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Abstract
We propose a framework to model an oper-
ational conversational negation by applying
worldly context (prior knowledge) to logical
negation in compositional distributional se-
mantics. Given a word, our framework can cre-
ate its negation that is similar to how humans
perceive negation. The framework corrects
logical negation to weight meanings closer in
the entailment hierarchy more than meanings
further apart. The proposed framework is flex-
ible to accommodate different choices of logi-
cal negations, compositions, and worldly con-
text generation. In particular, we propose and
motivate a new logical negation using matrix
inverse.

We validate the sensibility of our conversa-
tional negation framework by performing ex-
periments, leveraging density matrices to en-
code graded entailment information. We con-
clude that the combination of subtraction nega-
tion (¬sub) and phaser in the basis of the
negated word yields the highest Pearson cor-
relation of 0.635 with human ratings.

1 Introduction

Negation is fundamental to every human language,
marking a key difference from how other animals
communicate (Horn, 1972). It enables us to express
denial, contradiction, and other uniquely human
aspects of language. As humans, we know that
negation has an operational interpretation: if we
know the meaning of A, we can infer the mean-
ing of not A, without needing to see or hear not A
explicitly in any context.

Formalizing an operational description of how
humans interpret negation in natural language is
a challenge of significance to the fields of linguis-
tics, epistemology, and psychology. Kruszewski
et al. (2016) notes that there is no straightforward
negation operation that, when applied to the dis-
tributional semantics vector of a word, derives a

negation of that word that captures our intuition.
This work proposes and experimentally validates
an operational framework for conversational nega-
tion in compositional distributional semantics.

In the field of distributional semantics, there have
been developments in capturing the purely logical
form of negation. Widdows and Peters (2003) intro-
duce the idea of computing negation by mapping
a vector to its orthogonal subspace; Lewis (2020)
analogously model their logical negation for den-
sity matrices. However, logical negation alone is
insufficient in expressing the nuances of negation
in human language. Consider the sentences:

a) This is not an apple;
this is an orange.

b) This is not an apple;
this is a paper.

Sentence a) is more plausible in real life than sen-
tence b). However, since apples and oranges share
a lot in common, their vector or density matrix en-
codings would most likely not be orthogonal. Con-
sequently, such a logical negation of apple would
more likely indicate a paper than an orange.

Blunsom et al. (2013) propose that the encoding
of a word should have a distinct “domain” and
“value”, and its negation should only affect the
“value”. In this way, not blue would still be in
the domain of color. However, they do not provide
any scalable way to generate such representation of
“domain” and “value” from a corpus. We argue that
this domain need not be encoded in the vector or
density matrix itself. Instead, we propose a method
to generate what we call worldly context directly
from the word and its relationships to other words,
computed a priori using worldly knowledge.

Furthermore, we want such conversational nega-
tion to generalize from words to sentences and to
entire texts. DisCoCat (Coecke et al., 2010) pro-
vides a method to compose the meaning of words
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to get the meaning of sentences and DisCoCirc (Co-
ecke, 2020) extends this to propagate knowledge
throughout the text. Therefore, we propose our
conversational negation in the DisCoCirc formal-
ism, putting our framework in a rich expanse of
grammatical types and sentence structures. Focus-
ing on the conversational negation of single words,
we leave the interaction of conversational negation
with grammatical structures for future work.

Section 2 introduces the necessary background.
Section 3 discusses the logical negation using sub-
traction from the identity matrix from Lewis (2020),
and proposes and justifies a second, new form of
logical negation using matrix inverse. Section 4
introduces methods for context creation based on
worldly knowledge. Section 5 presents the gen-
eral framework for performing conversational nega-
tion of a word by combining logical negation with
worldly context. Section 6 experimentally verifies
the proposed framework, comparing each combi-
nation of different logical negations, compositions,
bases, and worldly context generation. We end our
discussion with an overview of future work.

2 Background

2.1 Conversational negation

Kruszewski et al. (2016) point out a long tradition
in formal semantics, pragmatics and psycholinguis-
tics which has argued that negation—in human
conversation—is not simply a denial of informa-
tion; it also indicates the truth of an alternative
assertion. They call this alternative-licensing view
of negation conversational negation.

Another view on negation states that the effect
of negation is merely one of information denial
(Evans et al., 1996). However, Prado and Noveck
(2006) explain that even under this view, the search
for alternatives could happen as a secondary effort
for interpreting negation in the sentence.

The likelihood of different alternatives to a
negated word inherently admits a grading (Oaks-
ford, 2002; Kruszewski et al., 2016). For example,
something that is not a car is more likely to be a
bus than a pen. They argue that the most plausible
alternatives are the ones that are applicable across
many varied contexts; car can be replaced by bus
in many contexts, but it requires an unusual context
to sensibly replace car with pen.

elf

Alice

old

Figure 1: Graphical representation of meaning updat-
ing in DisCoCirc - read from top to bottom

2.2 Compositional semantics and DisCoCirc
Language comprehension depends on understand-
ing the meaning of words as well as understanding
how the words interact with each other in a sen-
tence. While the former is an understanding of the
definitions of words, the latter requires an under-
standing of grammar. Coecke et al. (2010) build
on this intuition to propose DisCoCat, a composi-
tional distributional model of meaning, making use
of the diagrammatic calculus originally introduced
for quantum computing (Abramsky and Coecke,
2004). In Coecke (2020), this model was extended
to DisCoCirc which generalized DisCoCat from
modeling individual sentences to entire texts. In
DisCoCirc, the two sentences

Alice is an elf.
Alice is old.

are viewed as two processes updating the state of
Alice, about whom, at the beginning of the text,
the reader knows nothing. Graphically this can be
displayed as shown in Figure 1. The wire labeled
by Alice represents the knowledge we have about
Alice at any point in time. It is first updated by the
fact that she is an elf and subsequently updated by
the fact that she is old. We use a black square to rep-
resent a general meaning-update operation, which
can be one of a variety of operators we discuss in
the next section. DisCoCirc allows for more gram-
matically complex sentence and text structures not
investigated in this work.

DisCoCirc allows for various ways of represent-
ing meaning such as vector spaces (Coecke et al.,
2010; Grefenstette and Sadrzadeh, 2011), concep-
tual spaces (Bolt et al., 2017), and density matrices
(Balkir et al., 2016; Lewis, 2019). A density matrix
is a complex matrix, which is equal to its own con-
jugate transpose (Hermitian) and has non-negative
eigenvalues (positive semidefinite). They can be
viewed as an extension of vector spaces to allow
for encoding lexical entailment structure (see Sec-
tion 2.4), a property for which they were selected
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as the model of meaning for this paper.

2.3 Compositions for meaning update

We present four compositions for meaning update:

spider(A, B) := Us(A⊗ B)U †s (1)

- Us =
∑

i |i〉 〈ii| where {|i〉}i is B’s eigenbasis
- non-linear AND in Coecke (2020)

fuzz(A, B) :=
∑
i

xiPi ◦ A ◦ Pi (2)

- B =
∑

i xiPi
- in Coecke and Meichanetzidis (2020)
- Kmult in Lewis (2020)

phaser(A, B) := B
1
2 AB

1
2 (3)

- B =
∑

i x
2
iPi where B

1
2 =

∑
i xiPi

- in Coecke and Meichanetzidis (2020)
- Bmult in Lewis (2020)
- corresponds to quantum Bayesian update (van de

Wetering, 2018)

���diag(A, B) := dg(A) ◦ dg(B) (4)

- a Compr from De las Cuevas et al. (2020): lifts
verbs and adjectives to completely positive maps
matching their grammatical type

where A and B are density matrices, xi is a real
scalar between 0 and 1, Pi’s are projectors, and the
function dg sets all off-diagonal matrix elements to
0 giving a diagonal matrix.

Of the many Compr variants (De las Cuevas
et al., 2020), we only consider diag and mult (el-
ementwise matrix multiplication, which is an in-
stance of spider) as candidates for composition. All
other variants are scalar multiples of one input, the
identity wire, or a maximally mixed state; therefore
we do not consider them as they discard too much
information about the inputs.

For spider, fuzz, and phaser, choosing the basis
of the composition determines the basis the result-
ing density matrix takes on, and its meaning is
interpreted in (Coecke and Meichanetzidis, 2020).

2.4 Lexical entailment via hyponymies
A word wA is a hyponym of wB if wA is a type
of wB; then, wB is a hypernym of wA. For exam-
ple, dog is a hyponym of animal, and animal is a
hypernym of dog. Where there is a meaning rela-
tion between two words, there exists an entailment
relation between two sentences containing those
words. Measures to quantify these relations ought
to be graded, as one would expect some entailment
relations to be weaker than others. Furthermore,
such measures should be asymmetric (a bee is an
insect, but an insect is not necessarily a bee) and
pseudo-transitive (a t-shirt is a shirt, a shirt can be
formal, but a t-shirt is usually not formal).

One of the limitations of the vector space model
of NLP is that it does not admit a natural non-trivial
graded entailment structure (Balkir et al., 2016;
Coecke, 2020). Bankova et al. (2019) utilize the
richer setting of density matrices to define a mea-
sure called k-hyponymy, generalizing the Löwner
order to have a grading for positive operators, sat-
isfying the above three properties. They further
lift from entailment between words to between two
sentences of the same grammatical structure, using
compositional semantics, and prove a lower bound
on this entailment between sentences.

The k-hyponymy (khyp) between density matri-
ces A and B is the maximum k such that

A vk B⇐⇒ B− kA is a positive operator (5)

where k is between 0 (no entailment) and 1 (full
entailment).

Van de Wetering (2018) finds that the crisp
Löwner ordering (khyp = 1) is trivial when op-
erators are normalized to trace 1. On the other
hand, they enumerate highly desirable properties
of the Löwner order when normalized to highest
eigenvalue 1. In particular, the maximally mixed
state is the bottom element; all pure states are max-
imal; and the ordering is preserved under any lin-
ear trace-preserving isometry (including unitaries),
convex mixture, and the tensor product. In our ex-
periments, we leverage these ordering properties
following Lewis (2020)’s convention of normaliz-
ing operators to highest eigenvalue ≤ 1.

According to Bankova et al. (2019, Theorem 2),
when supp(A) ⊆ supp(B), khyp is given by 1/γ,
where γ is the maximum eigenvalue of B+A. Here
B+ denotes the Moore-Penrose inverse of B, which
we refer to in the next section as support inverse.
If supp(A) 6⊆ supp(B), khyp is 0. This means that
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khyp admits a grading, but is not robust to errors. In
our experiments, to circumvent this issue of almost
all of our calculated khyp being 0, we employ a
generalized form of khyp equivalent to as originally
defined in Bankova et al. (2019, Theorem 2), less
checking whether supp(A) ⊆ supp(B).

To propose more robust measures, Lewis (2019)
says A entails B with the error term E if there exists
a D such that:

A + D = B + E (6)

to define the following two entailment measures

kBA =

∑
i λi∑
i |λi|

=
Trace(D− E)
Trace(D + E)

(7)

kE = 1− ‖E‖
‖A‖

(8)

where the λi’s are the eigenvalues of B − A. In
Equations 7 and 8, the error term E satisfying Equa-
tion 6 is constructed by taking the diagonalization
of B − A, setting all positive eigenvalues to zero,
and changing the sign of all negative eigenvalues.
kBA ranges from −1 to 1, and kE ranges from 0
to 1.

According to De las Cuevas et al. (2020), diag,
mult, and spider preserve crisp Löwner order:

A1 v B1,A2 v B2 ⇐⇒ A1 A2 v B1 B2

(9)
Fuzz and phaser do not satisfy Equation 9.

3 Logical negations

To construct conversational negation, we must first
define a key ingredient – logical negation, denoted
by ¬. The logical negation of a density matrix is a
unary function that yields another density matrix.

The most important property of a logical nega-
tion is that it must interact well with hyponymy.
Ideally, the interpretation of the contrapositive of
an entailment must be sensible:

A v B⇐⇒ ¬B v ¬A (10)

A weakened notion arises from allowing varying
degrees of entailment:

A vk B⇐⇒ ¬B vk′ ¬A (11)

where k = k′ in the ideal case.
Equation 11 necessitates any candidate of logical

negation to be order-reversing. However, van de

Wetering (2018) proved that all unitary operations
preserve Löwner order. Therefore, no quantum
gates can reverse Löwner order, and the search for
a logical negation compatible with quantum natural
language processing (Coecke et al., 2020) (origi-
nally formulated in the category of CPM(FHilb)
(Piedeleu et al., 2015)) remains an open question.

We now discuss two candidates for logical nega-
tion that have desirable properties and interaction
with the hyponymies presented in Section 2.4.

3.1 Subtraction from identity negation
Lewis (2020) introduces a candidate logical nega-
tion which preserves positivity of density matrix X:

¬subX := I− X (12)

In the case where X is a pure state, it maps X to the
subspace orthogonal to it, as the identity matrix I
is the sum of orthonormal projectors. This logical
negation satisfies Equation 10 for the crisp Löwner
order. It satisfies Equation 11 with k = k′ for kBA,
but not for khyp or kE.

3.2 Matrix inverse negation
We introduce a new candidate for logical negation,
the matrix inverse. This reverses Löwner order, i.e.
satisfies Equation 11 with k = k′ (see Corollary 1
in Appendix). It additionally satisfies Equation 11
with k = k′ for kBA if both density operators have
same eigenbases (see Theorem 2 in Appendix).

As the matrix inverse of a non-invertible matrix
is undefined, we define a logical negation from two
generalizations of the matrix inverse acting upon
the support and kernel subspaces, respectively.
Definition 1. For any density matrix X with spec-
tral decomposition X =

∑
i λi |i〉 〈i|,

¬suppX :=
∑
i

{
1
λi
|i〉 〈i| , if λi > 0

0, otherwise
(13)

Definition 1 is the Moore-Penrose generalized
matrix inverse and is equal to the matrix inverse
when the kernel is empty. It has the property
that Equation 11 with k = k′ is satisfied for khyp
when rank(A) = rank(B) (see Theorem 1 in Ap-
pendix). We call it the support inverse, to contrast
with what we call the kernel inverse:
Definition 2. For any non-invertible density matrix
X with spectral decomposition X =

∑
i λi |i〉 〈i|,

¬kerX :=
∑
i

{
1 |i〉 〈i| , if λi = 0

0, otherwise
(14)
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The kernel inverse is the limit of matrix regu-
larization by spectral filtering (i.e. setting all zero
eigenvalues to an infinitesimal positive eigenvalue),
then inverting the matrix and normalizing to highest
eigenvalue 1. Its application discards all informa-
tion about the eigenspectrum of the original matrix.
Therefore, applying the kernel inverse twice results
in a maximally mixed state over the support of
the original matrix. Operationally speaking, ¬ker
and ¬sub act upon the kernel of the original matrix
identically.

We can think conceptually of a negated word as
containing elements both “near” (in support) and
“far” (in kernel) from the original word. Therefore,
a logical negation should encompass nonzero val-
ues in the original matrix’s support and in its kernel;
it is up to conversational negation to then weight
the values in the logical negation according to their
contextual relevance.

On their own, neither the support inverse nor the
kernel inverse are sensible candidates for logical
negation. A convex mixture of the two, which we
call matrix inverse and denote with ¬inv, spans
both support and kernel of the original matrix.
In our experiments we weight support and kernel
equally, but other weightings could be considered,
for instance to take into account a noise floor or
enforce the naively unsatisfied property that twice
application is the identity operation.

When composing a density matrix X with ¬invX
or ¬suppX via spider, fuzz, or phaser, the resulting
density matrix has the desired property of being a
maximally mixed state on the support with zeroes
on the kernel (see Theorem 3 and Corollary 2 in
Appendix). In other words, this operation is the
fastest “quantum (Bayesian, in the case of phaser)
update” from a density matrix to the state encoding
no information other than partitioning support and
kernel subspaces. Interpreting composition as logi-
cal AND, this corresponds to the contradiction that
a proposition (restricted to the support subspace)
cannot simultaneously be true and not true.

3.3 Normalization

¬sub, ¬supp, and ¬inv preserve eigenvectors (up to
uniqueness for eigenvalues with multiplicity > 1).
We ignore normalization for logical negation be-
cause in our conversational negation framework,
which we introduce in Section 5, we can always
normalize to largest eigenvalue ≤ 1 after the com-
position operation.

apple fruit food entity

orange movie

Figure 2: Example of hyponymy structure as can be
found in entailment hierarchies

4 Context determination

Negation is intrinsically dependent on context.
Context can be derived from two sources: 1) knowl-
edge gained throughout the sentence or the text
(textual context), and 2) worldly knowledge from
experts or data such as a corpus (worldly context).
While textual context depends on the specific text
being analyzed, worldly context can be computed a
priori. In this section, we introduce worldly context
and propose two methods of computing it.

4.1 Worldly context

Worldly knowledge is a certain understanding of
the world that most users of a language intuitively
possess. We want to capture this worldly knowl-
edge to provide a context for negation that is not
explicit in the text. In this section, we propose two
methods of generating a worldly context: 1) knowl-
edge encoded in an entailment hierarchy such as
WordNet, and 2) generalizing the ideas of the first
method to context derivation from the entailment
information encoded in density matrices.

4.1.1 Context from an entailment hierarchy
We consider an entailment hierarchy for words that
leads to relations such as in Figure 2, where a di-
rected edge can be understood as a hyponym re-
lation. Such relational hierarchy can be obtained
from human curated database like WordNet (Fell-
baum, 1998) or using unsupervised methods such
as Hearst patterns (Hearst, 1992; Roller et al.,
2018).

We can use such a hierarchy of hyponyms to
generate worldly context, as words usually appear
in the implicit context of their hypernyms; for ex-
ample, apple is usually thought of as a fruit. Now,
to calculate the worldly context for the word ap-
ple, we take a weighted sum of the hypernyms of
apple, with more direct hypernyms such as fruit
weighted higher than more distant hypernyms such
as entity. This corresponds to the idea that when
we talk in the context of apple, we are more likely
to talk about an orange (hyponym of fruit) than a
movie (hyponym of entity). Hence, for a word w
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with hypernyms h1, . . . , hn ordered from closest
to furthest, we define the worldly context wcw as:

JwcwK :=
∑
i

piJhiK (15)

where pi ≥ pi+1 for all i.
For this approach, we assume that the density

matrix of the word is a mixture containing its hy-
ponyms; i.e. the density matrix of fruit is a mixture
of all fruits such as apple, orange and pears.

4.1.2 Context using entailment encoded in
the density matrices

As explained in Section 2.4, density matrix rep-
resentation of words can be used to encode the
information about entailment between words. Fur-
thermore, this entailment can be graded; for ex-
ample, fruit would entail dessert with a high de-
gree, but not necessarily by 1. Such graded entail-
ment is not captured in the human curated WordNet
database. Although there have been proposals to
extend WordNet (Boyd-Graber et al., 2006; Ahsaee
et al., 2014), such semantic networks are not yet
available.

We generalize the idea of entailment hierarchy
by considering a directed weighted graph where
each node is a word and the edges indicate how
much one word entails the other. Once we have the
density matrices for words generated from corpus
data, we can build this graph by calculating the
graded hyponymies (see Section 2.4) among the
words, thereby extracting the knowledge gained
from the corpus encoded in the density matrices,
without requiring human narration.

Consider words x and y where x vp y and y vq
x. In the ideal case, there are three possibilities:
1) x and y are not related (both p and q are small),
2) one is a type of the other (one of p and q is large),
or 3) they are very similar (both p and q are large).
Hence, we need to consider both p and q when we
generate the worldly context. To obtain the worldly
context for a wordw, we consider all nodes (words)
connected to w along with their weightings. If
p1, . . . , pn and q1, . . . , qn are the weights of the
edges from w to words h1, . . . , hn, then worldly
context wcw is given by

JwcwK :=
∑
i

f(pi, qi)JhiK (16)

where f is some function of weights pi and qi.

5 Conversational negation in DisCoCirc

5.1 A framework for conversational negation

In this section, we present a framework to obtain
conversational negation by composing logical nega-
tion with worldly context. As discussed in Sec-
tion 2.1, negation—when used in conversation—
can be viewed as not just a complement of the
original word, but as also suggesting an alternative
claim. Therefore, to obtain conversational negation,
we need to adapt the logical negation to take into
account the worldly context of the negated word.

In DisCoCirc (see Section 2.2), words are wires,
and sentences are processes that update meaning
of the words. Similarly, we view conversational
negation as a process that updates the meaning
of the words. We propose the general framework
for conversational negation by defining it to be
the logical negation of the word, updated through
composition with the worldly context evoked by
that word:

Conversational
negation

¬ (17)

The framework presented here is general; i.e.
it does not restrict the choice of logical negation,
worldly context or composition. The main steps of
conversational negation are:

1. Calculate the logical negation ¬(JwK).
2. Compute the worldly context JwcwK.
3. Update the meaning of ¬(JwK) by composing

with JwcwK to obtain ¬(JwK) JwcwK.
Further meaning updates can be applied to the out-
put of conversational negation using compositional
semantics as required from the structure of the text,
although we do not investigate this in the current
work.

5.2 See it in action

We present a toy example to develop intuition
of how meaning provided by worldly context
interacts with logical negation and composi-
tion to derive conversational negation. Suppose
{apple, orange, fig, movie} are pure states
forming an orthonormal basis (ONB). In practice
ONBs are far larger, but this example suffices to
illustrate how the conversational negation accounts
for which states are relevant. We take ¬sub as the
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choice of negation and spider in this ONB as the
choice of composition.

Now, consider the sentence:

This is not an apple.

Although in reality the worldly context of apple
encompasses more than just fruit, for ease of un-
derstanding, assume the worldly context of apple
is JwcappleK = JfruitK, given by

JfruitK =
1

2
JappleK +

1

3
JorangeK +

1

6
JfigK

Applying ¬sub(JappleK) = I− JappleK, we get

¬sub(JappleK) = JorangeK + JfigK + JmovieK

Finally, to obtain conversational negation, logi-
cal negation is endowed with meaning through the
application of worldly context.

¬sub(JappleK) JfruitK =
1

3
JorangeK +

1

6
JfigK

This conversational negation example not only
yields all fruits which are not apples, but also pre-
serves the proportions of the non-apple fruits.

6 Experiments

To validate the proposed framework, we perform
experiments on the data set of alternative plausibil-
ity ratings created by Kruszewski et al. (2016)1. In
their paper, Kruszewski et al. (2016) predict plausi-
bility scores for word pairs consisting of a negated
word and its alternative using various methods to
compare the similarity of the words. While achiev-
ing a high correlation with human intuition, they
do not provide an operation to model the outcome
of a conversational negation. Through the exper-
iments, we test whether our operational conver-
sational negation still has correlation with human
intuition.

6.1 Data

The Kruszewski et al. (2016) data set consists of
word pairs containing a noun to be negated and an
alternative noun, along with a plausibility rating.
We will denote the word pairs as (wN , wA). The
authors transform these word pairs into simple sen-
tences of the form: This is not a wN , it is a wA (e.g.
This is not a radio, it is a dad.). These sentences are

1The data set is available at http://marcobaroni.
org/PublicData/alternatives_dataset.zip

then rated by human participants on how plausible
they are to appear in a natural conversation.

To build these word pairs, Kruszewski et al.
(2016) randomly picked 50 common nouns as wN
and paired them with alternatives that have various
relations to wN . Then using a crowd-sourcing ser-
vice, they asked the human participants to judge
the plausibility of each sentence. The participants
were told to rate each sentence on a scale of 1 to 5.

6.2 Methodology
We build density matrices from 50 dimensional
GloVe (Pennington et al., 2014) vectors using the
method described in Lewis (2019). Then for each
word pair (wN , wA) in the data set, we use various
combinations of operations to perform conversa-
tional negation on the density matrix of wN and
calculate similarity with the density matrix of wA.

For conversational negation, we experiment with
different combinations of logical negations, com-
position operations and worldly context. We use
two types of logical negations: ¬sub and ¬inv. For
composition, we use spider, fuzz, phaser, mult and
diag. With spider, fuzz and phaser, we perform
experiments in two choices of basis: ‘w’, the basis
of ¬(JwN K), and ‘c’, the basis of JwcwN K. We use
worldly context generated from the WordNet entail-
ment hierarchy as per Section 4.1.1; we experiment
with different methods to calculate the weights pi
along the hypernym path.

To find plausibility ratings, we calculate hy-
ponymies khyp, kE and kBA, as well as trace similar-
ity (the density operator analog of cosine similarity
for vectors), between the density matrix of the con-
versational negation of wN and JwAK. Note that in
our experiments, unlike in the originally proposed
formulation of khyp, we generalize khyp to not be 0
when supp(A) 6⊆ supp(B), as described in Sec-
tion 2.4. We calculate entailment in both directions
for kE and khyp, which are asymmetric. The en-
tailment from wN to wA is denoted kE1 and khyp1
while the entailment from wA to wN is denoted
kE2 and khyp2. Finally, we calculate the Pearson
correlation between our plausibility ratings and the
mean human plausibility ratings from Kruszewski
et al. (2016).

6.3 Results
Our experiments revealed that the best conversa-
tional negation is obtained by choosing ¬sub with
phaser in the basis ‘w’. We achieve 0.635 correla-
tion of the trace similarity plausibility rating with

http://marcobaroni.org/PublicData/alternatives_dataset.zip
http://marcobaroni.org/PublicData/alternatives_dataset.zip


60

Figure 3: Correlation of logical (left) and conversa-
tional negation (right) with mean human rating

Figure 4: Correlation of various conversational nega-
tions with mean plausibility ratings of human partici-
pants. Correlations above 0.4 are highlighted in green.

the human ratings, as shown in Figure 3 (right).

On the other hand, Figure 3 (left) shows trace
similarity of ¬sub without applying any context.
We observe that simply performing logical nega-
tion yields a negative correlation with human plau-
sibility ratings. This is because logical negation
gives us a density matrix furthest from the original
word, going against the observation of Kruszewski
et al. (2016) that an alternative to a negated word
appears in similar contexts to it. Figure 3 (right)
shows the results of combining this logical nega-
tion with worldly context to obtain meaning that
positively correlates with how humans think of
negation in conversation.

We tested many combinations for conversational
negation enumerated in Section 6.2. The correla-
tion between plausibility ratings for our conversa-
tional negation and the mean human plausibility
rating is shown in Figure 4. We left out mult and
diag from the table as they did not achieve any
correlation above 0.3. Now, we will explore each
variable of our experiments individually in the next
sections.

6.3.1 Logical negation
We tested ¬sub and ¬inv logical negations. We
found that the conversational negations built from
¬sub negation usually had a higher correlation with
human plausibility ratings, with the highest being
0.635 as shown in Figures 3 and 4. One exception
to this is when the ¬inv is combined with spider in
the basis ‘c’, for which we get the correlation of
0.455 for both trace similarity and kE2.

6.3.2 Composition
We investigated five kinds of composition opera-
tions: spider, fuzz, phaser, mult, and diag. We
found that the results using mult and diag do not
have any statistically significant correlation (<0.3)
with human plausibility rating. On the other hand,
phaser (in the basis ‘w’) has the highest correla-
tion. It performs well with both logical negations.
Plausibility ratings for phaser with ¬sub negation
measured using kE2 and trace similarity has corre-
lations of 0.602 and 0.635 respectively. Spider and
fuzz have statistically relevant correlation for a few
cases but never more than 0.5.

6.3.3 Basis
Spider, fuzz, and phaser necessitate a choice of
basis for applying the worldly context in the con-
versational negation. We can interpret this choice
as determining which input density matrix sets the
eigenbasis of the output, and which modifies the
other’s spectrum. We found that phaser paired
with the basis ‘w’ (the basis of the logically negated
word) performs better than the basis ‘c’ (the basis of
the worldly context) across both negations for most
plausibility metrics. This lines up with our intuition
that applying worldly context updates the eigen-
spectrum of ¬(JwN K), leveraging worldly knowl-
edge to increase/decrease the weights of more/less
contextually relevant values of the logical negation
of wN . However, a notable exception to this rea-
soning is our result that for spider paired with ¬inv,
basis ‘c’ has statistically significant correlations
with human ratings, while basis ‘w’ does not.

6.3.4 Worldly context
For these experiments, we create worldly context
based on the hypernym paths provided by WordNet.
As explained in Section 4.1.1, we need pi ≥ pi+1

in Equation 15 for the more direct hypernyms to
be more important than more distant hypernyms.
Hence, we tried multiple monotonically decreasing
functions for the weights {pi}i of the hypernyms.
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Figure 5: Correlation of results of different context
functions with human rating

For a word w with n hypernyms h1, ..., hn ordered
from closest to furthest, we define the following
functions to calculate pi.

polyx(i) := (n− i)x (18)

expx(i) := (1 +
x

10
)(n−i) (19)

hypx(i) := (n− i)
x
2 kE(w, hi) (20)

Figure 5 shows on the y-axis the correlation of
the human rating with the plausibility rating (trace)
of our best conversational negation (phaser with
¬sub in the basis ‘w’) and the parameters of context
functions on the x-axis. We observe that all three
context functions achieve a maximal correlation
of 0.635, therefore being equally good. All func-
tions eventually drop in correlation as the value of
x increases, showing that having the context too
close to the word does not yield optimal results
either. One important observation is that at x = 0,
hypx(i) = kE(w, hi) still performs well with a
correlation of 0.581, despite not taking the Word-
Net hypernym distance into account. This is an
evidence for the potential of the context creation
based on density matrix entailment proposed in
Section 4.1.2.

6.3.5 Plausibility rating measures
On top of calculating the conversational negation,
the experiments call for comparing the results of
the conversational negation with wA to give plau-
sibility ratings. We compare the hyponymies kE,
khyp, and kBA, as well as trace similarity. The re-
sults show that trace similarity and kE2 interact
most sensibly with our conversational negation,
attaining 0.635 and 0.602 correlation with mean
human ratings respectively. For the asymmetric
measures kE and khyp, computing the entailment
from wA to the conversational negation of wN per-
formed better than the other direction. For all sim-

ilarity measures (except khyp1), ¬sub paired with
phaser in the basis ‘w’ performs the best.

7 Future work

The framework presented in this paper shows
promising results for conversational negation in
compositional distributional semantics. Given its
modular design, additional work should be done
exploring more kinds of logical negations, com-
positions and worldly contexts, as well as situa-
tions for which certain combinations are optimal.
Since creating worldly context—as presented in
this paper—is a new concept in the area of DisCo-
Circ, it leaves the most room for further exploration.
In particular, our framework does not handle how
to disambiguate different meanings of the same
word; for example, the worldly context of the word
apple should be different for the fruit apple versus
the technology company apple.

Our conversational negation framework cur-
rently does not model a different kind of nega-
tion where the suggested alternative is an antonym
rather than just any other word that appears in sim-
ilar contexts. For instance, the sentence Alice is
not happy suggests that Alice is sad—an antonym
of happy—rather than cheerful, even though cheer-
ful might appear in similar contexts as happy. We
would like to extend the conversational negation
framework to account for this.

We would like to implement the context gener-
ation method presented in Section 4.1.2 and test
on the current experimental setup.2 To further vali-
date the framework, more data sets should be col-
lected and evaluated on to explore, for each type
of relation between words, what construction of
conversational negation yields sensible plausibility
ratings.

For the conversational negation to be fully appli-
cable in the context of compositional distributional
semantics, further theoretical work is required to
generalize the model from negation of individual
nouns to negation of other grammatical classes and
complex sentences. Furthermore, we would like
to analyze the interplay between conversational
negation, textual context, and evolving meanings.
Lastly, the interaction of conversational negation
with logical connectives and quantifiers leaves open
questions to explore.

2The code is available upon request.
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A Proofs

A.1 Support inverse reverses k-hyponymy

Theorem 1. For two density matrices A and B,
k-hyponymy is reversed by support inverse when
rank(A) = rank(B):

A vk B⇐⇒ ¬suppB vk ¬suppA (21)

Proof. From (Baksalary et al., 1989), ¬supp re-
verses Löwner order when rank(A) = rank(B):

A v B⇐⇒ ¬suppB v ¬suppA (22)

Thus, letting “≥ 0” denote the operator is positive:

A vk B⇐⇒ B− kA ≥ 0 (23)

⇐⇒ (kA)−1 − B−1 ≥ 0 (24)

⇐⇒ 1

k
A−1 − B−1 ≥ 0 (25)

⇐⇒ A−1 − kB−1 ≥ 0 (26)

⇐⇒ B−1 vk A−1 (27)

using Equations 5 and 22 from Equation 23 to 24.

Corollary 1. For two invertible density matrices A
and B, k-hyponymy is reversed by matrix inverse:

A vk B⇐⇒ B−1 vk A−1 (28)

A.2 Matrix inverse reverses kBA in same
basis case

Theorem 2. For two density matrices A and B
with the same eigenbasis, kBA is reversed by matrix
inverse:

kBA(B−1,A−1) = kBA(A,B) (29)

Proof.

kBA(B−1,A−1) =

∑
i λ

i
A−1 − λiB−1∑

i

∣∣∣λiA−1 − λiB−1

∣∣∣ (30)

=

∑
i

1
λiA
− 1

λiB∑
i

∣∣∣ 1
λiA
− 1

λiB

∣∣∣ (31)

=

∑
i λ

i
B − λ

i
A∑

i

∣∣λiB − λiA∣∣ (32)

= kBA(A,B) (33)

using Equation 13 from Equation 30 to 31.

A.3 Composing with ¬sub or ¬inv gives
maximally mixed support

Theorem 3. When composing a density matrix X
with ¬suppX via spider, fuzz, or phaser, the result-
ing density matrix has the desired property of being
a maximally mixed state on the support with zeroes
on the kernel.

Proof. ¬suppX and X have the same eigenbasis.
From Equation 13, all nonzero eigenvalues of
¬suppX are multiplicative inverses of the corre-
sponding eigenvalue of X.
We use definitions of spider, fuzz, and phaser from
Equations 1, 2, and 3. The summation indices are
over eigenvectors with nonzero eigenvalue.

spider(X, ¬suppX) (34)

= Us(X⊗ ¬suppX)U †s (35)

=
(∑

i

|i〉 〈ii|
)
(X⊗ ¬suppX)

(∑
j

|jj〉 〈j|
)
(36)

=
∑
i

|i〉 〈ii|
((
λ |i〉 〈i|

)
⊗
( 1
λi
|i〉 〈i|

))
|ii〉 〈i|

(37)

=
∑
i

|i〉 〈i| (38)

= Isupp (39)

fuzz(X, ¬suppX) =
∑
i

xiPi ◦ X ◦ Pi (40)

=
∑
i

1

λi
Pi

(∑
j

λiPi

)
Pi (41)

=
∑
i

Pi (42)

= Isupp (43)

phaser(X, ¬suppX) (44)

=
(∑

i

xiPi

)
◦ X ◦

(∑
i

xiPi

)
(45)

=
(∑

i

λi
− 1

2Pi

)(∑
j

λjPj

)(∑
k

λk
− 1

2Pk

)
(46)

=
∑
i

Pi (47)

= Isupp (48)



65

Corollary 2. When composing a density matrix X
with ¬invX via spider, fuzz, or phaser, the resulting
density matrix has the desired property of being a
maximally mixed state on the support with zeroes
on the kernel.


