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Abstract

Developing mechanisms that flexibly adapt di-
alog systems to unseen tasks and domains is
a major challenge in dialog research. Neu-
ral models implicitly memorize task-specific
dialog policies from the training data. We
posit that this implicit memorization has pre-
cluded zero-shot transfer learning. To this end,
we leverage the schema-guided paradigm,
wherein the task-specific dialog policy is ex-
plicitly provided to the model. We introduce
the Schema Attention Model (SAM) and im-
proved schema representations for the STAR
corpus. SAM obtains significant improvement
in zero-shot settings, with a +22 F1 score im-
provement over prior work. These results val-
idate the feasibility of zero-shot generalizabil-
ity in dialog. Ablation experiments are also
presented to demonstrate the efficacy of SAM.

1 Introduction

Task-oriented dialog systems aim to satisfy user
goals pertaining to certain tasks, such as booking
flights (Hemphill et al., 1990), providing transit
information (Raux et al., 2005), or acting as a tour
guide (Budzianowski et al., 2018). Neural models
for task-oriented dialog have become the dominant
paradigm (Williams and Zweig, 2016; Wen et al.,
2016; Zhao et al., 2017). These data-driven ap-
proaches can potentially learn complex patterns
from large dialog corpora without hand-crafted
rules. However, the resulting models struggle
to generalize beyond the training data and under-
perform on unseen dialog tasks and domains (Zhao
and Eskenazi, 2018; Rastogi et al., 2020b).

A long-standing challenge in dialog research is
to flexibly adapt systems to new dialog domains
and tasks (Zhao and Eskenazi, 2018; Mosig et al.,
2020). Consider a system that has been trained
to handle several different tasks (e.g., restaurant
reservations, ride booking, weather, etc.). How can

Figure 1: In the standard paradigm, data driven mod-
els implicitly learn the task-specific dialog policies (i.e.,
schemas). This precludes generalization to an unseen
task at inference time. In contrast, in the schema-
guided paradigm, dialog policy is explicitly provided to
the model through a schema graph. At inference time,
the model is given the schema for the new task and can
therefore generalize in a zero-shot setting.

this dialog system be extended to handle a new task
(e.g., hotel booking), without collecting additional
data? This paper tackles this challenge and aims
to address the problem of zero-shot generalization
using the schema-guided paradigm.

The advent of large-scale pre-training (Devlin
et al., 2019; Radford et al., 2019) has led to sig-
nificant progress in domain adaptation across ar-
eas in NLP, including natural language understand-
ing (Wang et al., 2018, 2019), open-domain dialog
(Zhang et al., 2020; Adiwardana et al., 2020) and
language understanding for task-oriented dialog
(Wu et al., 2019; Mehri et al., 2020). Generaliza-
tion in end-to-end task-oriented dialog has proven
to be significantly more difficult, particularly in
zero-shot settings where there is no training data
(Mosig et al., 2020). We posit that it is inherently
difficult to generalize to unseen dialog tasks be-
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cause of the dialog policy.

Traditionally, an end-to-end dialog system must
perform three distinct tasks. First, it must under-
stand the dialog history and identify any relevant
user intents or slots. Next, it must decide on the
appropriate system action, according to a task-
specific dialog policy. Finally, it must generate
a natural language utterance corresponding to the
system action. In a pipeline dialog system, these
three steps are performed by the NLU, DM and
NLG respectively (Jurafsky, 2000). Prior work has
exhibited generalizability in language understand-
ing and, to a lesser extent, in language generation.
However for end-to-end dialog, the task-specific
dialog policy inherently precludes zero-shot gener-
alization. An end-to-end dialog model trained on
several tasks, will implicitly learn the dialog poli-
cies from the data. However, when generalizing to
a new task in a zero-shot setting, the model has no
knowledge of the dialog policy for the new task.

To address the difficulty of generalizing to new
task-specific dialog policies and in order to fa-
cilitate zero-shot generalization, we present the
schema-guided paradigm. Generally, end-to-end
neural models implicitly learn the task-specific di-
alog policies from large corpora. In contrast, in
the schema-guided paradigm, we explicitly provide
the task-specific dialog policies to the model in the
form of a schema graph. The schema graphs de-
fine the system’s behavior for a specific task (e.g.,
when the user provides the reservation time, ask
them for the number of people). When transferring
to an unseen task, the corresponding schema graph
is explicitly provided to the model. This enables
language understanding and the dialog policy to be
decoupled. The model no longer needs to implicitly
memorize the task-specific policies from the train-
ing data. Instead, the model learns to interpret the
dialog history and align it to the schema graph. As
such, when transferring to a new task, the schema
graph serves as an inductive bias that provides the
model with the task-specific dialog policy.

To address the challenge of zero-shot transfer
learning, Mosig et al. (2020) presented the STAR
corpus and several baseline experiments. We ex-
tend their baselines for the task of next action
prediction. We introduce the Schema Attention
Model (SAM) and thorough schema representations
for the 24 different tasks in the STAR dataset. SAM

obtains a +22 F1 score improvement over base-
line approaches in the zero-shot setting, validating

the schema-guided paradigm and demonstrating
the feasibility of zero-shot generalization for task-
oriented dialog. Our code and model checkpoints
are open-sourced and be found at https://github.
com/shikib/schema_attention_model.

2 Related Work

2.1 Zero-Shot Dialog

Zero-shot transfer learning has been of interest to
the dialog research community. Many approaches
have been proposed for zero-shot adaptation of spe-
cific dialog components. Chen et al. (2016) present
a zero-shot approach for learning embeddings for
unseen intents. Bapna et al. (2017) show that slot
names and descriptions can be leveraged to implic-
itly align slots across domains and achieve better
cross-domain generalization. Wu et al. (2019) sim-
ilarly use slot names, in combination with a genera-
tive model for state tracking, to obtain strong zero-
shot results. Shah et al. (2019) leverage examples
for zero-shot slot filling. Generally, approaches
for zero-shot generalizability leverage the simi-
larity across domains (e.g., restaurant-area and
hotel-area are conceptually similar). The advent of
large-scale pre-training (Devlin et al., 2019; Rad-
ford et al., 2019) allows for language understanding
across dissimilar domains. Rastogi et al. (2020a)
address zero-shot domain adaptation in state track-
ing by leveraging BERT (Devlin et al., 2019) with
a domain-specific API specification.

Zhao and Eskenazi (2018) present an approach
for zero-shot end-to-end dialog. They leverage
the Action Matching framework to learn a cross-
domain latent action space. Qian and Yu (2019)
use model-agnostic meta learning to attain stronger
results in zero-shot dialog. Both these approaches
rely on additional annotations, which make them
unsuitable for the STAR corpus. While there is a
significant amount of work in zero-shot generaliz-
ability for language understanding, there is consid-
erably less research in adaptation for end-to-end
dialog1. This is in part because of the difficulty of
generalizing to unseen task-specific policies. To
this end, Mosig et al. (2020) presented STAR, a
corpus consisting of 24 different dialog tasks, and
several baseline models for zero-shot adaptation
on STAR. The results in this paper significantly

1While we focus on next action prediction, in the STAR
dataset it is trivial to go from a system action to a natural
language response and as such we consider our task to be
end-to-end dialog.
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outperform the baselines introduced by Mosig et al.
(2020) as we leverage the schema-guided paradigm
for zero-shot generalizability in dialog.

2.2 Schema-Guided Paradigm

Plan-based dialog systems (Ferguson and Allen,
1998; Rich and Sidner, 1998; Bohus and Rudnicky,
2009) reason about user intent, in the context of
a dialog plan. RavenClaw (Bohus and Rudnicky,
2009) consists of a task specification that defines
the behavior of a system depending on various user
actions. Plan-based dialog systems decouple the
task-specific dialog policy from the task-agnostic
components of the system. This allows a system
to be extended to a new task by updating the task
specification. The schema-guided paradigm shares
a similar motivation, and aims to disentangle the
dialog policy in neural, data-driven dialog systems.

Several approaches have been presented to
discover dialog structure graphs (similar to the
schemas in this paper) from data in an unsuper-
vised manner (Shi et al., 2019; Qiu et al., 2020; Xu
et al., 2020; Hu et al., 2019). These approaches
have been used to enhance generation for open-
domain dialog (Qiu et al., 2020; Hu et al., 2019).
To the best of our knowledge, these dialog struc-
tures have neither been used for generation in task-
oriented dialog nor in zero-shot settings. While our
schemas are similar to these structure graphs, they
are hand-crafted similar to those in plan-based dia-
log systems. Future work may extend our work by
leveraging unsupervised structure graph discovery
as an alternative to hand-crafted schemas.

3 Task Definition

We address the problem of transferring dialog mod-
els to unseen tasks and domains (Zhao and Eske-
nazi, 2018). This problem is especially important
in real world settings. It is impossible to precon-
ceive every dialog task that users may need (e.g., a
COVID-19 information dialog system). Further-
more, collecting new dialog data for each new
task is inherently unscalable (Rastogi et al., 2020b).
While rule-based/pipeline dialog systems may be
easier to extend to new tasks (Bohus and Rudnicky,
2009), there is a tradeoff between the adaptabil-
ity of non-neural systems and the performance of
neural models.

3.1 STAR Dataset

The STAR dataset (Mosig et al., 2020) was col-
lected for the purpose of studying transfer learning
in dialog. The dataset spans 24 different tasks in 13
different domains (e.g., the restaurant domain has

‘restaurant-search’ and ‘restaurant-reservations’).
The data collection procedure was designed to re-
duce ambiguity in the system responses and make
system actions deterministic. As such, Amazon
Mechanical Turk (AMT) workers were given a flow
chart diagram for each task. This flow chart defined
the task, including the order in which questions
should be asked (e.g., ask date before city), how to
respond to various user responses and how to query
a database. Additionally, in order to minimize vari-
ance in the responses from the wizard, Mosig et al.
(2020) incorporate a suggestions module during
data collection. This module maps the wizard utter-
ance to the closest pre-written response (e.g., ‘Give
me your name’→ ‘What is your name?’). In some
cases, it is not possible for the AMT worker to use
the suggestions module. Nonetheless, the module
increases the consistency of the system actions.

Mosig et al. (2020) present baseline results on
the tasks of next action prediction and response gen-
eration. The present paper focuses on next action
prediction. The objective of next action prediction
is to predict the correct system action conditioned
on the dialog history. Since there is a one-to-one
mapping between system actions and correspond-
ing natural language responses, the primary chal-
lenge in extending a next action prediction model
to response generation resides in learning to ac-
curately fill in the response templates (e.g., ‘Your
reservation is confirmed for {date}’).

The STAR dataset consists of three different
types of dialogs: (1) happy single-task dialogs,
(2) unhappy single-task dialogs and (3) multi-task
dialogs. Here, happy refers to dialogs where the
users are cooperative and complete the task. In
contrast, unhappy dialogs consist of uncooperative
users that may change the subject, engage in ir-
relevant chit-chat and otherwise aim to push the
system beyond its capabilities. Since our primary
objective is to address zero-shot transfer, we only
consider the happy single-task dialogs. There are
1537 happy single-task dialogs and 10,364 turns.

3.2 Zero-Shot Setting

In the STAR dataset, there are 23 dialog tasks (13
domains) with happy single-task dialogs. We per-
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form two types of transfer learning experiments:
task transfer and domain transfer. In task transfer,
a model is trained on n − 1 tasks (i.e., 22) and
evaluated on the last one. This is repeated for each
of the 23 tasks. For domain transfer, a model is
trained on n− 1 domains (i.e., 12) and evaluated
on the last one. In task transfer, there may be some
overlap between the training and testing, for exam-
ple, the domain-specific terminology. In contrast,
in domain transfer there is very limited overlap.
When the model is tasked with generalizing to the
restaurant domain, it has seen nothing related to
restaurants during training.

In both of these settings, the model is aware of
which task it is being evaluated on, meaning that it
can leverage a task specification (e.g., schema) for
the new task. This experimental design resembles a
real-world setting where a system developer would
be aware of the new task. For example, if a devel-
oper wanted to extend a dialog system to handle a
COVID-19 related question, they would be able to
create a new task specification. As such, our goal is
to develop a model that can generalize to an unseen
task conditioned on a task specification.

4 Methods

In order to enable zero-shot transfer to new dialog
tasks and domains, the Schema Attention Model
(SAM) is introduced. It leverages an external dialog
policy representation (i.e., the schema) to predict
the next system action. This section begins by de-
scribing the baseline model for the task of next ac-
tion prediction. Next, the schema-guided paradigm
is introduced (Figure 1). It includes a graph-based
representation of the task-specific schema and SAM,
a model that identifies the next system action by
attending to a task-specific schema representation.

4.1 Baseline

This section describes the baseline model proposed
by Mosig et al. (2020). Given an arbitrary language
encoder, denoted asF , the baseline model obtains a
vector representation of the dialog history, c. This
representation is then passed through a softmax
layer to obtain a probability distribution over the
actions.

h = F(c) (1)

Pclf = softmax(WhT + b) (2)

Throughout this paper, BERT-base (Devlin et al.,
2019) is used as the language encoder.

4.2 Schema-Guided Paradigm

Our baseline model simultaneously needs to (1)
interpret the dialog context and identify the relevant
intents and slots, and (2) learn the task-specific
dialog policies (i.e., if the user wants the weather,
ask the city) for the different tasks in the training
data. This model is incapable of generalizing to
a new task in a zero-shot setting, as it would lack
knowledge of the task-specific policy for the new
task. To mitigate this problem and to enable zero-
shot task transfer, we present the schema-guided
paradigm which decouples the task-specific dialog
policy from the language understanding.

An example is shown in Figure 1: the schema-
guided paradigm decouples the the dialog policy
from language understanding by explicitly provid-
ing task-specific schema graphs as input to the
model. These schema graphs serve as complete
representations of the dialog policy for a given task.
Therefore, while the baseline needs to implicitly
learn the dialog policies, a schema-guided model in-
stead learns to leverage the explicit schema graphs.
As such, a schema-guided model can generalize
to a new task as long as it is provided with the
corresponding schema graph.

In this paradigm, the role of the model is to in-
terpret a dialog context and align it to the explicit
schema graph. The role of the schema graph is
to determine the next action according to the dia-
log policy. In this manner, the language encoder
is being trained for the task of sentence similarity.
With the help of pre-trained models, language un-
derstanding in a schema-guided paradigm can be
considered to be task-agnostic. By decoupling the
task-agnostic language understanding and the task-
specific dialog policy, the schema-guided paradigm
better facilitates zero-shot transfer learning.

The schema-guided paradigm consists of the
representation of the schema graph, and a neu-
ral model which interprets the dialog context and
aligns it to the schema graph.

4.2.1 Schema Representation
In the schema-guided paradigm, the schema rep-
resentation is the task-specific dialog policy. To
ensure the efficacy and robustness of the dialog sys-
tem, it is important that the schema representation
be complete and informative. In the case of ambigu-
ity or incompleteness in the schema representation,
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the next action will fail to be correctly predicted, re-
gardless of the strength of the model. The schema
representations are manually constructed for every
task. In the schema-guided paradigm, to transfer to
a new task, a system developer would simply need
to construct a new schema representation.

Mosig et al. (2020) propose a baseline schema
representation wherein the nodes of the graph corre-
spond to system actions and database states. There
are nodes for user states only in situations where
the system behavior differs depending on the user’s
actions (e.g., ‘Yes’→ ask-time, ‘No’→ ask-date).
The consequence of this representation is that when
the model aligns the dialog history to the schema,
it largely relies on the system utterances. However,
this representation fails to account for realistic user
behavior and therefore yields only marginal im-
provement over the baseline.

Specifically, users will often provide information
out of turn (e.g., System: ‘Where would you like
to go?’ → User: ‘Leaving from the airport and
going downtown’). In this example, it is difficult
for the model to realize that the question System:

‘Where are you leaving from?’ has also been an-
swered and therefore should not be the next system
action. Users can also ignore the system utterance
(e.g., System: ‘Where would you like to go?’ →
User: ‘Actually, what’s the weather?’). It is thus
ineffective to represent dialog policy only in terms
of the system utterances. To this end, we extend
the schema representation by incorporating user
utterances into the schema graph.

As shown in Figure 2, our schema graph incor-
porates nodes corresponding to user utterances. As
such, if a user provides information out of turn
or changes the subject, our model will be able to
effectively align the dialog to the schema. To ac-
count for variance in the user utterances, future
work could extend this schema representation to in-
clude multiple variations of a given user utterance.
However, as the schema graphs are manually con-
structed for every task, there is a trade-off between
manual effort and efficacy2.

The schema graph has several noteworthy prop-
erties. First, the system actions are consistently
deterministic. Nodes corresponding to a database
response or to a user utterance will always have
a single outgoing edge to a system response node.

2Constructing the schema graphs is not particularly labor-
intensive. It took the first author between 15 and 45 minutes
to create each schema graph, depending on the complexity of
the task.

Figure 2: A section of the task-specific schema graph
for the bank-balance task. The system must authenti-
cate the user with their account number and PIN. How-
ever, if the user has forgotten either of these, it must
ask backup security questions. The blue nodes corre-
spond to system actions and the yellow nodes denote
user utterances.

Furthermore, such nodes will also have a single
incoming edge from a system response node. For
a given user/database node, u, we denote the pre-
vious system response node as prev(u) and the
following system response as next(u). Each node
has some text associated with it, denoted as text(u).
This text is a template for either a system utterance,
database response or user utterance. System nodes
will also have an associated system action, act(u).
There is a one-to-one mapping between the system
actions and the system response templates.

4.2.2 Schema Attention Model

In the schema-guided paradigm, the role of the
model is to understand the dialog history and align
it to the schema representation. We introduce the
Schema Attention Model, SAM, which attends be-
tween the dialog history, c = c1, . . . , cN and the
schema graph. SAM extends the schema-guided
model presented by Mosig et al. (2020) by (1) lever-
aging a stronger attention mechanism, (2) improv-
ing the training algorithm, and (3) removing the
linear classification layer which is detrimental to
zero-shot performance.

The objective of SAM is to predict the node in the
schema graph that best corresponds to the dialog
context. SAM will produce a probability distribu-
tion over the nodes corresponding to user utter-
ances and database responses. Given an attention
distribution over the nodes, we can obtain a proba-
bility distribution over the set of actions by prop-
agating the attention probabilities over the graph.
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Concretely, if node u has an attention weight of p,
we add p to the probability of action(next(u)).

We consider every node u that corresponds to
either a database response or a user utterance. We
then represent each node u as the concatenation
of the previous node and the current node, i.e.,
text(prev(u)) + text(u). For all nodes u ∈ U , we
obtain this textual representation denoted as s ∈ S.

We are given a language encoder, F , the dialog
context, c = c1, . . . , cN , the nodes U , their corre-
sponding textual representations S, and the set of
possible actions A. Note that unlike in Equation
1, F is used to produce a vector representation of
each word in the input. SAM produces a probability
distribution over the actions as follows:

h1,...,N = F(c : c1, . . . , cN ) (3)

Si;1,...,M = F(Si : s1, . . . , sM ) (4)

wi
j,k = hT

j Si;k (5)

α = softmax(w1,...,|S|) (6)

pi =
∑
j≤N

∑
k≤M

αi
j,k (7)

Here, wi is anN×M dimensional matrix corre-
sponding to the dot product between the N words
of the dialog history and the M words of the i-th
textual representation in S. To get the attention
weights over all of the words of the schema, we
perform a softmax over all wi, 1 ≤ i ≤ |S|. By
summing over the attention weights in αi, we get
pi, a scalar value which denotes the attention be-
tween the dialog history and the i-th node (i.e., the
corresponding textual representation Si). Given
pi we produce a probability distribution over the
actions A as follows:

g(i, a) =

{
pi, if action(next(ui)) = a

0, otherwise
(8)

P (a) =
∑
i≤|S|

g(i, a) (9)

To align the dialog history to the schema graph,
SAM performs word-level attention using a BERT-
base model. In contrast, the schema-guided model
of Mosig et al. (2020) attends with the sentence
level vector representation produced by BERT.
With the word-level attention, SAM can better
align ambiguous dialog contexts, such as situations

where the user provides multiple pieces of infor-
mation in a single utterance. Since this word-level
attention operates on the sub-word tokens used in
BERT, it can also potentially handle spelling errors
in the user utterances.

Furthermore, in their schema-guided model,
Mosig et al. (2020) combine the probability distri-
bution produced by attending to the schema graph
with their baseline model (i.e., Section 3.1). While
this may result in better performance on the tasks
the model is trained with, the baseline model will
not generalize to unseen tasks. In contrast, SAM

computes the probability for an action using only
the attention over the schema graph.

Mosig et al. (2020) train their schema-guided
model to predict the appropriate node, ui, from a
set of nodes U ′ (s.t., U ′ ⊂ U ). At training time, for
efficiency reasons, the set of nodes U ′ is obtained
by using the corresponding node for every dialog
context in the training batch. Since the training
batches are randomly sampled, this results in U ′

including nodes from a variety of different schema
graphs. At inference time, the dialog task is known
and therefore only the corresponding schema graph
needs to be attended to (i.e., U ′ will contain nodes
from a single schema graph). It is valuable to train
the model to distinguish between different nodes
of the same schema graph. Specifically, the atten-
tion mechanism (i.e., Equations 5 - 6) will learn
stronger fine-grained relationships when trained
with negative samples from the same domain. As
such, we augment the training algorithm to sample
batches from the same dialog task, meaning that
U ′ will only include nodes from a single schema.

SAM improves on the baseline schema-guided
model introduced by Mosig et al. (2020) by (1)
leveraging a stronger attention mechanism that bet-
ter handles realistic user behavior, (2) computing
a probability distribution only by attending to the
schema graph and (3) modifying the training algo-
rithm to have in-domain negative samples which
result in the model learning to identify fine-grained
relationships. In combination with the improved
schema representation, SAM is better suited to han-
dle realistic user behavior in zero-shot settings.

5 Results

To validate the effectiveness of SAM, a number of
next action prediction experiments are carried out
on the STAR dataset (Mosig et al., 2020). First,
SAM is evaluated in the standard experimental set-
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Model F1 score Accuracy

Baseline � 73.79 74.85
BERT+S � 71.59 72.27
SAM − [1] 54.35 60.51

SAM − [2,3,4] 70.22 71.01
SAM − [2] 70.27 71.93
SAM − [3] 70.18 71.64
SAM − [4] 69.68 69.79

SAM 70.38 71.45

Table 1: Performance in the standard experimental set-
ting. Models marked with � are attributed to Mosig
et al. (2020). We denote their schema-guided model,
‘BERT + Schema’, as BERT+S. SAM consists of four im-
provements upon BERT+S: (1) user-aware schema, (2)
word-level attention, (3) using negative samples from
the same task at training, (4) removing the linear clas-
sification layer. Results in boldface are statistically sig-
nificant by t-test (p < 0.01)

ting, i.e., training and testing on the same tasks.
Next, we carry out zero-shot transfer experiments,
as defined in Section 3. The evaluation uses accu-
racy and weighted F1 score.

We rerun the experiments presented by Mosig
et al. (2020) using code shared by the authors. In
our results, the model introduced by Mosig et al.
(2020) is denoted as BERT+S. Their original results
were obtained on an older version of STAR, with
annotation errors3 that have since been fixed.

5.1 Standard Experiments

In the standard experimental setting, models are
trained and tested on the same tasks. Following
Mosig et al. (2020), 80% of the dialogs are used
for training and 20% for testing. All models are
trained for 50 epochs.

The results shown in Table 1 show SAM to be
comparable to the baseline model on the standard
setting. Since the augmentations to SAM are primar-
ily intended to improve zero-shot performance, it is
unsurprising that there is no performance improve-
ment compared to the standard setting. When eval-
uating on seen tasks, the linear classification layer
is significantly more effective than attending to the
schema. This suggests that a large neural model
(i.e., BERT) is able to implicitly learn meaning-
ful dialog policies from dialog data. It is possible

3Specifically, certain dialogs were misattributed as being
happy single-task dialogs.

that this performance difference may decrease with
more expressive schemas (e.g., having multiple ex-
amples for each user utterance, automatically learn-
ing schemas from the dataset). The value of our
schema graphs is nonetheless shown when compar-
ing SAM to SAM−[1] (i.e., the old schema graphs).
These experiments provide an upper bound for the
performance in zero-shot transfer.

5.2 Zero-Shot Transfer

Table 2 shows the results of the zero-shot exper-
iments. SAM obtains strong improvements over
the baseline models for both zero-shot task transfer
and domain transfer. These experimental results
validate the effectiveness of the schema-guided
paradigm, as well as the specific design of SAM.

Compared to the baseline model (described in
Section 3.1), SAM obtains a +22 F1 score im-
provement in task transfer and a +24 F1 score
improvement in domain transfer. Since the base-
line model is unable to predict classes it has not
observed at training time, its performance is limited
to actions that are consistent across domains (e.g.,

‘hello’, ‘goodbye’, ‘anything-else’). This improve-
ment highlights the effectiveness of the schema-
guided paradigm for zero-shot transfer learning.

BERT+S also leverages schemas for transfer
learning. Yet, it under-performs relative to the base-
line model. SAM attains even larger improvements
over this baseline schema-guided model. As de-
scribed in Section 4.2, the weak performance of
BERT+S is largely a consequence of it being in-
capable of handling realistic user behavior. The
design of BERT+S (i.e., the schema only having
system nodes) results in the model essentially pre-
dicting the subsequent system actions. This is
equivalent to sequentially predicting the next sys-
tem action, regardless of user behavior. With im-
proved schema representations and model architec-
ture, SAM achieves much stronger performance in
zero-shot transfer.

Our ablation experiments shed more light on the
performance of SAM relative to BERT+S. A signifi-
cant performance drop is observed when removing
the newly constructed schema representations (i.e.,
SAM−[1]). In contrast, adding the schema graphs
to BERT+S (i.e., SAM−[2, 3, 4]) results in a strong
performance improvement of +15 F1 score. This
confirms the hypothesis that the schema graphs of
Mosig et al. (2020), which are largely comprised of
system action nodes are insufficient for modelling
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Model Task Transfer Domain Transfer
F1 score Accuracy F1 score Accuracy

Baseline ♦ 31.23 30.65 31.82 33.92
BERT+S ♦ 28.12 28.28 29.70 32.43
SAM − [1] 33.81 37.84 41.77 45.64

SAM − [2,3,4] 43.28 46.11 43.78 45.19
SAM − [2] 50.72 53.69 52.20 54.68
SAM − [3] 45.54 49.29 50.56 52.13
SAM − [4] 47.26 47.99 47.67 48.92

SAM 53.31 55.51 55.74 57.75

Table 2: Performance in zero-shot transfer. We present results on both task transfer and domain transfer. Models
marked with ♦ are attributed to Mosig et al. (2020). SAM consists of four improvements upon BERT+S: (1) user-
aware schema, (2) word-level attention, (3) using negative samples from the same task at training, (4) removing
the linear classification layer. Results in bold-face are statistically significant by t-test (p < 0.01).

realistic user behavior.
Word-level attention is shown to give moder-

ate, albeit statistically significant, improvement. In
contrast to SAM−[2], SAM obtains a +3 F1 score
improvement. While word-level attention allows
the model to better align the dialog to the schema,
it is an architectural improvement that is not central
to the schema-guided paradigm.

Modifying the training algorithm to sample
batches from the same task results in better nega-
tive samples during training. This allows the model
to learn to distinguish between nodes from the
same schema graph when aligning the dialog to
the schema graph. When this modification is re-
moved (i.e., SAM−[3]), the performance of SAM

drops by 8 F1 score for zero-shot task transfer.
The fourth and final component of SAM is the

removal of the linear classification layer. Since
this classification layer is unable to predict classes
it has not seen at training time, it is ineffective
in zero-shot settings. Unsurprisingly, removing it
increases performance and SAM obtains a +6 F1

score improvement over SAM−[4].
The zero-shot experiments shown in Table 2 em-

pirically validate several hypotheses presented in
this paper. First, the strong improvement over the
baseline demonstrates the efficacy of the schema-
guided paradigm for zero-shot generalizability in
end-to-end dialog. Decoupling dialog policy and
the language understanding by explicitly repre-
senting the task-specific dialog policies as schema
graphs results in an improved ability to transfer to
unseen tasks. Next, we improve over the schema-
guided model of Mosig et al. (2020) through (1) an

improved schema representation and (2) a collec-
tion of modifications to the model. The improved
schema representation better models realistic user
behaviors in dialog, and therefore results in better
alignment of the dialog and the schema. Our model
modifications result in the model being able to learn
better fine-grained relationships during alignment
(e.g., through better negative sampling and word-
level attention) and better handle zero-shot transfer
(e.g., by removing the linear layer).

In contrast to prior work on zero-shot general-
izability (Zhao and Eskenazi, 2018; Qian and Yu,
2019), our approach is shown to effectively trans-
fer between the vastly dissimilar domains of the
STAR corpus (Mosig et al., 2020) (e.g., trivia or
spaceship maintenance). Rather than modelling a
cross-domain mapping and leveraging similar con-
cepts across different domains, the schema-guided
paradigm decouples the domain-specific (i.e., the
dialog policy) and domain-agnostic (i.e., language
understanding) aspects of dialog systems. Through
the schema-guided paradigm, we achieve strong
performance in the zero-shot setting and take an
important step towards zero-shot dialog.

6 Conclusion

This paper shows strong results in zero-shot task
transfer and domain transfer using the schema-
guided paradigm. We hypothesized that the dif-
ficulty of zero-shot transfer in dialog stems from
the dialog policy. When neural models implicitly
memorize dialog policies observed at training time,
they struggle to transfer to new tasks. To mitigate
this, we explicitly provide the dialog policy to the



507

model, in the form of a schema graph. This pa-
per introduces the Schema Attention Model (SAM)
and shows improved schema graphs for the STAR
corpus. This approach attains significant improve-
ment over prior work in the zero-shot setting, with
a +22 F1 score improvement. Furthermore, the
ablation experiments demonstrate the effectiveness
of both SAM and the improved schema represen-
tations. Future work may explore (1) improved
schema representations to better capture dialog pol-
icy, (2) improved model architectures to better align
the dialog to the schema, and (3) extensions to other
problems (e.g., response generation).
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