
Proceedings of the 2021 Workshop on Semantic Spaces at the Intersection of NLP, Physics, and Cognitive Science, pages 12–19
June 16th, 2021. ©2021 Association for Computational Linguistics

12

LinPP: a Python-friendly algorithm for Linear Pregroup Parsing

Irene Rizzo
University of Oxford / Oxford

irene.rizzo@cs.ox.ac.uk

Abstract
We define a linear pregroup parser, by apply-
ing some key modifications to the minimal
parser defined in (Preller, 2007a). These in-
clude handling words as separate blocks, and
thus respecting their syntactic role in the sen-
tence. We prove correctness of our algorithm
with respect to parsing sentences in a subclass
of pregroup grammars. The algorithm was
specifically designed for a seamless implemen-
tation in Python. This facilitates its integra-
tion within the DisCopy module for QNLP and
vastly increases the applicability of pregroup
grammars to parsing real-world text data.

1 Introduction

Pregroup grammars (PG), firstly introduced by J.
Lambek in (Lambek, 1997), are becoming popular
tools for modelling syntactic structures of natural
language. In compositional models of meaning,
such as DisCoCat (Coecke et al., 2010) and DisCo-
Circ (Coecke, 2019), grammatical composition is
used to build sentence meanings from words mean-
ings. Pregroup types mediate this composition by
indicating how words connect to each other, ac-
cording to their grammatical role in the sentence.
In DisCoCat compositional sentence embeddings
are represented diagrammatically; these are used
as a language model for QNLP, by translating dia-
grams into quantum circuits via the Z-X formalism
(Zeng and Coecke, 2016; Coecke et al., 2020a,b;
Meichanetzidis et al., 2020b,a). DisCopy, a Python
implementation of most elements of DisCoCat, is
due to Giovanni Defelice, Alexis Toumi and Bob
Coecke (Defelice et al., 2020).

An essential ingredient for a full implementation
of the DisCoCat model, as well as any syntactic
model based on pregroups, is a correct and efficient
pregroup parser. Pregroup grammars are weakly
equivalent to context-free grammars (Buszkowski,
2009). Thus, general pregroup parsers based on

this equivalence are poly-time, see e.g. (Earley,
1970). Examples of cubic pregroup parsers exist by
Preller (Degeilh and Preller, 2005) and Moroz (Mo-
roz, 2009b) (Moroz, 2009a). The latter have been
implemented in Python and Java. A faster Minimal
Parsing algorithm, with linear computational time,
was theorised by Anne Preller in (Preller, 2007a).
This parser is correct for the subclass of pregroup
grammars characterised by guarded dictionaries.
The notion of guarded is defined by Preller to iden-
tify dictionaries, whose criticalities satisfy certain
properties (Preller, 2007a). In this paper we define
LinPP, a new linear pregroup parser, obtained gen-
eralising Preller’s definition of guards and applying
some key modifications to the Minimal Parsing al-
gorithm. LinPP was specifically designed with the
aim of a Python implementation. Such implemen-
tation is currently being integrated in the DisCopy
package (github:oxford-quantum-group/discopy).

The need for a linear pregroup parser originated
from the goal of constructing a grammar inference
machine learning model for pregroup types, i.e. a
Pregroup Tagger. training and evaluation of such
model is likely to involve parsing of several thou-
sand sentences. Thus, LinPP will positively affect
the overall efficiency and performance of the Tag-
ger. The Tagger will enable us to process real world
data and test the DisCoCat pregroup model against
the state-of-the-art with respect to extensive tasks
involving real-world language data.

2 Pregroup Grammars

We recall the concepts of monoid, preordered
monoid and pregroup.

Definition 2.1. A monoid 〈P, •, 1〉 is a set P to-
gether with binary operation • and an element 1,
such that

(x • y) • z = x • (y • z) (1)

13

x • 1 = x = 1 • x (2)

for any x, y ∈ P . We refer to • as monoidal prod-
uct, and we often omit it, by simply writing xy in
place of of x • y.

Definition 2.2. A preordered monoid is a monoid
together with a reflexive transitive relation P → P
such that:

x→ y =⇒ uxv → uyv (3)

Definition 2.3. A pregroup is a preordered
monoid 〈P, •, 1〉, in which every object x has a
left and a right adjoint, respectively written as xl

and xr, such that:

contraction rules xlx→ 1; xxr → 1

expansion rules 1→ xrx; 1→ xxl

Adjoints are unique for each object.

In the context of natural language, pregroups are
used to model grammatical types. This approach
was pioneered by J. Lambek, who introduced the
notion of Pregroup Grammars (Lambek, 1997).
These grammars are constructed over a set of basic
types, which represent basic grammatical roles. For
example, {n, s} is a set consisting of the noun type
and the sentence type.

Definition 2.4. Let B be a set of basic types. The
free pregroup over B, written PB , is the free pre-
group generated by the set B ∪ Σ, where Σ is the
set of iterated adjonts of the types in B.

In order to easily write iterated adjoints, we de-
fine the following notation.

Definition 2.5. Given a basic type t, we write tl
n

to indicate its n-fold left adjoint, and tr
n

for its
n-fold right adjoint.E.g. we write tl

2
to indicate

(tl)
l.

Thanks to the uniqueness of pregroup adjoints
we can mix the right and left notation. E.g. (tr

2
)
l

is simply tr. We write tl
0

= t = tr
0
. We now

define pregroup grammars, following the notation
of (Shiebler et al., 2020).

Definition 2.6. A pregroup grammar is a tuple
PG = {V,B,D, PB, s} where:

1. V is the vocabulary, i.e. a set of words.

2. B is a set of basic grammatical types.

3. PB is the free pregroup over B.

4. D ⊂ V × PB is the dictionary, i.e it contains
correspondences between words and their as-
signed grammatical types.

5. s ∈ PB is a basic type indicating the sentence
type.

Example 2.7. Consider the grammar given by
V = {Alice, loves,Bob}, B = {n, s} and a dic-
tionary with the following type assignments:

D = {(Alice, n), (Bob, n), (loves, nrsnl)}

Note that the grammatical types for Alice and Bob
are so-called simple types, i.e basic types or their
adjoints. On the other hand, the type of the transi-
tive verb is a monoidal product. The type of this
verb encodes the recipe for creating a sentence: it
says give me a noun type on the left and a noun
type on the right and I will output a sentence type.
In other words, by applying iterated contraction
rules on nnrsnln we obtain the type s. Diagram-
matically we represent the string as

Then, after applying the contraction rules, we
obtain a sentence diagram:

This diagram is used to embed the sentence
meaning. This framework - introduced by Coecke
et al. in 2010 - is referred to as DisCoCat and pro-
vides a mean to equip distributional semantics with
compositionality. The composition is mediated by
the sentence’s pregroup contractions, as seen in the
example above. (Coecke et al., 2010).

The iterated application of contraction rules
yields a reduction.

Definition 2.8. Let S := t1....tn be a string of
simple types, and let TS := tj1tjp with ji ∈
[1, n] for all i. We say that R : S → TS is a

14

reduction if R is obtained by iterating contraction
rules only. We say that TS is a reduced form of S. If
TS cannot be contracted any further, we say that it
is irreducible and we often write R : S =⇒ TS .
Note that neither reductions nor irreducible forms
are unique, as often we are presented with different
options on where to apply contraction rules.

In the context of pregroup grammars, we are
interested in reducing strings to the sentence type
s, whenever this is possible. Thus, we give such
reduction a special name (Shiebler et al., 2020):

Definition 2.9. a reduction R : S =⇒ TS is
called a parsing of S, if Ts is the simple type s. A
string S is a sentence if there exists a parsing.

Often, we want to keep track of the types as they
get parsed:

Definition 2.10. The set of reductions of R :
S → TS is a set containing index pairs {i, j} such
that titj is the domain of a contraction in R. These
pairs are referred to as underlinks, or links (Preller,
2007a).

3 Linear vs critical

We now discuss critical and linear types in a pre-
group grammar. We first need to introduce the
notion of complexity (Preller, 2007a, Definition 5)
[Preller].

Definition 3.1. A pregoup grammar with dictio-
nary D has complexity k if, for every type t ∈ D,
any left (right) adjoint tl

n
(tr

n
) in D is such that

n < k.

Complexity 1 indicates a trivial grammar that
contains only basic types (no adjoints). Complexity
2 allows for dictionaries containing at most basic
types and their 1-fold left and right adjoints,
e.g. nl and nr. As proven in (Preller, 2007b),
every pregroup grammar is strongly equivalent
to a pregroup grammar with complexity 2. This
means that the subclass of complexity 2 pregroup
grammars has the same expressive power of the
whole class of pregroup grammars.

We now introduce critical types (Preller, 2007a).

Definition 3.2. A type c is critical, if there exists
types a, b ∈ D such that ab → 1 and bc → 1. A
type is linear if it is not critical.

We say that a grammar is linear if all types in
the dictionary are linear types. Given a string from
a linear grammar, its reduction links are unique

(Preller, 2007a, Lemma 7). In fact, a very simple
algorithm can be used to determine whether a linear
string is a sentence or not.

3.1 Lazy Parsing

The Lazy Parsing algorithm produces parsing for
all linear sentences.

Definition 3.3. Consider a linear string S. Let St
be an initially empty stack, andR an initially empty
set of reductions. The Lazy Parsing algorithm re-
duces the string as follows:

1. The first type in S is read and added to St.

2. Any following type tn is read. Letting ti in-
dicate the top of the stack St up until then, if
titn → 1 then St is popped and the link is
added to R. Otherwise tn is added to St and
R remains unchanged.

By (Preller, 2007a, Lemma8, Lemma9) Lazy
Parsing reduces a linear string to its unique irre-
ducible form, thus a linear string is a sentence if
and only if the Lazy Parsing reduces it to s. Un-
fortunately linear pregroup grammars do not hold
a lot of expressive power, and criticalities are im-
mediately encountered when processing slightly
more complex sentences than ‘subject + verb + ob-
ject’. Thus, defining parsing algorithms that can
parse a larger class of pregroup grammars becomes
essential.

3.2 Guards

In order to discuss new parsing algorithms in the
next sections, we introduce some useful notions.

Definition 3.4. Given a reduction R, a subset of
nested links is a called a fan if the right endpoints
of the links form a segment in the string. A fan
is critical if the right endpoints are critical types
(Preller, 2007a).

Below, we define guards, reformulating the no-
tion introduced by Preller in (Preller, 2007a).

Definition 3.5. Let us consider a string S :=
t1....tb = XtpY , containing a critical type tp. Let
S reduce to 1. We say that tb is a guard of tp in S
if the following conditions are satisfied:

1. X contains only linear types and there exists
a reduction R : X =⇒ 1.

2. There exists a link {j, k} of R such that
tktp → 1 and tjtb → 1 are contractions.

15

3. There exist subreductions R1, R2 ⊂ R such
that R1 : tk+1..tp−1 =⇒ 1 and R2 :
t1...tj−1 =⇒ 1.

4. There exists a reduction Ry : Y =⇒ tb.

If such guard exists, we say that the critical type is
guarded and we say that {j, b} is a guarding link
for the critical type.

Let us adapt this definition to critical fans.

Definition 3.6. Let us consider the segment S :=
t1.....tn = XTcY . Let us assume there exists a
reduction S =⇒ 1, that contains a critical fan
with right end points tp....tp+q =: Tc. We say that
the fan is guarded in S if:

1. X is linear and there exists a reduction R :
X =⇒ 1.

2. There exist links {ji, ki} ∈ R, for i ∈ [p, p+
q], with kp > ... > kp+q, jp < ... < jp+q and
tkp+q ...tkpTc =⇒ 1.

3. The segments t1...tjp and tkp+1..tp−1, as well
as the ones in between each tk or tj and the
next ones, have reductions to 1.

4. There exists a reduction Ry : Y =⇒ T l
c .

3.3 Critical types in complexity 2 grammars
Critical types are particularly well behaved in dic-
tionaries of complexity 2, as they are exactly the
right adjoints tr of basic types t. We recall the
following results from (Preller, 2007a, Lemma 17
& 18). We assume complexity 2 throughout.

Lemma 3.7. Let R : t1...tm =⇒ 1. Let tp be
the leftmost critical type in the string and let R link
{k, p}. Let ti be the top of the stack produced by
Lazy Parsing, then i ≤ k. Moreover, if k > i, there
are j, b with i < j < k and b > p, such that Lazy
Parsing links {j, k} and R links {j, b}.
Corollary 3.8. Let tp be the leftmost critical type
of a sentence S. With i as above, if titp reduce to
the empty type, then all reductions to type s will
link {i, p}.

We prove the following result.

Lemma 3.9. Let S := s1....sn be a string with
m ≥ 2 critical types. Let them all be guarded.
Let sp be a critical type, and let sq be the next
one. Let sbp and sbq be their guards respectively.
Assume the notation of the previous definitions.
Then, either jq > p and bq < bp, or jq > bp.

Proof. By assumption, sp is guarded, and by defi-
nition of guard, the segment sp+1....sbp−1 reduces
to the empty type. For the sake of contradiction,
assume jq < p. Then, because crossings are not
allowed, we must have jq < kp. Since jq is a left
adjoint of a basic type, it can only reduce on its
right, and we have kq < kp. However, the seg-
ment Yp does contain sq, and does not contain its
reduction skq , thus Yp cannot reduce to type sbp ,
which is a contradiction. Thus jq > p, and to
avoid crossings, it is either jq > p and bq < bp or
jq > bp.

The lemmas above also hold for guarded critical
fans.

4 MinPP : Minimal Parsing Algorithm

In this section we define MiniPP , a minimal
parsing algorithm complexity 2 pregroup gram-
mars.

MinPP pseudo-code. Let sentence : t1....tm be
a string of types from a dictionary with complexity
2. We associate each processing step of the
algorithm with a stage Sn. Let S0 be the initial
stage, and Sn := {a, n} with n ≥ 1 be the stage
processing the type a in position n. Let Rn and
Stn be respectively the set of reductions and the
reduced stack at stage Sn. Let us write >(Stn) for
the function returning the top element of the stack
at stage n and pop(Stn) for the function popping
the stack. The steps of the algorithms are defined
as follows. At stage S0, we have R0 = ∅ and
St0 = ∅. At stage S1, R1 = ∅ and St1 = t1. At
stages Sn, n > 1, let ti = >(Stn−1). We define
the following cases.

• If titn → 1:

Stn =pop(Stn−1)

Rn =Rn−1 ∪ {i, n}

• Elif tn is linear:

Stn =Stn−1 + tn

Rn =Rn−1

• Else (tn is critical):

1. while types are critical read sentence
forward starting from tn and store read
types. Let T r := tn...tn+v, v ≥ 0, be
the segment of stored types.

16

2. Create a new empty stack Stback. Pro-
cess sentence backward, starting from
T r and not reading further than ti+1.

3. If Stback is never found empty, set Stn =
Stn−1 + T r, Rn = Rn−1 and move to
stage Sn+v+1 i.e. the first type after the
critical fan. If instead Stback becomes
empty, proceed as follows.

4. Stback being empty means that T r was
reduced with some types T . By con-
struction, T had been initially reduced
with some types T l by the forward pro-
cess. Set Stn = Stn−1 + T l. Write
RTprec for the set of links that origi-
nally reduced T lT . Write RT for the
set of links for the TT r reduction, as
found by the backward process. Set
Rn = (Rn−1 ∪ RT)/RTprec. Move to
the next stage.

4.1 Formal Verification
In this section we prove the correctness ofMinPP
with respect to reducing strings to an irreducible
form, given some restrictions on the grammar. First
we prove that MinPP is a sound and terminat-
ing parsing algorithm for complexity 2 pregroup
grammars. Then, we prove that it is also correct
with respect to a subclass of complexity 2 pregroup
grammars identified bt certain restrictions.

Theorem 4.1. Let str be a string of types from a
complexity 2 pregroup grammar. If we feed str to
MinPP , then:

1. Termination: MinPP eventually halts.

2. Completeness: If str is a sentence, MinPP
reduces str to sentence type s.

3. Soundness: If str is not a sentence, then
MinPP will reduce it to an irreducible form
different from s.

Proof. Let ti always indicate the top of the stack.
Termination. Let us consider strings of finitely
many types. We prove that at each stage the
computation is finite, and that there are a finite
number of stages. A stage Sn is completed once its
corresponding stack Stn and set of reductions Rn

is computed. If tn is linear, updating Stn and Rn

only involves two finite computations: checking
whether titn → 1 (done via a terminating truth
value function), and popping or adding tn to the
stack. In the case of tn being critical, if titn → 1,

this is handled like in the linear case. Else, the
following computations are involved: first, the al-
gorithm will read forward to identify a critical fan.
This will halt when either reading the last critical
type of the fan, or the last type in the string. Then
the string is processed backward. This computation
involves finite steps as in the forward case, and
halts when reading ti or the first type in the string,
or when the stack is empty. The next computations
involve updating the stack and reduction sets
via finite functions. This proves that each step
of the process is finite and thatMinPP terminates.

Soundness. We prove it by induction on
the number of critical fans.
Base Case
Consider a string with one critical fan with right
endpoints T r, and assume it is not a sentence.
The case in which the fan reduces with the stack
is trivial, so we assume otherwise. We have two
cases:
1: Let T r have a left reduction T . Assuming the
notation above, consider segments θprec, θ, θpost.
θ reduces to the empty type. So we must have
θprecθpost → C, with C 6= s. Since this string is
linear MinPP will reduce the full string to C.
2: Assume T r doesn’t have a left reduction.
Then the backward stack will not become empty,
and once the backward parsing will reach ti,
MinPP will add T r to the forward stack. At this
stage, the remaining string will be CT rD with C
possibly empty. D is linear and cannot contain
right reductions for T r since the complexity is 2.
Thus MinPP will reduce it by Lazy Parsing to its
unique irreducible form T rU 6= s.
Inductive Hypothesis
Assume that MinPP reduces any non-sentences
to to an irreducible form different from s, given
that the string has no more than m critical fans.
Inductive Step
We consider a string with m+ 1 critical fans, and
no reduction to the sentence type.
1: Assume the notation above and let T r have
left reductions. Then, we remove the segment θ.
MinPP : θ =⇒ 1. The remaining string has m
critical fans and no reduction to sentence type, so
by induction hypothesis, MinPP won’t reduce it
to the sentence type.
2: Assume that T r has no left adjoints in the
string. Then, MinPP will add T r to the to the
top of the forward stack. The remaining string

17

to process is CT rD, with C linear, irreducible
and possibly empty, and D containing m critical
fans. Thus, MinPP will correctly parse D to its
irreducible form, by inductive hypothesis or by
proof of completeness (depending on whether D
has a reduction to s or not). Therefore MinPP
will reduce CT rD to an irreducible form, that
must be different from s since T r cannot contain s
and cannot reduce further.

In order to prove completeness we need to re-
strict our grammars further.

Theorem 4.2. Let str be a string of types from a
complexity 2 pregroup grammar. Let also assume
that all critical fans are guarded or their critical
types contract with the top of the stack of the corre-
sponding stages. If we feed str to MinPP , then:
(Completeness) If str is a sentence, MinPP re-
duces str to sentence type s.

Proof. We prove it by induction on the number of
critical fans.
Base case
Let us consider a sentence with one critical fan,
with right-end points T r := tp....tp+n. At stage
Sp, we have two cases: # 1: Let titp → 1. Then,
by 3.8 all reductions of the string to the sentence
type will link i, p. Since links cannot cross, we
have kq < i for all q. Thus all critical types are
linked to types in the stack. Thus, their links are
unique and will be reduced by Lazy Parsing. By
assumption, all types other than the critical fan
are linear, thus their links are unique. Thus, Lazy
Parsing will correctly reduce this sentence, and, by
construction, so will MinPP .

2: Let titp 9 1, letR be an arbitrary reduction
of the string to sentence type. Then, by 3.7, R
links each critical type tq on the left with some tkq ,
such that i < kq < p. Moreover, since the fan is
guarded, the backward stack will become empty
when the type tkp+n is read. At this point, the
segment T l := tjptjp+n is added to the forward
stack. The remaining reductions are linear and
T l will be linearly reduced by Lazy parsing, since
the fan is guarded. Thus, MinPP will correctly
reduce this string to the sentence type.
Inductive Hypothesis
Assume MinPP parses any sentence with at most
m guarded critical fans.
Inductive Step
Consider a string with m+ 1 guarded critical types.
Consider the leftmost critical fan, and write T r :=

tp...tp+n for the segment given by its right end
points. Let R be a reduction of the string to the
sentence type. We have again two cases:

1: Let R reduce T r with T in the top of the
stack computed by Lazy Parsing. MinPP will
reduce TT r → 1 by lazy parsing. After this stage,
consider the string P obtained by appending the
remaining unprocessed string to St. P contains m
critical fans and reduces to sentence type, thus, by
inductive hypothesis, MinPP will parse it.
2: Assume T r does not reduce with types in
the stack. Let T := tlp+n...t

l
p be the types in

the string which are reduced with T r. Their in-
dex must be larger than i. Write θ := tlp+n...T

r.
Write θprec for the segment preceding θ, and θpost
for the segment following θ. θprec is linear, so
its irreducible form D is unique. Moreover, by
construction, we must have D = CT l. Then
MinPP : θprec =⇒ CT l by Lazy Parsing.
Since T r is guarded, the backward stack will even-
tually be empty and MinPP : θprecθ =⇒ CT l.
The remaining string CT lθpost containsm guarded
critical types and, since T r is guarded, it has a re-
duction to sentence type. By inductive hypothesis,
MinPP : Cθpost =⇒ s.

Note that this proves that MinPP is correct
for the class of complexity 2 pregroup grammars
identified by the above restrictions on the critical
fans. We recall that complexity 2 grammars hold
the same expressive power of the whole class of
pregroup grammars. We now verify that MinPP
parses string in quadratic computational time.

Lemma 4.3. MinPP parses a string in time pro-
portional to the square of the length of the string.

Proof. Let N be the number of simple types in the
processed string. MinPP sees each type exactly
once in forward processing. This includes either
attempting reductions with the top of the stack or
searching for a critical fan. In both cases these
processes are obtained via functions with constant
time d. Thus the forward processing happens over-
all in time dN . Then, for each critical fan, we read
the string backward. This process is done in time
dN2 at most. Finally, when backward critical re-
ductions are found, we correct the stack and set
of reductions. The correction functions have con-
stant time c, so all corrections happen in time cN
at most. Summing these terms we obtain:

time = dN2 + (d+ c)N.

18

5 LinPP : Linear Pregroup Parsing
algorithm

Certain words are typically assigned compound
types by the dictionary, e.g. T := nrsnl for tran-
sitive verbs. It might be the case that a compound
type TW of a word W , is not irreducible. Both
MinPP and the parsers mentioned in the Intro-
duction will read types in TW and reduce TW to
an irreducible form. However, the main purpose of
grammatical pregroup types is to tell us how to con-
nect different words. Reducing words internally
defeats this purpose. We want to overcome this
limitation and construct an algorithm that ignores
intra-word reductions. Given a word W1 let T1 be
its corresponding type (simple or compound). In
MinPP we defined stages Sn corresponding to
each simple type tn being read. Let us write Z1 for
the super stage corresponding to word W1 being
read. Z1 contains one or more Sn corresponding
to each simple type in T1. We modify MinPP as
follows.

• At stage Z1, we add T1 = t1...tj to the stack.
We immediately jump to super stage Z2 and
stage Sj+1.

• When each new word Wm, with m > 1 and
Tm := tm1 ...tmk

is processed, We try to con-
tract titm1 . While types contracts we keep
reducing the types tmj with the top of the
stack. We stop when either a pair titmj does
not contract or when we reach the end of the
word.

• If titmj 9 1 and tmj is linear, we add
tmj ...tmk

to the stack and jump to stages
Zm+1, Smk+1. If tmj is critical, we handle
it as in MinPP : if a backward reduction is
found, the stack and reduction set are updated
and we move to Smj+1; if the backward re-
duction is not found, we add tmj ...tmk

to the
stack and move to the next word as above.

In other words, LinPP follows the same com-
putational steps of MinPP , while only checking
reductions between types of separate words. By
assuming dictionaries whose sentences do not in-
volve intra-word reductions, the above proof of cor-
rectness can be adapted to hold for LinPP . Mod-
ifications are trivial. We previously highlighted
the importance of a linear parser; up to this point

LinPP computes parsing in quadratic time. Below
we impose some further restrictions on the input
data, which enable linear computational time.

Definition 5.1. We say that a dictionary of com-
plexity 2 is critically bounded if, given a constant
K ∈ N, for each critical type tc in a string, exactly
one of the following is true:

• tc reduces when processing the substring
tc−K ...tc backwards;

• tc does not not reduce in the string.

In other words, critical underlinks cannot exceed
lenght K.

Lemma 5.2. Assume the restrictions of section 4.1,
no-intra word reductions, and critically bounded
dictionaries. Then LinPP parses strings in linear
computational time.

Proof. Assume a string of length N . LinPP for-
ward processing involves reading each type at most
once. Thus it happens at most in time dN , with d
as in section 4.1. Moreover, when a critical fan is
read, the string is parsed backward, reading at most
K types. This process takes dK time per critical
fan. Thus it takes overall times dKN . Finally there
is an extra linear term, cN , given by the time spent
to correct the stack and reduction set. Summing
up those terms, we obtain overall computational
time CN , with C = d(1+K)+c being a constant
specific to each bounded dictionary.

6 Conclusion

In this paper we first defined a quadratic pregroup
parser, MinPP , inspired by Preller’s minimal
parser. We proved its correctness with respect to
reducing strings to irreducible forms, and in partic-
ular to parse sentences to the sentence type, in the
class of pregroup grammar charactorised by com-
plexity 2 and guarded critical types. Note that our
definition of guards differs from the one given in
(Preller, 2007a). We then modified MinPP in or-
der to remove intra-words links. We proved that the
obtained algorithm, LinPP , is linear, given that
the dictionaries are critically bounded. LinPP
was implemented in Python and it’s soon to be
integrated in the DisCopy package. The reader
can find it at github:oxford-quantum-group/discopy.
LinPP is an important step towards the implemen-
tation of a supervised pregroup tagger, which will
enable extensive testing of the DisCoCat model on

19

task involving larger data-sets. Future theoretical
work and implementations will involve researching
a probabilistic pregroup parser based on LinPP .
Future work might also involve investigation the
connection between pregroup parsers and composi-
tional dynamical networks.

Acknowledgments

The author thanks Giovanni Defelice and Alexis
Toumi for the constructive discussions and feed-
back on the parser and its Python implementation.
The author thanks their supervisors, Bob Coecke
and Stefano Gogioso, for directions and feedback.
Many Thanks to Antonin Delpeuch for insights on
cubic pregroup parsers. Last but not least, the au-
thor thanks Anne Preller for the precious input in
reformulating the definition of guards and for the
insightful conversation on the topic of this paper.

References
W. Buszkowski. 2009. Lambek grammars based on

pregroups. Logical Aspects of Computa- tional Lin-
guistics, LNAI 2099.

B. Coecke. 2019. The mathematics of text structure.
arXiv: 1904.03478 [cs.CL].

B. Coecke, M. Sadrzadeh, and S. Clark. 2010. Math-
ematical foundations for a compositional distri-
butional model of meaning. arXiv:1003.4394v1
[cs.CL], pages 1–34.

Bob Coecke, Giovanni de Felice, Konstantinos Me-
ichanetzidis, and Alexis Toumi. 2020a. Foundations
for Near-Term Quantum Natural Language Process-
ing. arXiv:2012.03755 [quant-ph].

Bob Coecke, Giovanni de Felice, Konstantinos Me-
ichanetzidis, Alexis Toumi, Stefano Gogioso, and
Nicolo Chiappori. 2020b. Quantum natural lan-
guage processing.

G. Defelice, A. Toumi, and B. Coecke. 2020. Discopy:
Monoidal categories in python. arXiv:2005.02975
[math.CT].

S. Degeilh and A. Preller. 2005. Efficiency of pre-
groups and the french noun phrase. Journal of Lan-
guage, Logic and Information, 4:423–444.

J. Earley. 1970. An efficient context-free parsing algo-
rithm. Communications of the AMC, 13:94–102.

J. Lambek. 1997. Type grammars revisited. LACL
1997, pages 1–27.

Konstantinos Meichanetzidis, Stefano Gogioso, Gio-
vanni De Felice, Nicolò Chiappori, Alexis Toumi,

and Bob Coecke. 2020a. Quantum Natural Lan-
guage Processing on Near-Term Quantum Comput-
ers. arXiv:2005.04147 [quant-ph].

Konstantinos Meichanetzidis, Alexis Toumi, Giovanni
de Felice, and Bob Coecke. 2020b. Grammar-
Aware Question-Answering on Quantum Computers.
arXiv:2012.03756 [quant-ph].

K. Moroz. 2009a. Parsing pregroup grammars in poly-
nomial time. International Multiconference on Com-
puter Science and Information Technology.

K. Moroz. 2009b. A savateev-style parsing algorithm
for pregroup grammars. International Conference
on Formal Grammar, pages 133–149.

A. Preller. 2007a. Linear processing with pregoups.
Studia Logica.

A. Preller. 2007b. Towards discourse prepresentation
via pregroup grammars. JoLLI, 16:173–194.

D. Shiebler, A. Toumi, and M. Sadrzadeh. 2020. Incre-
mental monoidal grammars. arXiv:2001.02296v2
[cs.FL].

William Zeng and Bob Coecke. 2016. Quantum Al-
gorithms for Compositional Natural Language Pro-
cessing. Electronic Proceedings in Theoretical Com-
puter Science, 221:67–75.

http://arxiv.org/abs/2012.03755
http://arxiv.org/abs/2012.03755
http://arxiv.org/abs/2012.03755
http://arxiv.org/abs/2005.04147
http://arxiv.org/abs/2005.04147
http://arxiv.org/abs/2005.04147
http://arxiv.org/abs/2012.03756
http://arxiv.org/abs/2012.03756
https://doi.org/10.4204/EPTCS.221.8
https://doi.org/10.4204/EPTCS.221.8
https://doi.org/10.4204/EPTCS.221.8

