY anticipates travel with PR as an ordered
sequence of locations from the robot’s current loca-
tion through PR’s waypoints and then to the target.
First, WHY forms plan segments from consecu-
tive locations in PR and computes each segment’s
length and angular direction χ (based on the angle
between its endpoints relative to a fixed horizontal
axis). It then bins χ within an intervalM(χ) and
assigns a label N (M(χ)) as shown in Table 5.

These labels are allocentric, and therefore less

Figure 5: SemaFORR’s FASTP plan with 92 waypoints
from the robot to its target. WHY explains in 9 clauses,
“We will go straight about 20 meters, turn right a little,
go straight about 4 meters, turn left a little, go straight
about 20 meters, turn left a little, go straight about 8
meters, turn left a little, and go straight about 4 meters
to reach our target.”

Table 5: Labels N (M(χ)) for segment angle intervals
M(χ). Language N (α) adjusts the change in con-
secutive angular directions for full 2π rotation: α =
N (M(χk))−N (M(χk−1))) mod 8.

M(χ) N (M(χ)) α Phrase N (α)

[−7π8 , −5π8 ) 2 0 go straight
[−5π8 , −3π8 ) 3 1 turn left a little
[−3π8 , −π8 ) 4 2 turn left
[−π8 ,

π
8 ) 5 3 turn hard left

[π8 ,
3π
8 ) 6 4 turn around

[3π8 ,
5π
8 ) 7 5 turn hard right

[5π8 ,
7π
8 ) 8 6 turn right

otherwise 1 7 turn right a little

appropriate indoors. WHY translates them to an
egocentric frame of reference, as if the robot and its
companion faced the same way along the intended
route. The change in consecutiveN (M(χ)) labels
represents the change in direction from one path
segment to the next. N (α) is language for α, the
angular change in χ from one segment to the next.
For example, if the first segment in PR were labeled
2 and the second segment labeled 7, then α = 5
which Table 5 translates as “turn hard right.”

Plan PR now has a sequence of phrases for
the points where two consecutive segments meet.
WHY inserts a “go straight” after each “turn”
phrase. WHY then summarizes consecutive “go
straight” phrases into a single one (since they in-
dicate no change in direction) with a length L, the
sum of the lengths of the segments that induced
it. These Ls are binned into intervals and reported
in natural language (e.g., 5.7m lies in (4, 6] with
language “about 6 meters”).

WHY combines the list of phrases and lengths
appropriately to form a succinct explanation with
the template “We will [N (α) {aboutN (M(L))},]
to reach our target.” It repeats the material in square
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Table 6: How often planners won the vote

Planner M5 H10 G5 Total
FASTP 25.0% 42.9% 32.4% 33.4%
SAFEP 37.0% 25.7% 27.5% 30.1%
EXPLOREP 9.0% 6.9% 4.9% 6.9%
NOVELP 0.0% 0.0% 0.0% 0.0%
CONVEYP 14.0% 7.4% 16.5% 12.6%
HALLWAYP 6.0% 9.1% 6.6% 7.2%
REGIONP 5.5% 6.3% 0.5% 4.1%
TRAILP 3.5% 1.7% 11.5% 5.6%

brackets for each N (α), and includes the material
in curly brackets only when N (α) is “go straight.”

In summary, WHY produces natural explana-
tions for a robot’s plan as it travels through a com-
plex world. These explanations are essential for
human-friendly autonomous indoor navigation and
require an assumption about its human collabora-
tor’s objective. Our approach explains the robot’s
plan, responds to questions about alternatives, and
expresses a human-friendly level of confidence.

7 Empirical Evaluation

SemaFORR with WHY is evaluated on three chal-
lenging real worlds: M5, H10, and G5. M5 is the
fifth floor of New York’s Museum of Modern Art.
It is 54× 62m and has 1585m2 freespace. H10 is
the 89× 58m tenth floor of an academic building
with 2627m2 of freespace and 75 rooms. G5 is the
110 × 70m fifth floor of a renovated Manhattan
building. G5 has about 4021m2 of freespace, 180
rooms, and many intersecting hallways. It is known
for its ability to perplex human navigators, despite
color-coded walls and art introduced as landmarks.
All testing was in simulation with ROS, the state-
of-the-art robot operating system (Quigley et al.,
2009). MengeROS manages the simulation and
deliberately introduces error into both the sensor
data and action execution (Aroor et al., 2017).

To evaluate WHY we randomly sampled 5 se-
quences of 40 targets in each world’s freespace.
Table 6 reports how often voting selected each plan-
ner’s submission. Two-thirds of the selected plans
were based on a modified cost graph, about half of
them biased by SemaFORR’s spatial model. Be-
cause SemaFORR revises its model incrementally,
as the robot addresses more targets, it begins to
value EXPLOREP’s plans less than model-based
ones. For example, by the second 20 targets in each
sequence of 40, plans based on the spatial model

Table 7: Analysis of explanation results with number
of unique phrasings and average readability scores

Unique phrasings M5 H10 G5 All
Why this way? 38 30 39 49
How sure are you? 24 19 26 30
Another way? 24 19 26 30
Why yours? 17 15 16 18
How to get there? 199 175 182 556
Average readability M5 H10 G5 All
Why this way? 4.7 5.3 5.3 5.1
How sure are you? 6.6 6.6 6.7 6.7
Another way? 3.8 2.7 3.5 3.3
Why yours? 6.8 7.0 7.2 7.0
How to get there? 7.7 7.8 7.8 7.8

were chosen 8.2% more often, and EXPLOREP’s
plans 5.4% less often. No plan from NOVELP was
ever selected because its plans typically performed
poorly in the four affordance-based graphs. Voting,
however, included NOVELP to preserve a potential
trade-off between exploration and exploitation.

We evaluated WHY for its efficiency (average
computation time) and diversity (number of unique
explanations produced in response to each ques-
tion). We also calculated the understandability
of these explanations by average reading grade
level, as measured by the Coleman-Liau index
(CLI) (Coleman and Liau, 1975). Since WHY’s
goal is to produce explanations for non-experts,
lower grade-level scores are more desirable. While
one could manipulate the templates to improve
these scores, CLI provides a method to compare
the complexity of responses to one another.

Table 7 analyzes WHY’s answers to all 3000
(5 questions · 40 targets · 5 sequences · 3 worlds)
questions. Its distinct natural explanations simulate
people’s ability to vary explanations based on con-
text (Malle, 1999). WHY averaged 10.4 msec to
compute explanations for all five questions about
each plan. WHY’s approach is also nuanced, with
many unique responses per question. For exam-
ple, WHY produced 49 unique responses to “Why
does your plan go this way?” out of the 92 possi-
ble instantiations of the template. The CLI gauged
them at about a sixth-grade reading level, readily
understandable to a layperson.

8 Discussion

To capture useful spatial affordances for its world
model, SemaFORR generalizes over its percepts,
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the 660 distances to the nearest obstacle that its
range finder reports 15 times per second. Each of
SemaFORR’s planners generates paths in a graph
biased by edge weights that represent that planner’s
objective but share an underlying structure that fa-
cilitates plan comparison. Voting guarantees that
any selected plan will be optimal with respect to
at least one objective, and makes it likely that the
plan will also perform well with respect to the oth-
ers. This also facilitates contrastive explanations
in natural spatial language for the robot’s planning
objectives, alternative paths, and confidence.

How a robot control system represents knowl-
edge is integral to natural communication between
robots and people, especially in a spatial context.
Misunderstandings between a robot and a human
often arise from a discrepancy between their spa-
tial mental models. This prompts questions about
the robot’s underlying decision-making and rea-
soning mechanisms. WHY’s explanations rely
on SemaFORR’s cognitive underpinnings. Lan-
guage about the spatial model is readily under-
stood because SemaFORR interprets its percepts
much the way people do. SemaFORR’s freespace
affordances were inspired by sketches after hu-
man subjects had actively explored complex virtual
worlds (Chrastil and Warren, 2013). The planners’
objectives are also analogous to processes empir-
ically identified in people (Hölscher et al., 2009).
The results here demonstrate that natural language
communication with robots benefits substantially
when a robot’s control system and a human have
similar cognitively-based spatial representations.

WHY’s templates flexibly and quickly produce
many different explanations in natural language.
The templates focus language generation on Se-
maFORR’s computational rationale rather than on
linguistic structure and grammar. They also fa-
cilitate the introduction of new planners without
the need to retrain a language generator for a new
planning objective. For example, an objective that
relied on landmarks could modify the cost graph
to reduce costs near them, so that WHY might ex-
plain “I think my way is a lot better at following
landmarks.” Although WHY assumes the human’s
objective is the shortest path, it can easily substi-
tute any objective representable in a cost graph
with an admissible heuristic. SemaFORR could
also incorporate a planning objective learned from
external demonstration (e.g., inverse reinforcement
learning) if that objective were representable as

increments to the cost graph’s weights.
Whenever SemaFORR selects FASTP’s plan

here, it assumes that it shares the human’s objective.
Any questions about the robot’s plan necessarily
challenge that assumption. Presumably, the person
asks because they do not recognize their objective
there. WHY responds by agreement that the per-
son’s plan is the correct way to go (e.g., “Actually,
I agree that we should take the shortest route.”),
even though the question should not have arisen.
Another way to address this would be to offer an
alternative plan when FASTP is selected.

Our current work examines how well human sub-
jects understand and feel comfortable with WHY.
Although SemaFORR’s parameters for intervals
(e.g., in Table 3) were chosen for G5 and also
worked well in other worlds, humans subject evalu-
ation will allow us to confirm or reassess these
values. Human-subject studies could also help
refine WHY’s explanations and incorporate psy-
chophysics and proxemics.

Future work could extend WHY for dialogue
(e.g., to clarify confusion or guide navigation (Ro-
man et al., 2020)). This could incorporate natural
language generation with deep learning and facil-
itate queries to the person. WHY presumes that
questions arise from a difference between the hu-
man’s and the robot’s objectives, but they could
also stem from a violation of the shared target
assumption. A broader system for human-robot
collaboration would seek the cause of such a mis-
match, use plan explanations to resolve it, and then
allow the robot to adjust its responses based on
feedback from its human partner. For example,
given a plan P from a person or an unspecified
heuristic planner, WHY could use the individual
objectives in its repertoire to tease apart and then
characterize how P weighted its objectives (e.g.,
“So distance is more important than travel time?”).

Meanwhile, SemaFORR’s cognitively-based
spatial model supports important path planning
objectives and human-friendly explanations of its
behavior, intentions, and confidence. Empirical re-
sults in three large, complex, realistic worlds show
that our approach produces diverse, understandable
contrastive explanations in natural language.
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Antoine Grea, Laëtitia Matignon, and Samir Aknine.
2018. How explainable plans can make planning
faster. In Workshop on Explainable Artificial Intelli-
gence, pages 58–64.

P. E. Hart, N. J. Nilsson, and B. Raphael. 1968. A
formal basis for the heuristic determination of mini-
mum cost paths. IEEE Transactions on Systems Sci-
ence and Cybernetics, 4(2):100–107.

Jörg Hoffmann and Daniele Magazzeni. 2019. Explain-
able AI planning (XAIP): overview and the case of
contrastive explanation. Reasoning Web. Explain-
able Artificial Intelligence, pages 277–282.

Christoph Hölscher, Simon J Büchner, Tobias
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Abstract

With the development of robotics, the use of
robots in daily life is increasing, which has led
to the need for anyone to easily train robots to
improve robot use. Interactive reinforcement
learning(IARL) is a method for robot train-
ing based on human–robot interaction; prior
studies on IARL provide only limited types
of feedback or require appropriately designed
shaping rewards, which is known to be diffi-
cult and time consuming. Therefore, in this
study, we propose interactive deep reinforce-
ment learning models based on voice feedback.
In the proposed system, a robot learns the task
of cooperative table balancing through deep
Q-network using voice feedback provided by
humans in real time, with automatic speech
recognition(ASR) and sentiment analysis to
understand human voice feedback. As a result,
an optimal policy convergence rate of up to
96% was realized, and performance was im-
proved in all voice feedback-based models.

1 Introduction

Service robots equipped with artificial intelligence
technology are increasing in daily life. Examples in-
clude museum exhibition guide robot(Thrun et al.,
1999), café-serving robot(Maxwell et al., 1999),
and object carrying robot(Yokoyama et al., 2003).
Robots increasingly perform tasks instead of or
together with humans in various environments in
daily life, and there has been an active research
on robots that cooperate with humans(Calinon and
Billard, 2007; Du et al., 2018).

Reinforcement learning (RL) ––a robot learning
technique– is a method in which an agent robot
learns the action of obtaining maximum rewards
through trial and error. In RL, rewards are generally
given by agent action in a state, and if rewards are
given through real-time human-agent interaction, it
is called interactive reinforcement learning(IARL).

Reward shaping(RS)(Ng et al., 1999)––an IARL
method––is a technique in which a human trainer
modifies reward functions by providing positive
or negative feedback on the action of RL agents.
In previous studies on IARL using natural lan-
guage, the type of feedback is very limited using
fewer than 10 feedbacks(Cruz et al., 2015; Tenorio-
Gonzalez et al., 2010).To facilitate the use of robots,
the need for a training system through various feed-
backs is raised so that robot training can be natu-
rally performed using various voice feedbacks.

Therefore, in this study, we propose an interac-
tive deep RL model based on voice feedback to
facilitate robot use. In the proposed system, a robot
uses deep Q-networks(DQNs)(Mnih et al., 2013)
to perform table balancing(Kim and Kang, 2020)
tasks that require cooperation with humans and
learns the RL policy through RS by human voice
feedback. Using RS, a human trainer who collab-
orates table balancing task with robot and knows
how to perform a task provides positive or negative
feedback in real time about a robot’s action via
speech. Therefore, the agent provided with voice
feedback learns the optimal policy––a policy that
always leads to the balanced table state––faster and
more naturally than when feedback is not used.

The rest of the paper is organized as follows.
Section 2 explores the flow and limitations of prior
IARL studies through related work, and Section 3
describes the proposed interactive deep RL system
based on voice feedback. In Section 4, we describe
the results of table balancing task training based on
the proposed system, and compare the difference
in learning performance against conventional DQN
as a baseline and between voice feedback provision
types. Finally, Section 5 concludes this study and
suggests future research directions.
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2 Related Work

One of the strategies to improve learning perfor-
mance in RL is that humans guide agents as ex-
ternal trainers. Representative examples include
learning by imitation(Bandera et al., 2012), demon-
stration(Argall et al., 2009; Zhu and Hu, 2018), and
by feedback. Among them, focusing on feedback-
providing learning, we examine: (1) the design
of IARL platforms that provide feedback through
mouse or remote controls (Thomaz et al., 2006;
Ullerstam and Mizukawa, 2004), (2) design of
IARL algorithms(Knox and Stone, 2009; Griffith
et al., 2013; Faulkner et al., 2020) and (3) studies of
IARL through voice feedback(Tenorio-Gonzalez
et al., 2010; Cruz et al., 2015). What these studies
have in common is that RS reduces training time
and fosters the robot or computer to learn the target
action.

Regarding methods that adopt hardware input
devices, some approaches use a mouse or remote
control to design an IARL platform(Thomaz et al.,
2006; Ullerstam and Mizukawa, 2004). Thomaz
et al. (2006) revealed that IARL can improve
robot’s learning efficiency in an interactive Q-
learning platform for cooking simulation robots,
where humans can use mouse scrolls to provide
feedback for robot actions by giving a number be-
tween -1 and +1. In the study of Ullerstam and
Mizukawa (2004), AIBO robots learned action se-
quences such as singing after hearing a command
from a human feedback given by remote control.
However, in these prior studies on the design of
such an IARL platform, input hardware, such as a
mouse and remote control, is required to provide
human feedback, which is difficult to see as a natu-
ral interaction with human.

Studies on developing IARL algorithms using
human feedback include TAMER (Knox and Stone,
2009), Advise (Griffith et al., 2013) and REPaIR
algorithm (Faulkner et al., 2020). In TAMER––an
interactive reinforcement learning algorithm pro-
posed by Knox and Stone (2009)––an agent learns
a human feedback function by receiving two eval-
uation signals of positive and negative from the
human on their keyboards; it was tested in Tetris
game and mountain car problem. In Advise pro-
posed by Griffith et al. (2013), a human modifies
an agent’s action choice probability, i.e., the policy,
by giving the agent binary feedback––positive or
negative. As a result, Advise outperformed con-
ventional RL algorithms on game tasks such as

Pac-Man. Faulkner et al. (2020) proposed the RE-
PaIR algorithm, which estimates the correctness
of human feedback over time; virtual and physical
robots performed tasks, such as putting a ball into
the box in a simulation environment and grasping
cup in the real world. They proved that the REPaIR
algorithm matched or improved the performance
of conventional Q-learning algorithms. However,
these approachs that focused on feedback learn-
ing algorithms for IARL required the design of an
appropriate shaping function, and additional time
to calculate rewards or policies. Moreover, in the
framework proposed in this study, natural language
voice feedback is directly integrated into a reward
so that the amount of additional computation re-
quired for DQN learning is relatively small.

Studies that investigated IARL using natural
language speech voice feedback itself include dy-
namic RS (Tenorio-Gonzalez et al., 2010) and
IARL through speech guidance(Cruz et al., 2015).
Tenorio-Gonzalez et al. (2010) showed that robots
can use human voice feedback in RL to learn navi-
gation tasks by assigning specific scalar rewards to
feedback vocabulary, such as +100 to ”excellent”
and -10 to ”bad” in simulation environments. Cruz
et al. (2015) used voice commands and automatic
speech recognition(ASR) to transcribe input voice
commands, and then compared the input sentence
and predefined lists using Levenshtein distance for
cleaning tasks of robot arm agents. However, in
these approaches using voice feedback, the RS
function was designed by assigning a static reward
value to a list of very limited words and sentences
defined in advance. Therefore, when a feedback
vocabulary that has not been defined in the list is
input, the agent may have difficulty in learning.
Moreover, the framework proposed in this study
analyzes the positive and negative degrees of in-
put voice feedback using a pretrained sentiment
analysis module and converts it into a reward value.
Therefore, no matter what feedback phrase is input,
the sentiment polarity of voice feedback can be
analyzed and used for DQN RL.

Through the examination of prior studies, we can
summarize that IARL ordinarily improves learning
performance. However, most studies did not adopt
a natural interaction method with humans by re-
quiring hardware input devices such as a keyboard
or mouse. Further, studies using voice feedback
used a small number of feedbacks. In this current
study, we designed an IARL system for natural
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Figure 1: Interactive deep reinforcement learning
model for table balancing based on human voice feed-
back

robot learning using voice feedback with ASR and
sentiment analysis techniques to resolve these limi-
tations.

3 Proposed Method

In this section, we describe the proposed deep RL
framework for table balancing robots based on
voice feedback. The task that the robot aims to
learn is to maintain balance when lifting a table
cooperatively with a human. Figure 1 shows the
overall work diagram of the proposed system.

First, the robot takes a table state image with
a camera and forwards it to the DQN. Next,the
robot drives the balancing action predicted by
DQN through image analysis. Then, the robot re-
ceives evaluative feedback from humans on the
executed action; the voice feedback is input via the
robot’s microphone, converted to numerical values
by voice feedback recognition and conversion mod-
ule, and then incorporated into the environmental
rewards of the DQN algorithm. Through repetition
of the above process, the robot learns a policy in
which the sum of environmental rewards and hu-
man voice feedback are maximized, and because of
the learning, the robot can perform a cooperative ta-
ble balancing task. In this work, the robot that will
learn the table balancing task is Softbank’s NAO
robot, and the table is a rectangular box with width,
length, and height of 31, 23, 6cm respectively. In
addition, the table states to be used for learning
were imaged using the lower camera mounted on
the NAO robot.

Algorithm 1 Interactive Deep Q-Network Based
on Voice Feedback

Initialize action-value function with random weights θ
Initialize target action-value function Q̂ with random
weights θ− = θ
for episodes = 1, 20000 do

Initialize sequence
for t = 1, T do

Get table state image st = xt
With probability ε select a random action at
Otherwise select at = argmaxa∈AQt(st, at)
Execute action at and observe reward rt and image

xt+1

if Human trainer provides voice feedback ft on
state st then

Let rt←rt + ft
end if

yt =

{
rt if episode done at step t+ 1

rt + γmax
a′∈A

Q̂(s′, a′; θ−)) otherwise

(1)
Perform a gradient descent step on

L(θ) = E[(yt −Q(st, at; θt))
2]

with respect to the network parameters θ
Every 5 steps reset θ− = θ

end for
end for

3.1 Deep Reinforcement Learning Process
Based on Voice Feedback

The robot in the proposed system uses the DQN to
recognize the table state image and output the table
balancing action based on human voice feedback.
A DQN combines Q-learning with a deep convo-
lutional neural network to estimate a state–action
value function (Q function) given an input image
and action.

Depending on the degree of raising and balanc-
ing state of the table, the human action states are
divided into five in our system: up (sup), keep
(s0), down (sdown), up a lot(supup) and down a lot
(sdowndown). The subscripts of s represent human
actions. The robot executes the table balancing ac-
tion a by adjusting the knee joint drive value. Five
robot actions are defined depending on the direction
and degree of table movement: aup, aup, a0, adown,
and adown.

Algorithm 1 represents the training process of
an interactive DQN based on voice feedback. This
training process is identical to the DQN training
process;an interactive voice feedback-based pro-
cess is added after the robot action operation. The
input state s is a table image(xt),which is an RGB
image of 128× 170 size representing the balance
status of the table imaged by the robot camera.
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Agent action Reward
Reaching the target state +0.5
Returning undefined action -0.5
Reaching non-target states -0.3

Table 1: DQN environmental reward model.

The environment selects a table state image from
the training dataset and feeds it to the robot, which
is a DQN agent. The robot determines the action
in the current time step according to the ε-greedy
policy, which selects a random action with a prob-
ability of ε for exploration. If no random action is
selected, the agent chooses the action that maxi-
mizes the value of the Q function. The Q function
that DQN aims to predict is as follows:

Qπ(s, a) = Eπ
∞∑

t=1

γtrt (2)

where r is the reward that the robot receives when
it moves to the next state from the current state
by performing the action. The Q function is rep-
resented as the expected value of the cumulative
reward received when executing the action a in
state s, and γ is the discount rate, which reduces
the influence of the Q value in the future state.

After executing an action, the agent receives eval-
uative voice feedback from human and environ-
mental rewards. Table 1 defines the environmental
rewards of the proposed system. The environment
provides a positive reward of +0.5 when the robot
reaches the target state, the balancing maintenance
state (s0). A negative reward of−0.3 is given when
the agent outputs an action that reaches a state other
than the target. Finally the agent receives negative
reward of−0.5 when returning an undefined action
other than the one in the balancing task model in
Kim and Kang (2020)’s work, such as returning
adown while recognizing the human action state as
supup.

Interactive voice feedback is a human speech
evaluation of the robot’s action. After checking the
balance state of the table that has changed by the
robot’s action, the human provides positive voice
feedback when the robot reaches the target state,
and negative voice feedback otherwise. The pro-
vided voice feedback is converted into a numerical
value through the voice feedback recognition and
conversion module, and then added to the RL envi-
ronment rewards. When the human provides voice
feedback, the robot uses both feedback and envi-

ronmental reward; and without feedback, the robot
uses only environmental reward for learning. In
Subsection 3.2, the voice feedback recognition and
conversion module is described in depth.

In Algorithm 1, θ stands for the parameters of
neural networks. DQN considers yt as a target and
proceeds learning in a direction that reduces the
error of yt and estimated Q(st, at) by neural net-
works. Therefore, the DQN model is updated in
every episode via the loss function L(θ), which
computes the mean squared error. With a repetitive
update of θ in the direction of minimizing L(θ), the
Q function gets closer to the optimal state-action
value function, and the agent learns the optimal
action in the given state. Through this process, the
robot can train DQN for table balancing with hu-
man voice feedback. To incorporate voice feedback
in the DQN framework, we implemented voice
feedback recognition and conversion module.

3.2 Voice Feedback Recognition and
Conversion Modules

The voice feedback recognition and conversion
module analyzed whether input voice feedback
evaluated the robot’s action positively or negatively.
The voice feedback recognition and conversion
module, shown in Figure 1, consisted of two pro-
cesses: ASR and sentiment analysis.

First, the robot received an voice feedback signal
from the microphone. ASR transcribed the signal
into a character string and output it. We adopted
Google Cloud speech-to-text as the ASR system,
a cloud-based service that supported speech input
and corresponding transcription in real time. This
ASR system supports online streaming and offline
voice audio processing, which was suitable for the
agent’s learning environment in our experimental
setting.

Using a string of sentences obtained through
ASR, sentiment analysis identified the positive and
negative degrees of voice feedback phrases. The
analyzed sentiment was returned in real value be-
tween −1 and 1 with positive and negative feed-
back being closer to +1 and −1. Moreover, if ASR
could not correctly recognize speech signal, this
module takes feedback as ’none’ and only uses en-
vironmental reward. Google Natural Language API
was used for sentiment analysis because of the ease
of processing and modifying the sentiment analysis
results in the implementation process.
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Feedback phrases Converted value
Well done 0.8
Fine 0.6
That is not how you do it −0.699
Try again −0.5

Table 2: Examples of feedback phrase with converted
numeric value.

4 Experimental Results

In this section, we discuss the construction of a
feedback dataset for the experiment, evaluation
of the voice feedback recognition and conversion
module, and verification of the proposed interactive
deep RL model through experiments.

4.1 Voice Feedback Dataset and Recognition
Rate

First, we constructed the voice feedback phrase
dataset to test the proposed DQN model from cor-
pora. The corpora used to build the dataset were
Sentiment lexicon (Hu and Liu, 2004), AFINN lex-
icon (Nielsen, 2011), and Classroom English(Hong
and Sohn, 2013). A total of 100 feedback dataset
phrases were extracted for experiments from the
corpora, with 50 positive feedback phrases and
50 negative feedback. The feedback phrases were
mainly short sentences or words that evaluated ac-
tions. Table 2 shows an example of some feedback
phrases in the dataset and their converted sentiment
analysis values which were incorporated in the RL
reward function.

As a result of testing the recognition accuracy
of Google Cloud speech-to-text, which is the ASR
used in this study, the average sentence recogni-
tion rate was 86% using the built feedback phrase
dataset. Three times of tests with the feedback
phrase datasets on Google Natural Language APIs
showed an average sentence recognition rate of
96%. An accuracy of less than 100% meant that
the agent might receive an erroneous reward sig-
nal due to the malfunction of the voice feedback
recognition and conversion module. In this study,
all cases in which wrong rewards were given from
malfunction of ASR or sentiment analysis were
considered, and it was confirmed via experiments
that using interactive voice feedback could foster
the agent’s target task learning despite such errors.

Figure 2: Comparison of Consec-VF and Prdc-VF
model

Parameter Value
Learning rate α 0.001
Discount factor γ 0.9
Epsilon ε 20
Number of episodes 20,000
Number of voice feedbacks 100

Table 3: Hyperparameters of DQN training.

4.2 Interactive Voice Feedback DQN Model

In this paper, we employed two voice feedback
models: consecutive voice feedback (Consec-VF)
and periodical voice feedback (Prdc-VF) models
(Figure 2). During the training, the human can
provide (1) Consec-VF in the early stages of
learning, or (2) Prdc-VF throughout learning.
Consec-VF provided 100 consecutive feedback
earlier in training, and Prdc-VF provided 10
feedbacks every 2,000 episodes. Training was
conducted in simulation where random state im-
ages are given in every episode and human trainer
provides voice feedback via microphone while
observing the next state. We also run experiments
on a physical NAO robot as a proof of concept,
and robot training video can be found at this
link. (http://air.knu.ac.kr/index.php/evolutionary-
cooperative-robot-development-using-distributed-
deep-reinforcement-learning) We compared the
two feedback-providing models with conventional
DQN without voice feedback as a baseline.
Additional four optimizer comparison experiments
were conducted on Consec-VF.

We conducted 30 experiments for each model
setting and evaluated the performance by calcu-
lating the optimal policy convergence rate after
the training. Hyperparameter settings for training
DQNs are shown in Table 3. All hyperparameter
settings, except the number of voice feedbacks,
were equally applicable to both the proposed IARL
model and baseline model–DQNs.
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(a) Baseline (b) Consec-VF (c) Prdc-VF

Figure 3: Loss graph of models

Optimizer Baseline Consec-VF Prdc-VF
SGD 80% 86% 80%
Adam 73 % 96% 60%

Table 4: Optimal policy convergence rate of 3 experi-
mental model

We analyze the difference in model performance
by the two methods of providing interactive voice
feedback: Consec-VF and Prdc-VF. Voice feedback
was provided 100 times out of 20,000 episodes (Ta-
ble 3), and other episodes only used environmental
rewards from Table 1. The Consec-VF model is
designed to intensively feed voice feedback at the
beginning of learning to establish the initial learn-
ing direction, whereas Prdc-VF model is designed
to reflect human feedback steadily in the overall
learning process so that human feedback could be
consistently reflected.

Table 4 shows the results of experiment with two
optimizers by applying the hyperparameter settings
of Table 3 to the two voice feedback models and
baseline DQNs. First, for the Consec-VF model,
the optimal policy convergence rate was 86% and
96% when SGD and Adam optimizers were used,
showing higher performance than the baseline with
optimal policy convergence rates of 80% and 73%
, respectively. Particularly, the convergence rate of
96% where 29 of 30 experiments learned optimal
policies with Adam optimizer showed that combin-
ing Consec-VF with DQN significantly improved
model performance.

Moreover, the Prdc-VF model showed lower per-
formance than the Consec-VF and baseline models,
which could be analyzed by training loss graphs.
Figure 3 shows the training loss of the baseline,
Consec-VF, and Prdc-VF models. In Figure 3-(a)
and -(b), the loss stably converged to zero in the
Consec-VF baseline model. However, in the Prdc-
VF model in Figure 3-(c), loss spikes were ob-

Optimizer Baseline Consec-VF
SGD 80% 86%
Adam 73 % 96%

Adagrad 43 % 56%
Adadelta 63 % 76%

Table 5: Optimal policy convergence rate of the base-
line and Consec-VF models using four different opti-
mizers

served during the training process. We analyzed
that the intermittent intervention of voice feedback
interfered with the convergence of losses during
the training, resulting in a lower performance of
the Prdc-VF model compared with others.

Experiment results showed that the Consec-VF
model learned optimal policies better than base-
line and Prdc-VF models. As in-depth experi-
ments, we examine the results of the experiment by
adding Adagrad, Adalta optimizers to the Consec-
VF model to ensure that the use of Consec-VF
consistently leads to model learning performance.
Table 5 shows the optimal policy convergence rate
after 30 experiments on the Consec-VF and base-
line model on four optimizers. In all experiments
Consec-VF showed improved optimal policy learn-
ing compared to the baseline DQN. These experi-
ment results indicated that incorporating interactive
voice feedback into DQN for table balancing tasks
improved model learning performance in all opti-
mizer settings.

5 Conclusion

In this study, we proposed an interactive deep RL
model based on voice feedback for table balancing
robot. The proposed system suggests DQN incorpo-
rating human voice feedback using ASR and senti-
ment analysis, where feedback given by humans are
incorporated into the reward function. Experiment
results show that the Consec-VF model, which pro-
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vides Consec-VF early in learning, achieves an
optimal policy convergence rate higher than the
baseline model in all optimizer settings. There are
several areas of extensions of our approach. Fu-
ture direction for our work includes incorporating
multimodal feedback to DQN using various robot
sensors. We could also focus on deepening model
optimization technique that improves learning per-
formance of interactive RL model in varying set-
tings. Robot could also learn when to use feedback
and when to discard it or incorporate text semantics
such as guiding robot behavior.
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Abstract

We present a multi-level geocoding model
(MLG) that learns to associate texts to geo-
graphic coordinates. The Earth’s surface is rep-
resented using space-filling curves that decom-
pose the sphere into a hierarchical grid. MLG
balances classification granularity and accuracy
by combining losses across multiple levels and
jointly predicting cells at different levels simul-
taneously. It obtains large gains without any
gazetteer metadata, demonstrating that it can
effectively learn the connection between text
spans and coordinates—and thus makes it a
gazetteer-free geocoder. Furthermore, MLG
obtains state-of-the-art results for toponym res-
olution on three English datasets without any
dataset-specific tuning.

1 Introduction
Geocoding is the task of resolving location references in
text to geographic coordinates or regions. It is often stud-
ied in social networks, where metadata and the network
itself provide additional non-textual signals (Backstrom
et al., 2010; Rahimi et al., 2015). If locations can be
mapped to an entity in a knowledge graph, toponym
resolution – a special case of entity resolution – can be
used to resolve references to locations. Past work used
heuristics based on location popularity (Leidner, 2007)
and distance between candidate locations (Speriosu and
Baldridge, 2013), as well as learned associations from
text to locations. However, such approaches have a
strong bias for highly-populated locations, especially
for social media.

We present Multi-Level Geocoder (MLG, Fig. 1),
a model that learns spatial language representations
and maps toponyms to coordinates on Earth’s surface.
This geocoder is not restricted to resolving toponyms to
specific location entities, but rather to geo-coordinates
directly. MLG can thus be extended to any arbitrary
location references in future without having to rely on
its presence in the gazetteer. For comparative evaluation,
we use three English toponym resolution datasets from

∗Equal contribution
†Work done during internship at Google

Context 
words

Toponyms in 
context

Target 
Toponym

Feature encoding

Projections to multiple levels

L6L5 L7

The five boroughs - Brooklyn, Queens, 
Manhattan, the Bronx and Staten Island - 
were consolidated into a single city in 1898.

Joint loss

Figure 1: Overview of Multi-Level Geocoder, using
multiple context features and jointly predicting cells at
multiple levels of the S2 hierarchy.

distinct textual domains. MLG shows strong perfor-
mance, even without gazetteer and population metadata.

MLG is a text-to-location neural geocoder. We repre-
sent the locations using S2 geometry1—a hierarchical
discretization of the Earth’s surface based on space-
filling curves. S2 naturally supports spatial representa-
tion at multiple levels, including very fine grained cells
(as small as 1cm2 at level 30). Here, we use combina-
tions of levels 4 (∼300K km2) to 8 (∼1K km2). Large
cells are easy to predict accurately; however, they are too
coarse on their own, and perform poorly on metrics that
consider error distances. Smaller cells improve granular-
ity but result in larger and harder output spaces with less
training evidence per cell. MLG balances classification
granularity and accuracy by predicting at multiple S2
levels and jointly optimizing for the loss at each level.
Fig. 1 shows an area around New York City covered
by cell id 0x89c25 at level 8 and 0x89c4 at level 5.
This is more fine-grained than previous work that does
text-to-location geocoding (Gritta et al., 2018a), which
uses arbitrary square-degree cells, e.g. 2◦-by-2◦ cells
(∼48K km2).

Unlike previous work that relies on external gazetteer
information, MLG is more flexible and can predict ge-
olocation only from context. For instance, it predicts
the location of Manhattan from the surrounding words
(The five boroughs - Brooklyn, Queens, the Bronx and

1https://s2geometry.io/
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Staten Island - . . . ). Earlier approaches instead relied
on a knowledge graph that had Manhattan as an en-
tity. While the hierarchical geolocation model of Wing
and Baldridge (2014) over kd-trees has some more fine-
grained cells, MLG predicts over a much larger set of
smaller cells. Furthermore, MLG is a single model that
jointly incorporates multiple levels rather than ensem-
bling independent per-cell models for each level.

Our main contributions are the following.
• We define MLG, a model that jointly predicts cells

at multiple levels, including finer-grained cells than
previous work.
• We show that S2 provides a strong and standard-

ized hierarchical discretization of the Earth’s sur-
face for cell-based geocoders.
• We show that it is possible and even preferable to

eschew gazetteer metadata. In particular, our ex-
periments show that this strategy generalizes much
better.
• We show state-of-the-art performance on three En-

glish datasets without any fine-tuning.
• When analyzing these datasets, we found incon-

sistencies in the true coordinates that we unify to
support consistent evaluation.2

2 Spatial representations
Geocoders map text spans to geo-coordinates—a predic-
tion over a continuous space representing the surface of
a sphere. We relax the problem from continuous space
to discrete space by quantizing the Earth’s surface as
a grid and performing multi-class prediction over the
grid’s cells. We construct a hierarchical grid using the
S2 library.3 S2 projects the six faces of a cube onto
the Earth’s surface and each face is recursively divided
into 4 quadrants, as shown in Figure 1. Cells at each
level are indexed using a Hilbert curve. Each S2 cell is
represented as a 64-bit unsigned integer and can corre-
spond to areas as small as≈1cm2. S2 cells preserve cell
size across the globe better than commonly-used degree-
square grids (e.g. 1

◦
x1

◦
) (Serdyukov et al., 2009; Wing

and Baldridge, 2011). Hierarchical triangular meshes
(Szalay et al., 2007) and Hierarchical Equal Area iso-
Latitude Pixelation (Melo and Martins, 2015) are alter-
natives that preserve cell size better, but S2 is easier to
work with and has strong, standard tooling.

Our experiments go as far as S2 level eight (of thirty),
but our approach is extendable to any level of granularity
and could support very fine-grained locations like build-
ings and landmarks. The built-in hierarchical nature of
S2 cells makes it well suited as a scaffold for models
that learn and combine evidence from multiple levels.
This combines the best of both worlds: specificity at
finer levels and aggregation/smoothing at coarser levels.

Roller et al. (2012) use adaptive, variable shaped cells
based on k-d trees; such grids can adapt to the different

2https://github.com/
google-research-datasets/mlg_evaldata

3https://s2geometry.io/

S2 Level number of cells Avg area
L4 1.5k 332
L5 6.0k 83
L6 24.0k 21
L7 98.0k 5
L8 393.0k 1

Table 1: S2 levels used in MLG. Average area is in 1k
km2.

shapes of a region but depend on the locations of labeled
examples in a training resource. As such, a k-d tree grid
may not generalize well to examples with different dis-
tributions from training resources. Spatial hierarchies
based on containment relations among entities rely heav-
ily on metadata like GeoNames (Kamalloo and Rafiei,
2018). Polygons for geopolitical entities such as city,
state, and country (Martins et al., 2015) are perhaps
ideal, but these too require detailed metadata for all to-
ponyms, managing non-uniformity of the polygons, and
general facility with GIS tools. The Point-to-City (P2C)
method applies an iterative k-d tree-based method for
clustering coordinates and associating them with cities
(Fornaciari and Hovy, 2019b). S2 can represent such
hierarchies in various levels without relying on external
metadata.

In accordance with the nature of the problem over
continuous space, studies using bivariate Gaussians on
multiple flattened regions (Eisenstein et al., 2010; Pried-
horsky et al., 2014)) perform well on distance based
metrics, but this involves difficult trade-offs between
flattened region sizes and the level of distortion they in-
troduce. Some of the early models used with grid-based
representations were probabilistic language models that
produce document likelihoods in different geospatial
cells (Serdyukov et al., 2009; Wing and Baldridge, 2011;
Dias et al., 2012; Roller et al., 2012). Extensions in-
clude domain adapting language models from various
sources (Laere et al., 2014), hierarchical discriminative
models (Wing and Baldridge, 2014; Melo and Martins,
2015), and smoothing sparse grids with Gaussian pri-
ors (Hulden et al., 2015). Alternatively, Fornaciari and
Hovy (2019a) use a multi-task learning setup that as-
signs probabilities across grids and also predicts the true
location through regression. Melo and Martins (2017)
cover a broad survey of document geocoding. Much
of this work has been conducted on social media data
like Twitter, where additional information beyond the
text—such as the network connections and user and
document metadata—have been used (Backstrom et al.,
2010; Cheng et al., 2010; Han et al., 2014; Rahimi et al.,
2015, 2016, 2017). MLG is not trained on social me-
dia data and hence, does not need additional network
information. Further, the data does not have a character
limit like tweets, so models can learn from long text
sequences.
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Finland is a Nordic country in Northern Europe bordering the Baltic Sea, Gulf of 
Bothnia, and Gulf of Finland, between Sweden to the west, Russia to the east, 
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Figure 2: Multi-Level Geocoder model architecture and inference setup.

3 Multi-Level Geocoder (MLG)

Multi-Level Geocoder (MLG, Figure 2) is a text-to-
location CNN-based geocoder. Context features are
similar to CamCoder (Gritta et al., 2018a) but we ex-
clude its metadata-based MapVec feature. Locations are
represented using a hierarchical S2 grid; this enables
joint multi-level prediction, by optimizing for total loss
computed from all levels.

3.1 Prior geocoding models

Toponym resolution identifies place mentions in text and
predicting the precise geo-entity in a knowledge base
(Leidner, 2007; Gritta et al., 2018b). The knowledge
base is then used to obtain the geo-coordinates of the
predicted entity for the geocoding task. Rule-based
toponym resolvers (Smith and Crane, 2001; Grover
et al., 2010; Tobin et al., 2010; Karimzadeh et al., 2013)
rely on hand-built heuristics like population from meta-
data resources like Wikipedia and GeoNames4 gazetteer.
This works well for many common places, but it is brit-
tle and cannot handle unknown or uncommon place
names. As such, machine learned approaches that use
toponym context features have demonstrated better per-
formance (Speriosu and Baldridge, 2013; Zhang and
Gelernter, 2014; DeLozier et al., 2015; Santos et al.,
2015). A straightforward–but data hungry–approach
learns a collection of multi-class classifiers, one per
toponym with a gazetteer’s locations for the toponym
as the classes (e.g., the WISTR model of Speriosu and
Baldridge (2013)).

A hybrid approach that combines learning and heuris-
tics by predicting a distribution over the grid cells and
then filtering the scores through a gazetteer works for
systems like TRIPDL (Speriosu and Baldridge, 2013)
and TopoCluster (DeLozier et al., 2015). A combina-
tion of classification and regression loss to predict over
recursively partitioned regions shows promising results

4www.geonames.org

with in-domain training (Cardoso et al., 2019). Cam-
Coder (Gritta et al., 2018a) uses this strategy with a
much stronger neural model and achieves state-of-the-
art results. It incorporates side metadata in the form of
its MapVec feature vector, which encodes knowledge of
potential locations and their populations matching all
toponym in the text. It thus uses population signals in
both the MapVec feature in training and in output pre-
dictions biasing the predictions toward locations with
larger populations.

3.2 Building blocks

MLG uses a convolutional neural network to map input
text to S2 cells at a given granularity.

Input MLG extracts three features from the input con-
text: (a) token sequence (wa,1:la ) is all the tokens in in-
put, (b) toponym mentions (wb,1:lb ) is the list of all loca-
tions words in the context, and (c) surface form of the tar-
get toponym (wc,1:lc ) that is to be geo-located. All text
inputs are transformed uniformly, using shared model
parameters. Let input text content be denoted as a word
sequence wx,1:l = [wx,1, . . . , wx,l], initialized using
GloVe embeddings φ(wx,1:l) = [φ(wx,1), . . . , φ(wx,l)]
(Pennington et al., 2014).

Consider a short context for Manhattan as “Manhat-
tan is the smallest and most densely populated borough
compared to others - Bronx, Brooklyn, Queens, and
Staten Island.” All tokens are lower cased and we get
wa as [“is”, “the”, “smallest”, “and”, ...], toponym men-
tions wb are [“bronx”, ... , “staten”, “island”], and
surface form of target toponym wc would be “manhat-
tan”.

Model 1D convolutional filters capture n-gram
sequences through Conv1Dn(·), followed by max
pooling and then projection to a dense layer to get
Dense(MaxPool(Conv1Dn(φ(wx,1:l))))∈R2048,
where n={1, 2} for the token sequence and toponym
mentions, and n={1, 2, 3} for the target toponym.
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These projections are concatenated to form the full
input representation. MLG is designed to study
effectiveness of spatial language representation without
any gazetteer information. Hence we choose a
CNN-based architecture, but can be extended to large
scale pretrained language models (Devlin et al. (2018)).

Output An S2 cell is predicted at the highest granu-
larity using a softmax over the output space. The center
of the predicted S2 cell is taken as the predicted coordi-
nates. Optionally, the predicted cells may be snapped to
the closest valid cells that overlap the potential gazetteer
locations for the toponym, weighted by their population
(similar to previous work, like CamCoder).

3.3 Multi-level classification

MLG’s core block is a multi-class classifier using a
CNN. Rather than predicting cells at a single level, we
project the output onto multiple levels with a multi-
headed model. The penultimate layer maps representa-
tions of the input to probabilities over the finest-grained
cells. Gradient updates are computed using cross en-
tropy loss between predicted probabilities p and the
one-hot true class vector c.

MLG exploits the natural hierarchy of geographic
locations by jointly predicting at different levels of
granularity. CamCoder uses 7.8K output classes repre-
senting 2x2 degree tiles (after filtering cells that have
no support in training, such as over bodies of water,
to limit the class space). This requires maintaining a
cumbersome mapping between actual grid cells and the
classes. MLG’s multi-level hierarchical representation
overcomes this problem by including coarser levels (like
L5) to guide the predictions at finer-grained levels. We
focus on three levels that are appropriate for the task:
L5, L6 and L7 (shown in Table 1), each giving 6K, 24K,
and 98K output classes, respectively.

We define losses at each level (L5, L6, L7) and
minimize them jointly, i.e., Ltotal = (L(pL5, cL5) +
L(pL6, cL6) + L(pL7, cL7))/3. At inference time, a
single forward pass computes probabilities at all three
levels. The final score for each L7 cell is dependent
on its predicted probability as well as the probabilities
in its corresponding parent L6 and L5 cells. Then the
final score for sL7(f) = pL7(f) ∗ pL6(e) ∗ pL5(d) and
the final prediction is ŷ = argmaxy sL7(y). This ap-
proach is easily extensible to capture additional levels
of resolution—we also present results with finer resolu-
tion at L8, with ∼1K km2 area and coarser resolution at
L4 with ∼300K km2 area for comparison.

3.4 Gazetteer-constrained prediction

The only way MLG uses geographic information is
from training labels for toponym targets. At test time,
MLG predicts a distribution over all cells at each S2
level given the input features and picks the highest prob-
ability cell at the most granular level. We use the center
of the cell as predicted coordinates. However, when the

goal is to resolve a specific toponym, an effective heuris-
tic is to use a gazetteer to filter the output predictions to
only those that are valid for the toponym. Furthermore,
gazetteers come with population information that can
be used to nudge predictions toward locations with high
populations—which tend to be discussed more than less
populous alternatives. Like DeLozier et al. (2015), we
consider both gazetteer-free and gazetteer-constrained
predictions.

Gazetteer-constrained prediction makes toponym res-
olution a sub-problem of entity resolution. As with
broader entity resolution, a strong baseline is an alias
table (the gazetteer) with a popularity prior. For geo-
graphic data, the population of each location is an ef-
fective quantity for characterizing popularity: choosing
Paris, France rather than Paris, Texas for the toponym
Paris is a better bet. This is especially true for zero-shot
evaluation where one has no in-domain training data.

We follow the strategy of Gritta et al. (2018a) for
gazetteer constrained predictions. We construct an alias
table which maps each mention m to a set of candi-
date locations, denoted by C(m) using link information
from Wikipedia and the population pop(`) for each
location ` is read from WikiData.5 For each of the
gazetteer’s candidate locations we compute a popula-
tion discounted distance from the geocoder’s predicted
location p and choose the one with smaller value as
argmin`∈C(m) dist(p, `) · (1 − c · pop(`)/ pop(m)).
Here, pop(m) is the maximum population among all
candidates for mention m, dist(p, `) is the great circle
distance between prediction p and location `, and c is a
constant in [0, 1] that indicates the degree of population
bias applied. For c=0, the location nearest the predic-
tion is chosen (ignoring population); for c=1, the most
populous location is chosen, (ignoring p). This is set to
0.9, which worked best on the development set.

3.5 Training Data and Representation

MLG is trained on geographically annotated Wikipedia
pages, excluding all pages in WikToR (see Sec. 4.1).
For each page with geo-coordinates, we consider con-
text windows of up to 400 tokens (respecting sentence
boundaries) as training example candidates. Only con-
text windows that contain the target Wikipedia toponym
are used. We use Google Cloud Natural Language API
libraries to tokenize6 the page text and for identifying7

toponyms in the contexts. We use the July 2019 English
Wikipedia dump, which has 1.11M location annotated
pages giving 1.76M training examples. This is split
90/10 for training/development.

5http://www.wikidata.org
6https://cloud.google.com/

natural-language/docs/analyzing-syntax
7https://cloud.google.com/

natural-language/docs/analyzing-entities
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Gaz AUC of error curve ↓ accuracy@161 ↑ Mean error ↓
Used Model WTR LGL GV Avg WTR LGL GV Avg WTR LGL GV Avg

Yes

POPBASELINE 66 42 41 50 22 57 68 49 4175 1933 898 2335
CAMCODER 24 32 15 24 72 63 82 72 440 877 315 544
SLG 7 17 28 13 19 82 72 86 80 480 648 305 478
MLG 5-7 15 27 13 18 85 73 85 81 347 620 276 414

No
CAMCODER 49 60 65 58 70 38 26 45 239 1419 2246 1301
SLG 7 39 55 56 50 86 49 48 61 424 1688 1956 1356
MLG 5-7 37 54 55 49 91 53 49 64 180 1407 1690 1092

Table 2: Comparing population baseline, CamCoder benchmark (our implementation), and our SLG and MLG
models on the unified data, both with and without the gazetteer filter.

AUC of error curve ↓ accuracy@161 ↑ Mean error ↓
Inference WTR LGL GV Avg WTR LGL GV Avg WTR LGL GV Avg
L5-7 37 54 55 49 91 53 49 64 180 1407 1690 1092
Only L5 48 60 62 57 79 45 39 54 285 1599 1957 1280
Only L6 43 57 60 53 90 51 44 62 265 1534 2003 1267
Only L7 38 54 56 50 89 51 48 63 349 1525 2014 1296

Table 3: Prediction granularity: performance of MLG trained with multi-level loss on L5, L6 and L7 but using
single level at inference time.

4 Evaluation

We train MLG as a general purpose geocoder and
evaluate it on toponym resolution. A strong base-
line is to choose the most populous candidate location
(POPBASELINE): i.e. argmax`∈C(m) pop(`)

4.1 Evaluation Datasets

We use three public datasets: Wikipedia Toponym Re-
trieval (WikToR) (Gritta et al., 2018b), Local-Global
Lexicon (LGL) (Lieberman et al., 2010), and GeoVirus
(Gritta et al., 2018a). See Gritta et al. (2018b) for exten-
sive discussion of other datasets.
WikToR (WTR) is the largest programmatically cre-
ated corpus that allows for comprehensive evaluation
of toponym resolvers. By construction, ambiguous lo-
cation mentions were prioritized (e.g. “Lima, Peru”
vs. “Lima, Ohio” vs. “Lima, Oklahoma” vs “Lima,
New York”). As such, population-based heuristics are
counter-productive in WikToR.
LGL consists of 588 news articles from 78 different
news sources. This dataset contains 5,088 toponyms
and 41% of these refer to locations with small popula-
tions. About 16% of the toponyms are for street names,
which do not have coordinates; and hence dropped from
our evaluation set. About 2% have an entity that does
not exist in Wikipedia, which were also dropped thus
leaving 4,172 examples for evaluation.
GeoVirus (GV) is based on 229 WikiNews8 articles
about global epidemics obtained using keywords such
as “Bird Flu” and “Ebola”. Place mentions are manually
tagged and assigned Wikipedia page URLs. In total, this
dataset provides 2,167 toponyms for evaluation.

WikToR serves as in-domain Wikipedia-based evalu-
ation data, while both LGL and GeoVirus provide out-
of-domain news corpora evaluation.

8https://en.wikinews.org

4.2 Unified evaluation sets

We use the publicly available versions of the three
datasets used in CamCoder.9 However, after analyzing
examples across all of them, we identified inconsisten-
cies in location target coordinates.

First, WikToR’s evaluation set delivers annotations
based on GeoNames DB and Wikipedia APIs. We dis-
covered that WikToR was annotated with an older ver-
sion of GeoNames DB, which has a known issue of
sign flip in either latitude or longitude of some locations.
For example, Santa Cruz, New Mexico was incorrectly
tagged as (35, 106) instead of (35, -106). This affects
296 out of 5,000 locations in WikToR—mostly cities in
the United States and a few in Australia.

Second, the target coordinates are inconsistent across
the 3 datasets. For example, Canada is (60.0, -95.0) in
GeoVirus, (60.0, -96.0) in LGL and (45.4, -75.7) in Wik-
ToR. Given our point-based representations, we need
consistent coordinates across the evaluation sets. So we
re-annotated all three datasets to unify the coordinates
for target toponyms.2 This was done Wikidata to be
consistent with Wikipedia training labels.

4.3 Evaluation Metrics

We use three metrics for evaluation: AUC for the er-
ror curve, accuracy@161km and mean distance error.
AUC10 is the area under the discrete curve of sorted log-
error distances. This is captures the entire distribution
of errors and is not sensitive to outliers. It uses the log
of the error distances, which appropriately focuses the
metric on smaller error distances. Accuracy is the per-
centage of toponyms that are resolved to within 161km

9https://github.com/milangritta/
Geocoding-with-Map-Vector/tree/master/
data

10Unlike the standard AUC, lower is better for AUC since
this is based on the curve of error distances.
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Dev AUC of error curve ↓ accuracy@161 ↑ Mean error ↓
Model loss WTR LGL GV Avg WTR LGL GV Avg WTR LGL GV Avg
MLG 4-7 8.71 37 55 54 49 91 51 51 64 197 1529 1570 1099
MLG 5-7 7.25 37 54 55 49 91 53 49 64 180 1407 1690 1092
MLG 5-8 13.28 38 58 67 54 89 45 24 53 272 1866 3058 1732

Table 4: Models trained with different granularities help trade-off between accuracy and generalization. Selected
model MLG 5-7 is based on optimal performance of the holdout.

(100 miles) of their true location. Mean distance error is
the average of all distances between predicted locations
(center of the predicted S2 cell) and true locations of the
target toponym.

We study the benefits of resolving toponyms over
multiple levels to account for the range of populations,
resolution ambiguity, topological shapes and sizes of
different toponyms. We leave the shaping of the output
space as future work (e.g., using geopolitical polygons
instead of points).

5 Experiments

5.1 Training

MLG is trained using TensorFlow (Abadi et al., 2016)
distributed across 13 P100 GPUs. Each training batch
processes 512 examples. The model trains up to 1M
steps, although they converge around 500K steps. We
found an optimal initial learning rate of 10−4 decaying
exponentially over batches after initial warm-up. For
optimization, we use Adam (Kingma and Ba, 2015) for
stability.

We considered S2 levels 4 through 8, including single
level (SLG) and multi-level (MLG) variations. MLG’s
architecture offers the flexibility of doing multi-level
training but performing prediction with just one level.
Based on the loss on Wikipedia development split, we
chose multi-level training and prediction with levels 5,
6 and 7.

We stress that our focus is geocoding without
gazetteer information at inference time. However, we
also show that additional gains can be achieved using
gazetteers to select relevant cells for a given toponym,
and scale the output using the population bias (c) as
described in section 3.4.

5.2 Results

Table 2 shows results for the POPBASELINE, CAM-
CODER, SLG and MLG models on all three datasets
for all metrics. For CAMCODER, SLG and MLG, we
include results with and without gazetteer filtering (sect.
3.4). Results are reported on the unified datasets. The
CAMCODER results are from our own implementation
and trained on the same examples as MLG training set.

Overall trends The most striking result is MLG’s im-
provement over CAMCODER without gazetteer filtering,
especially on WikToR—a dataset specifically designed
to counteract population priors. MLG clearly general-
izes better by leaving out the non-lexical MapVec fea-

ture and thereby avoiding the influence of its population
bias for the toponyms in the context.

Fine-grained multi-level learning and prediction pays
off, both with and without gazetteer filtering. This is
particularly clear with AUC, where MLG is 6% better
(averaged over all datasets) than CAMCODER with the
gazetteer filter. Without the filter, MLG has an even
larger gain of 9%.

Generalization When not using the gazetteer filter,
MLG actually beats the population baseline for Wik-
ToR, and it is much closer to the strong population
baselines for LGL and GeoVirus than CAMCODER and
SLG. This indicates that the multi-level approach allows
the use of training evidence to generalize better over ex-
amples drawn globally (entire world in GeoVirus) as
well as locally (the United States of America in LGL).

Multi-level prediction helps. Table 3 compares per-
formance of using individual levels from the same MLG
model trained on levels L5, L6 and L7 (without the
gazetteer filter). The trade off of predicting at different
granularity is clear: when we use lower granularity, e.g.
L5 cells, our model can generalize better, but it may be
less precise given the large size of the cells. On the other
hand, when using finer granularity, e.g. L7 cells, the
model can be more accurate in dense regions, but could
suffer in sparse regions where there is less training data.
Combining the predictions from all levels balances the
strengths effectively.

Levels five through seven offer best tradeoff Table
4 shows performance of MLG by training and predict-
ing with multiple levels at different granularities. Over-
all, using levels five through seven (which has the best
development split loss) provides the strongest balance
between generalization and specificity. For locating
cities, states and countries, especially when choosing
from candidate locations in a gazetteer, L8 cells do not
provide much greater precision than L7 and suffer from
fewer examples as evidence in each cell.

Qualitative examples An effective use of context in
correctly predicting coordinates is shown in Table 5 on
two examples, Arlington and Lincoln. In both pairs,
the context helps to shift the predictions in the right
regions on the map. It is not biased by just the most
populous place. Here we only show a part of the context
for clarity though the actual context is longer (see Sec.
3.5).
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Arlington is a former manor, village and civil parish in
the North Devon district of Devon in England. The parish
includes the villages of Arlington and Arlington Beccott.
...

Arlington is a city in Gilliam County, Oregon, United
States. The account of how the city received its name
varies; one tradition claims it was named after the lawyer
Nathan Arlington Cornish, ...

Lincoln is a city in Logan County, Illinois, United States.
It is the only town in the United States that was named for
Abraham Lincoln before he became president....

Lincoln is a city in the province of Buenos Aires in Ar-
gentina. It is the capital of the district of Lincoln (Lincoln
Partido). The district of Lincoln was established on ...

Table 5: Context – terms and other toponyms – drive the probabilities in the right regions to correctly geo-locate
Arlington (top) and Lincoln (bottom) distributions in different parts of the world.

AUC of error curve ↓ accuracy@161 ↑ Mean error ↓
Ablation WTR LGL GeoV Avg WTR LGL GeoV Avg WTR LGL GeoV Avg
all features 37 54 55 49 91 53 49 64 180 1407 1690 1092

- target 38 60 69 55 91 39 18 49 174 2032 2811 1672
- all toponyms 69 75 82 76 29 14 4 16 4487 4442 6360 5096

Table 6: Effect of ablating location features from the input to demonstrate their importance in MLG 5-7.
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Figure 3: Ablating all toponyms at inference time
spreads out the probabilities (points lighted up all over
the map) but can still correctly predict Arlington (Eng-
land) purely from context.

Ablations Table 6 shows ablation of salient features
at inference time, removing either the target toponym or
all toponyms. While masking the target toponym does
not change results much except for GeoVirus, mask-
ing all other toponyms degrades performance consid-
erably. Nevertheless, it may still be possible with just
the context words, which include other named entities,
characteristics of the place, and location-focused words
in few cases. For example, Arlington (England) can
be geolocated after all toponyms are masked (Fig. 3),
though the distribution is more spread out in this case.

6 Conclusion and Future work
MLG uses multi-level optimization for the inherently
hierarchical problem of geocoding. With just textual
inputs, we can predict the location of a target toponym
with minimal to no metadata from gazetteer and outper-
form existing benchmark models. MLG can thus be
used as a gazetteer-free geocoder, on inputs like histor-
ical texts (DeLozier et al., 2016). Further, the models
generalize very well across domains, and thus can be
used in real-time datasets like news feeds. The multi-
level loss can be further refined by using approaches
like hierarchical softmax (Morin and Bengio, 2005) to
incorporate the conditional probabilities across layers
more effectively.

A natural extension would be to fine-tune large pre-
trained language models for the geocoding task. We
expect that the potential value of this is orthogonal to
the contribution of our multi-level loss and the use of
S2 cells. Another future direction involves smoothing
the label space during training to capture the relations
among spatial close cells by defining the loss as a func-
tion of Earth mover’s distance with approximations like
Sinkhorn divergence. This would also enable shaping
the output class space to polygons instead of points,
which is more realistic for geographical regions.
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