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Abstract

While the DisCoCat model (Coecke et al.,
2010) has been proved a valuable tool for
studying compositional aspects of language at
the level of semantics, its strong dependency
on pregroup grammars poses important restric-
tions: first, it prevents large-scale experimen-
tation due to the absence of a pregroup parser;
and second, it limits the expressibility of the
model to context-free grammars. In this pa-
per we solve these problems by reformulating
DisCoCat as a passage from Combinatory Cat-
egorial Grammar (CCG) to a category of se-
mantics. We start by showing that standard
categorial grammars can be expressed as a bi-
closed category, where all rules emerge as cur-
rying/uncurrying the identity; we then proceed
to model permutation-inducing rules by ex-
ploiting the symmetry of the compact closed
category encoding the word meaning. We pro-
vide a proof of concept for our method, con-
verting “Alice in Wonderland” into DisCoCat
form, a corpus that we make available to the
community.

1 Introduction

The compositional model of meaning by Coecke,
Sadrzadeh and Clark (Coecke et al., 2010) (from
now on DisCoCat'!) provides a conceptual way of
modelling the interactions between the words in a
sentence at the level of semantics. At the core of
the model lies a passage from a grammatical deriva-
tion to a mathematical expression that computes a
representation of the meaning of a sentence from
the meanings of its words. In its most common
form, this passage is expressed as a functor from
a pregroup grammar (Lambek, 2008) to the cate-
gory of finite-dimensional vector spaces and linear
maps, FdVect, where the meanings of words live
in the form of vectors and tensors (Kartsaklis et al.,

'DIStributional COmpositional CATegorical.

2016). The job of the functor is to take a grammati-
cal derivation and translate it into a linear-algebraic
operation between tensors of various orders, while
the composition function that returns the meaning
of the sentence is tensor contraction.

The particular choice of using a pregroup gram-
mar as the domain of this functor is based on the
fact that a pregroup, just like the semantics cate-
gory on the right-hand side, has a compact-closed
structure, which simplifies the transition consider-
ably. However, while this link between pregroup
grammars and DisCoCat is well-motivated, it has
also been proved stronger than desired, imposing
some important restrictions on the framework. As
a motivating example for this paper we mention the
absence of any robust statistical pregroup parser (at
the time of writing) that would provide the deriva-
tions for any large-scale DisCoCat experiment on
sentences of arbitrary grammatical forms. As up to
the time of writing (11 years after the publication
of the paper that introduced DisCoCat), all exper-
imental work related to the model is restricted to
small datasets with sentences of simple fixed gram-
matical structures (e.g. subject-verb-object) that
are provided to the system manually.

Furthermore, pregroup grammars have been
proved to be weakly equivalent to context-free
grammars (Buszkowski, 2001), a degree of expres-
siveness that it is known to be not adequate for natu-
ral language; for example Bresnan et al. (1982) and
Shieber (1985) have shown that certain syntacti-
cal constructions in Dutch and Swiss-German give
rise to cross-serial dependencies and are beyond
context-freeness. While in practice these cases are
quite limited, it would still be linguistically inter-
esting to have a version of DisCoCat that is free of
any restrictions with regard to its generative power.

In this paper we overcome the above problems by
detailing a version of DisCoCat whose domain is
Combinatory Categorial Grammar (CCG) (Steed-
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man, 1987, 1996). We achieve this by encoding
CCQG as a biclosed category, where all standard
order-preserving rules of the grammar find a natu-
ral translation into biclosed diagrams. CCG rules
whose purpose is to relax word ordering and allow
cross-serial dependencies are encoded as special
morphisms. We then define a closed monoidal func-
tor from the biclosed category freely generated over
a set of atomic types, a set of words, and the set of
arrows encoding the special rules of the grammar
to a compact-closed category. We show that since
the category of the semantics is symmetric, the
special rules that allow word permutation can be
encoded efficiently using the mechanism of “swap-
ping the wires”. As we will see in Section 3, while
in the past there were other attempts to represent
CCG in DisCoCat using similar methods (Grefen-
stette, 2013), this is the first time that a complete
and theoretically sound treatment is provided and
implemented in practice.

By presenting a version of DisCoCat which is
no longer bound to pregroups, we achieve two im-
portant outcomes. First, since CCG is shown to be
a mildly context-sensitive grammar (Vijay-Shanker
and Weir, 1994), we increase the generative power
of DisCoCat accordingly; and second, due to the
availability of many robust CCG parsers that can
be used for obtaining the derivations of sentences
in large datasets — see, for example (Clark and
Curran, 2007) — we make large-scale DisCoCat ex-
periments on sentences of arbitrary grammatical
structures possible for the first time.

In fact, we demonstrate the applicability of the
proposed method by using a standard CCG parser
(Yoshikawa et al., 2017) to obtain derivations for
all sentences in the book “Alice’s Adventures in
Wonderland”, which we then convert to DisCoCat
diagrams based on the theory described in this pa-
per. This resource — the first in its kind — is now
available to the DisCoCat community for facili-
tating research and experiments. Furthermore, a
web-based tool that allows the conversion of any
sentence into a DisCoCat diagram is available at
CQC’s QNLP website.>

2 Introduction to DisCoCat

Based on the mathematical framework of compact-
closed categories and inspired by the category-
theoretic formulation of quantum mechanics
(Abramsky and Coecke, 2004), the compositional

?Links for the the corpus and the web demo are provided
in Section 10.
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distributional model of Coecke et al. (2010) com-
putes semantic representations of sentences by
composing the semantic representations of the in-
dividual words. This computation is guided by the
grammatical structure of the sentence, therefore at
a higher level the model can be summarised as the
following transition:

Grammar = Meaning

Up until now, at the left-hand side of this map-
ping lies a pregroup grammar (Lambek, 2008), that
is, a partially-ordered monoid whose each element
p has a left (p') and a right (p”) adjoint such that:

)

The inequalities above form the production rules
of the grammar. As an example, assume a set of
atomic types {n, s} where n is a noun or a noun
phrase and s a well-formed sentence, and type-
assignments (Alice,n), (Bob,n), and (likes,n” -
s -nl); based on Eq. 1, the pregroup derivation for
the sentence “Alice likes Bob” becomes:

p-p<1<p-p pp<i<pp

2

showing that the sentence is grammatical. Note that
the transitive verb “likes” gets the compound type
n” - s - n!, indicating that such a verb is something
that expects an n on the left and another one on the
right in order to return an s. In diagrammatic form,

the derivation is shown as below:
Alice likes Bob
n n" s n n

n-n"-sn-n<l-s-1<s

where the “brackets” (L) correspond to the gram-
matical reductions. Kartsaklis et al. (2016) showed
how a structure-preserving passage can be defined
between a pregroup grammar and the category of
finite-dimensional vector spaces and linear maps
(FdVect), by sending each atomic type to a vector
space, composite types to tensor products of spaces
and cups to inner products. The DisCoCat diagram
(also referred to as a string diagram) for the above
derivation in FdVect becomes:

N ONSN N

U|u

where NV, S are vector spaces, “Alice” and “Bob”
are represented by vectors in N, while “likes” is a
tensor of order 3 in N ®.S® N. Here the “cups” (U)



correspond to tensor contractions, so that the vector
for the whole sentence lives in S. The preference
for using a pregroup grammar in the DisCoCat
model becomes clear when we notice the structural
similarity between the two diagrams above, and
how closely the pregroup derivation dictates the
shapes of the tensors and the contractions.

3 Related work

Implementations of the DisCoCat model have been
provided by Grefenstette and Sadrzadeh (2011) and
Kartsaklis et al. (2012), while Piedeleu et al. (2015)
detail a version of the model based on density ma-
trices for handling lexical ambiguity. DisCoCat
has been used extensively in conceptual tasks such
as textual entailment at the level of sentences, see
for example (Bankova et al., 2019; Lewis, 2019).
Further, exploiting the formal similarity of the
model with quantum mechanics, Meichanetzidis
et al. (2020) and Lorenz et al. (2021) have used it
recently with success for the first implementations
of NLP models on NISQ computers.

The connection between categorial grammars
and biclosed categories is long well-known (Lam-
bek, 1988), and discussed by Dougherty (1993).
More related to DisCoCat, and in an attempt to
detach the model from pregroups, Coecke et al.
(2013) detail a passage from the original Lambek
calculus, formed as a biclosed category, to vector
spaces. In (Grefenstette, 2013) can be found a first
attempt to explicitly provide categorical semantics
for CCQG, in the context of a functor from a closed
category augmented with swaps to FdVect. In
that work, though, the addition of swaps introduces
an infinite family of morphisms that collapse the
category and lead to an overgenerating grammar.
Further, the actual mapping of crossed composition
rules to the monoidal diagrams has flaws, as given
in diagrammatic and symbolic forms — see footnote
5. We close this section by mentioning the work by
Maillard et al. (2014), which describes how CCG
derivations can be expressed directly as tensor op-
erations in the context of DisCoCat, building on
(Grefenstette, 2013).

4 Categorial grammars

We start our exposition by providing a short intro-
duction to categorial grammars. A categorial gram-
mar (Ajdukiewicz, 1935) is a grammatical formal-
ism based on the assumption that certain syntactic
constituents are functions applied on lower-order
arguments. For example, an intransitive verb gets
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the type S\NVP, denoting that this kind of verb is a
function that expects a noun phrase on the left in
order to return a sentence, while a determiner has
type NP /N — a function that expects a noun on the
right to return a noun phrase. The direction of the
slash determines the exact position of the argument
with regard to the word that represents the func-
tion. In the following derivation for the sentence
“Alice likes Bob”, the noun phrases and the tran-
sitive verb are assigned types NP and (S\NP)/NP
respectively.

Alice likes Bob
NP (S\NP)/NP NP
_—
S\NP
<
S

As the diagram shows, a term with type X/Y
takes a term of type Y on the right in order to return
aterm of type X. Similarly, a term with type X\Y
takes a term of type Y on the left, in order to return
a term of type X. In this paper we adopt a slightly
different and hopefully more intuitive notation for
categorial types: X/Y becomes X « Y while
for X\Y we will use Y — X. Using the new
notation, the above diagram takes the form shown
in Figure 1.

Alice likes Bob
NP (NP —S) NP NP
NP—S
S
Figure 1

The two rules described above are called for-
ward and backward application, respectively, and
formally can be defined as below:

X —Y 'Y
FA (>) — IS £

a:Y B:Y —X
BA (<) aB X

Categorial grammars restricted to application
rules are known as basic categorial grammars
(BCG) (Bar-Hillel, 1953), and have been proved to
be equivalent to context-free grammars (Bar-Hillel
et al., 1960) and pregroup grammars (Buszkowski,
2001). Interestingly, although all grammars men-
tioned above are equivalent in terms of theoretical
expressiveness, BCGs are restrictive on the order
of the reductions in a sentence. In the derivation of
Figure 1, we see for example that a transitive verb
must always first compose with its object, and then
with the subject.

To address this problem, some categorial gram-
mars (including CCG) contain type-raising and



composition rules which, although they do not af-
fect grammar’s theoretical power, allow some addi-
tional flexibility in the order of composition. These
rules can be seen of as a form of currying, and are
discussed in more depth in Section 6.

a: X —Y B:Y —Z
FC(B>) af: X — 2
«Q Z —Y Y — X
BEB) aﬂ~Z>fX
: X
FTR (T a
7> a:T—(X—T)
BTR (T.) o: X

a: (T —=X)—T

In Figure 2 we see how type-raising (T) and
composition (B) can be used to change the order
of reductions in our example sentence, in a version
that the verb is first composed with the subject and
then with the object.

Alice likes Bob

NP N

—F>T
S — (NP —S) (NP S) — NP NP
S—NP -
>
S
Figure 2

Finally, in CCG composition has also a general-
ized version, where additional arguments (denoted
below as $1) are allowed to the right of the Z cate-

gory.

La:X —Y Bi(Y —2Z)—~8$
GFC(B2) aB: (X — Z) —8$
GBC (B) a: X —Y B: (Y —2Z)—$

aB: (X —Z)—$
The rule can be seen as “ignoring the brackets
in the right-hand type:

2

might give
(NP — S) «~ VP (VP < NP) <—<>é\£P
(NP — §) << NP) <+~ NP
The generalized composition rules have special
significance, since it is argued to be the reason
for the beyond context-free generative capacity of
CCG - see for example (Kuhlmann et al., 2015).

5 Categorial grammars as biclosed
categories

Categorial grammars can be seen as a proof sys-
tem, and form a biclosed category B whose objects
are the categorial types while the arrows X — Y
correspond to proofs with assumption X and con-
clusion Y. A word with categorial type X lives
in this category as an axiom, that is, as an arrow
of type I — X where the monoidal unit I is the
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empty assumption. Below we show the biclosed
diagram for the CCG derivation of the sentence

“Alice likes Bob™:
Alice
NP

likes

Bob

B

We remind the reader that a biclosed category is
both left-closed and right-closed, meaning that it is
equipped with the following two isomorphisms:

ket BIA® B,C) = B(B, A — C)
K/fB,C : B(A X B,C) = B(A,C' «— B)
where % corresponds to left-currying and £’ to

right-currying. Diagrammatically:

B A|B
C

fr
A»0)

A key observation for the work in this paper
is that all basic categorial rules exist naturally in
any biclosed category and can emerge solely by
currying and uncurrying identity morphisms; this
is shown in Figure 3. Hence any CCG derivation
using the rules we have met so far® exists in a bi-
closed category freely generated over atomic types
and word arrows.

L
Ka.B,c

<—

A

fr
(C«B)

R
KaB,c

—

6 From biclosed to compact-closed

We will now define a monoidal functor from a
grammar expressed as a biclosed category to Dis-
CoCat diagrams. DisCoCat diagrams exist in a
compact-closed category C, where every object is
left- and right-dualisable and the left and right in-
ternal hom-objects between objects X and Y are
isomorphic to X" ® Y and Y ® X' respectively.
Thus we can directly define the left and right curry-
ing isomorphisms using the dual objects:

~

L
ka,b,c =
k,R

a,b,c

:Cla®b,c)
:C(a®b,c)

C(b,a" ®c)
C(a,c®b')

Left and right currying in compact-closed cate-
gories get intuitive diagrammatic representations:

b
LR

a,b,c

=5 ]

(&

a

bl

3CCG also uses a crossed version of composition, which
is a special case and discussed in more detail in Section 7.



(A»B) byt A (A»B)
— BA(A » B)

i

(B « A)(KR . B«A) | A
:
B
A (A»B) | (B»O) (A»B) B»C)
.
B — BC((A » B), (B » C))

BA(B » C) (A»C)
C
(C«B) |(B«A)| A (C«B) B «A)
FAB «A)
R
B — FC((C « B), (B « A))

(C«A)

FA(C « B)

C
BTR(X, T)

(T«X) | X L
g
T (T«X)»T)

X G>D g X
8
T

(T« (X»T))
D«C) | (C«B)y«A| A

(D «0)
FA((C «B) «A)

(C«B)

FC(D «C,C «B)

(D «B)

i

K
— |GFC(D «C, (C «B) « A)|
D<B)<A

Figure 3: Categorial rules as currying/uncurrying in a
biclosed category.

which allows us to functorially convert all cate-
gorial grammar rules into string diagrams, as in
Figure 4.

Definition 6.1. F' is a closed monoidal functor
from the biclosed category B of CCG derivations
to the compact-closed category C of DisCoCat dia-
grams.

Let {NP,S, PP} be a set of atomic CCG types,
indicating a noun phrase, a sentence, and a prepo-
sitional phrase, respectively, and T a lexical type.
We define the following mapping:

F(NP)=n F(S)=s F(PP)=p
F(WOI‘dB:IB—>T) :Wordc:Ic —>F(T)

As a closed monoidal functor, F' : B — C satis-
fies the following equations:

F(ldx
F(Ip

F(XoY)=F(X)oF(Y)
)= =1

)
F(X®Y)=F(X)® F(Y) )
F(X —Y)=F(X) ®F(Y)
F(X «Y)=F(X)® F(Y)!

(C«B)«A)

Furthermore, for any diagramd : A ®@ B — C,

F(’iﬁ,B,C(d)) = kf,b,c(F(d))
F(’iﬁ,B,C(d» = kﬁb,c(F(d»
where F(A) = a, F(B) =b,F(C) = c.

Alternatively we can say that the following dia-
gram commutes:

B(B, A — C)—2X—C(b,a" @ c)

T'{ﬁ,B,C Tkib,c

B(A® B,0)——F——Cla®b,c)
k‘R

R
Fa,B,Cc a.b,c

B(A, C «— B)ﬁC(a, C ® bl)

As an example, below you can see how the back-
ward application rule, derived by uncurrying an
identity morphism, is converted into a string dia-
gram in C.

F(BA(A— B)) = F((k4 o-p.5)" (1da—5))

= (kY arepp)  (F(Ida—p))
= (kY wrobs) ' (dpap))
= (kY wropp) (1dargs)

= (k¥ srpp) " (Idr ®1dy)

bwa

B«A) | A
-
B

|(D«B)«A

(C«B) (B «A) c bl b | gt
FC((C « B), (B « A)) — U Lﬂ
(C«A)
|(D<<C) |(C<<B)«A) J . . .
c c b’ a
|GFC(D «C, (C «B) « A)| — U Lﬂ
l c bl 1

al

AN

X
-
T« X»T)

Figure 4: Functorial conversion of “forward” categorial
grammar rules in biclosed form into string diagrams.
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noowen  om
|

Figure 5: Rewriting of string diagrams. The starting di-
agram corresponds to the derivation of Figure 2, which
uses type-raising. By re-arranging the sentence wire
we get the non-type-raised version of Figure 1.

A (A»B) a )"
-
B

Figure 4 provides the translation of all forward
rules into DisCoCat diagrams. The conversion for
the backward rules can be obtained by reflecting the
diagrams horizontally and replacing the left/right
adjoints with right/left adjoints.

One advantage of representing parse trees using
compact-closed categories over biclosed categories
and categorial grammars is that the rewriting rules
of string diagrams enable us to show more clearly
the equivalence between two parse trees. Take
for example the phrase “big bad wolf”, which in
biclosed form has two different derivations:

b

bad wolf

NP « NP

bad
NP « NP

wolf
NP

big
NP « NP

big
NP « NP

NP « NP
| FA |
| NP

However, when these derivations are sent to a
compact-closed category, they become equivalent
to the following diagram which is agnostic with
regard to composition order:

big bad | [ wolf ]
I I I I I
n nl n nl n
_/

Another example of this is in the use of the type-
raising rule in CCG, which is analogous to expan-
sion in pregroups, and in DisCoCat can be repre-
sented using a “cap” (N). Therefore, the derivations
in Figures 1 and 2, when expressed as DisCoCat
diagrams, are equal up to planar isotopy (Figure 5).
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that I Cecilia the hippos  saw  feed
dat ik Cecilia de nijlpaarden zag voeren

| |

dat ik Cecilia de nijlpaarden
NP NP NP

zag voeren
(NP —(NP—S5)) «~VP NI;?/P
NP (NP ~—(NP—S)) z
NP —(NP—S)
NP—S
s

Figure 6: Cross-serial dependencies in Dutch for the
phrase “...that I saw Cecilia feeding the hippos” (Steed-
man, 2000).

7 Crossed composition

All rules we have met so far are order-preserving,
in the sense that they expect all words or textual
constituents in a sentence to be found at their canon-
ical positions. This is not always the case though,
since language can be also used quite informally.
To handle those cases without introducing addi-
tional types per word, CCG is equipped with the
rule of crossed composition (Steedman, 2000), the
definition of which is the following:

a: X —Y B:Z—Y

af : Z— X
a:Y —Z B:Y — X

af : X — Z

FCX (BX>)

BCX (BX.)

In biclosed form, the crossed composition rules
are expressed as below:

X «Y) Z»Y) X «2) (Y » X)

FCX((X «Y), (Z» Y))

BCX((Y «Z), (Y » X))

(Z»X) X«Z)

Crossed composition comes also in a generalized
form as the standard (or harmonic) composition,
and allows treatment of cross-serial dependencies,
similar to those met in Dutch and Swiss-German
(Figure 6). In English the rule is used in a restricted
form*, mainly to allow a certain degree of word as-
sociativity and permutativity when this is required.

For example, such a case is heavy NP-shift,
where the adverb comes between the verb and its
direct object (Baldridge, 2002). Consider the sen-
tence “John passed successfully his exam”, the
CCQG derivation of which is shown below:

4Steedman (2000) disallows the use of the forward version
in English, while the backward version is permitted only when
Y = NP—S.



John passed successfully his exam
NP (NP — S)«~ NP (NP— §) — (NP— S) NP
(NP — S) — NP BX
NP — S i
S

Note that the rule introduces a crossing between
the involved types, which is not representable in
pregroups. However, we remind the reader that
the compact closed category where the DisCoCat
diagrams live is a symmetric monoidal category,
which means that for any two objects A and B it
holds that A ® B = B ® A. In diagrammatic form
this corresponds to a swap of the wires, as below:

(a)

In the case of FdVect, the state above would
correspond to a matrix M € A ® B (a), while its
swap (b) is nothing more than the transposition of
that matrix, MT.

Thus, by exploiting the symmetry of the seman-
tics category, the DisCoCat diagrams for the two
crossed composition rules take the form shown in
Figure 7.

z x T z

Figure 7: Crossed composition in DisCoCat (forward
version on the left, backward on the right).

We are now in position to revisit the functorial
passage described in Section 6 in order to include
crossed composition. In contrast to other categorial
rules, crossed composition does not occur naturally
in a biclosed setting, so we have to explicitly add
the corresponding boxes in the generating set of
category B, which is the domain of our functor.
The mapping of these special boxes to compact-
closed diagrams is defined in Figure 7. Deriving

5 The idea of representing crossing rules using swaps also
appears in (Grefenstette, 2013); however the mapping pro-
vided there is incorrect, since there is a swap clearly missing
before the last evaluation in the monoidal diagrams (p. 142,
Fig. 7.7) as well as from the symbolic representations of the
morphisms (p. 145).
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the generalized versions of the rules in biclosed
and compact-closed form similarly to the harmonic
cases is a straightforward exercise.

Based on the above, our NP-shift case gets the
following diagrammatic representation:

m W successfully lfsexa\m|

’I’LSTZ

snns

Interestingly, this diagram can be made planar
by relocating the state of the object in its canonical
(from a grammar perspective) position:

m m m successfully

nsn STL'I’LS

'

which demonstrates very clearly that, in a proper
use of English, permutation-inducing rules become
redundant.

We would like to close this section with a com-
ment on the presence of swaps in the DisCoCat
category, and what exactly the implications of this
are. Obviously, an unrestricted use of swaps in
the semantics category would allow every possi-
ble arbitrary permutation of the words, resulting
in an overgenerating model that is useless for any
practical application. However, as explained in Sec-
tion 2, DisCoCat is not a grammar, but a mapping
from a grammar to a semantics. Hence it is always
responsibility of the grammar to pose certain re-
strictions in how the semantic form is generated. In
the formulation we detailed in Sections 6 and 7, we
have carefully defined a biclosed category as to not
introduce extra morphisms to CCG, and a functor
that maps to a subcategory of a compact-closed
category such that the rigid structure of traditional
DisCoCat is preserved.

8 Putting everything together

At this point we have the means to represent as
a DisCoCat diagram every sentence in English
language. In the following example, we consider



a derivation that includes type-raising, harmonic
composition, and crossed composition:

Bruce puts on his hat
NP o (NP —S)—NP (NP—S) H(NP;;L(S’) NP
S—(NP—S) (NP—S)—NP
S—NP -8

S

The corresponding DisCoCat diagram is given
below:

I L Il 1 1 I
n n"s n s n""n" s n

As before, relocating the object and yanking the
wires produces a planar version of the diagram:

I I I
n n

on
l T 1
s n"n" s

Nl

3 —
»n —
<

I
n’

reflecting how the sentence would look if one used
the separable® version of the phrasal verb.

9 Adhering to planarity

We have seen in Sections 7 and 8 how diagrams
for sentences that feature crossed composition can
be rearranged to equivalent diagrams that show a
planar derivation. It is in fact always possible to
rearrange the diagram of a derivation containing
crossed composition into a planar diagram, since
every instance of crossed composition between two
subtrees « and 3 is subject to the following trans-
formation:

8 A phrasal verb is separable when its object can be posi-
tioned between the verb and the particle.
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l T

I Y 2!
T
M ON
y oz
x Zl | 1
T z
By performing this rearrangement recursively on
the subtrees, we obtain a planar monoidal diagram
for the whole derivation. For example, a sentence
containing a phrasal verb gets the following dia-
gram:

: put Bl
1
1
' n"s n' :
1 1
1 1
1 1
1
; .
1
; s n""n" s '
' 1
: Ll
n n"s n n

D I N

Note how the two constituents of the phrasal
verb are grouped together in a single state with
type n” - s-n!, forming a proper transitive verb, and
how the diagram is planar by construction without
the need of any rearrangement.

Being able to express the diagrams without
swaps is not only linguistically interesting, but also
computationally advantageous. As mentioned be-
fore, on classical hardware swaps correspond to
transpositions of usually large tensors; on quantum
hardware, since a decomposition of a swap gate
contains entangling gates, by reducing the number
of swaps in a diagram we reduce the currently ex-
pensive entangling gates (such as CNOTSs) required
to synthesise the diagram.

10 A DisCoCat version of ““Alice in
Wonderland”

We demonstrate the theory of this paper by con-
verting Lewis Carroll’s “Alice in Wonderland”” in
DisCoCat form. Our experiment is based on the
following steps:

"We used the freely available version of Project Gutenberg
(https://www.gutenberg.org).


https://www.gutenberg.org

1. We use DepCCG parser® (Yoshikawa et al.,
2017) to obtain CCG derivations for all sen-
tences in the book.

The CCG derivation for a sentence is con-
verted into biclosed form, as described in Sec-
tion 5.

Finally, the functorial mapping from biclosed
to string diagrams is applied, as detailed in
Sections 6 and 7.

The DepCCG parser failed to parse 18 of the
3059 total sentences in the book, resulting in a set
of 3041 valid CCG derivations, all of which were
successfully converted into DisCoCat diagrams
based on the methodology of this paper. The new
corpus is now publicly available to further facili-
tate research in DisCoCat”, and is provided in three
formats: biclosed, monoidal, and DisCoCat, while
PDF versions of the diagrams are also available.
For the representation of the diagrams we used Dis-
CoPy!” (de Felice et al., 2020), a Python library
for working with monoidal categories. Further, a
Web tool that allows the conversion of any sentence
to DisCoCat diagram providing various configura-
tion and output options, including I&TEX code for
rendering the diagram in a I&TEX document, is avail-
able at CQC’s website'!. In the Appendix we show
the first few paragraphs of the book in DisCoCat
form by using this option.

11 Some practical considerations

For the sake of a self-contained manuscript, in this
section we discuss a few important technicalities
related to CCG parsers that cannot be covered by
the theory. The most important is the concept of
unary rules, where a type is changed in an ad-hoc
way at some point of the derivation in order to
make an outcome possible. In the following CCG
diagram, we see unary rules (U) changing NP—S
to NP—NP and N to NP at a later point of the
derivation.

not much to say
N—~N N (NP —S)—(NP —S)NP —S§
N NP —S ~
U U
NP NP —NP
NP

$https://github.com/masashi-y/depccg

‘https://qnlp.cambridgequantum.com/
downloads.html.

Ohttps://github.com/
oxford-quantum-group/discopy

"https://gnlp.cambridgequantum.com/
generate.html
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We address this problem by employing an index-
ing system that links the categorial types with their
corresponding arguments in a way that is always
possible to traverse the tree backwards and make
appropriate replacements when a unary rule is met.
For the above example, we get:

not much to say
N1 —~N2 Nz (NP —58)1—(NP —S8)s (NP —S)2
N (NP—S)1 -
U U
NP NP—NP

NP

Applying the unary rules is now distilled into
replacing all instances of N1 with NP and (NP—S)1
with NP—NP in the already processed part of the
tree, which leads to the following free of unary
rules final diagram:

not much to say
NP—N N (NP—NP)—(NP—S) NP—S
NP NP—NP g

NP
Finally, we discuss conjunctions, which in CCG
parsers take the special type conj. We essentially
treat these cases as unary rules, constructing the
destination type by the types of the two conjuncts:

apples and oranges
NP conj NP
— <y
(NP—NP) —NP
NP—NP g
NP

12 Future work and conclusion

In this paper we showed how CCG derivations can
be expressed in DisCoCat, paving the way for large-
scale applications of the model. In fact, presenting
a large-scale experiment based on DisCoCat is a
natural next step and one of our goals for the near
future. Creating more DisCoCat-related resources,
similar to the corpus introduced in this paper, is
an important direction with obvious benefits to the
community.
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