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Abstract 

How do people understand the meaning of 
the word small when used to describe a 
mosquito, a church, or a planet? While 
humans have a remarkable ability to form 
meanings by combining existing concepts, 
modeling this process is challenging. This 
paper addresses that challenge through 
CEREBRA (Context-dEpendent meaning 
REpresentations in the BRAin) neural 
network model. CEREBRA characterizes 
how word meanings dynamically adapt in 
the context of a sentence by decomposing 
sentence fMRI into words and words into 
embodied brain-based semantic features. It 
demonstrates that words in different 
contexts have different representations and 
the word meaning changes in a way that is 
meaningful to human subjects. 
CEREBRA’s context-based representations 
can potentially be used to make NLP 
applications more human-like. 

1   Introduction 

The properties associated with a word such as 
small vary in context-dependent ways: It is 
necessary to know what the word means, but also 
the context in which is used, and how the words 
combine in order to construct the word meaning. 
Humans have a remarkable ability to form 
meanings by combining existing concepts. 
Modeling this process is difficult (Hampton, 1997; 
Janetzko 2001; Middleton et al, 2011; Murphy, 
1988; Pecher et al., 2004; Sag et al., 2001, 
Wisniewski, 1997, 1998; Yee et al., 2016). How are 
concepts represented in the brain? How do word 
meanings change during concept combination or 
under the context of a sentence? What tools and 
approaches serve to quantify such changes?  

Significant progress has been made in 
understanding how concepts and word meanings 
are represented in the brain. In particular, the first 
two issues are addressed by the Concept Attribute 
Representation theory (CAR; Binder et al., 2009, 
2011, 2016a, 2016b). CAR theory represents 
concepts as a set of features that constitute the basic 
components of meaning in terms of known brain 
systems. It relates semantic content to systematic 
modulation in neuroimaging activity (fMRI 
patterns). It suggests that word meanings are 
instantiated by the weights given to different 
feature dimensions according to the context. The 
third issue is addressed by the CEREBRA or 
Context-dependent mEaning REpresentation in the 
BRAin neural network model (Aguirre-Celis & 
Miikkulainen, 2017, 2018, 2019, 2020a, 2020b). It 
is based on the CAR theory to characterize how the 
attribute weighting changes across contexts.  

In this paper the CAR theory is first reviewed. 
Then, the CEREBRA model is introduced, 
followed by the data that provides the basis for the 
model. Later, experimental results are presented, 
showing an individual example on the concept 
combination effect on word meanings, how this 
effect applies to the entire corpus, and a behavioral 
analysis to evaluate the neural network model.  

2   The CAR Theory 

CARs (a.k.a. The Experiential attribute 
representation model), represent the basic 
components of meaning defined in terms of neural 
processes and brain systems. They are composed 
of a list of well-known modalities that correspond 
to specialized sensory, motor and affective brain 
processes, systems processing spatial, temporal, 
and casual information, and areas involved in 
social cognition. (Anderson et al., 2016, 2017, 
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2018, 2019; Binder et al. 2016a). It is supported by 
substantial evidence on how humans acquire and 
learn concepts (Binder et al., 2009, 2011, 2016a, 
2016b). The central axiom of this theory is that 
concept knowledge is built from experience, as a 
result, knowledge representation in the brain is 
dynamic.  

The features are weighted according to 
statistical regularities. The semantic content of a 
given concept is estimated from ratings provided 
by human participants. For example, concepts 
referring to things that make sounds (e.g., 
explosion, thunder) receive high ratings on a 
feature representing auditory experience, relative 
to things that do not make a sound (e.g., milk, 
flower).  

Each word is modeled as a collection of 66 
features that captures the strength of association 
between each neural attribute and word meaning. 
Specifically, the degree of activation of each 
attribute associated with the concept can be 
modified depending on the linguistic context, or 
combination of words in which the concept occurs. 
More detailed account of the attribute selection and 
definition is given by Binder, et al. (2009, 2011, 
2016a, and 2016b). 

Figure 1, shows an example of the weighted 
CARs for the concept church. The weight values 
represent average human ratings for each feature. 
Given that church is an object, it has low 

weightings on animate attributes such as Face, 
Body, and Speech, and high weighting on attributes 
like Vision, Size, Shape, and Weight. However, 
since it is a building and a place for worship, it does 
include strong weightings for Sound and Music,  
spatial attributes such as Landmark and Scene, 
event attributes like Social, Time and Duration, as 
well as others such as Communication and Benefit. 

3   The CEREBRA Model 

Building on the idea of grounded word 
representation in CAR theory, this work aims to 
understand how word meanings change depending 
on context. The following sections describe the 
computational model that characterizes such 
representations. The specific terms to the 
CEREBRA model are denoted by abbreviations 
throughout the paper (e.g., CARWord, fMRISent, 
SynthWord). For reference, they are described in 
Figure 2. 

3.1   System Design 

The overall design of CEREBRA is shown in 
Figure 3. It is a neural network model that performs 
two main tasks: Prediction and Interpretation. 
During the Prediction task, the model form a 
predicted fMRI for each sentence without the 
context effects. Each sentence is thus compared 
against the observed fMRI sentence to calculate an  

 
Figure 1: Bar plot of the 66 semantic features for the 
word church (Binder et al., 2009, 2011, 2016a). 
Given that church is an object, it has low weightings 
on animate attributes such as Face, Body, and Speech, 
and high weighting on attributes like Vision, Shape, 
and Weight. However, since it is a building for 
worship, it does include stronger weightings for 
spatial attributes such as Landmark and Scene, event 
attributes like Social, Time and Duration, as well as 
others such as Communication and Benefit. CAR 
weighted features for the word church. 
 

 
Figure 2: Terminology for the abbreviated terms used 
in the CEREBRA model. 
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CAR representations for "CHURCH" Terminology

CARWord: The neural network input. CARWords are formed based on ratings by human
subjects (Section 3.3). They are the original brain-based semantic representations of
words, i.e., word without context. Each CARWord is a vector of 66 attributes.

CARWordRevised: The input of the neural network after FGREP. CARWordsRevised
are formed by FGREP modifying the original CARWords. They are the context-
dependent meaning representations of words for each sentence where they occurred.
Each CARWordRevised is a vector of 66 attributes.

!": The error signal. The SynthSent is subtracted voxelwise from the fMRISent to
produce an error signal. Each error is a vector of 396 changes.

fMRISent: The neural network target. They are the original brain data collected from
human subjects using neuroimaging. Each fMRISent is a vector of 396 voxels.

SyntSent: The predicted fMRI sentence after training. The SynthWords in the sentence
are averaged to form this prediction. Each SynthSent is a vector of 396 values.

SyntSentRevised: The modified SyntSent after applying the error signal changes. Each
of these SynthSentRevised is a vector of 396 values.

SyntWord: The neural network target. They are derived by averaging the fMRISent.
They are synthetic because individual fMRI data for words do not exist, thus they are
obtained by averaging each fMRISent where the word occurred. Each SynthWord is a
vector of 396 voxels.

SyntWordRevised: The target for the neural network after FGREP. They are derived
from the SynthSentRevised using the error signal changes.

W1..W3: labels for each CARWord in a sentence.

W’1..W’3: labels for each SynthWord in a sentence.
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Figure 3: The CEREBRA model to account for context effects. (1) Propagate CARWords to SynthWords. (2) 
Construct SynthSent by averaging the SynthWords into a prediction of the sentence. (3) Compare SynthSent 
with the observed fMRI. (4) Backpropagate the error with FGREP for each sentence, freezing network weights 
and changing only CARWords. (5) Repeat until error reaches zero or CAR components reach their upper or 
lower limits. The  modified CARs represent the word meanings in context. Thus, CEREBRA captures context 
effects by mapping brain-based semantic representations to fMRI sentence images. 

error signal. This error signal is used repeatedly by 
the Interpretation task. During the Interpretation 
task, the model is used to determine how the CARs 
should adjust to eliminate the remaining error. The 
error is used to change the CARs themselves using 
the FGREP mechanism (Forming Global 
Representations with Extended BP, Miikkulainen 
& Dyer, 1991). The process iterates until the error 
goes to zero. 

3.2   Mapping CARs to Synthetic Words 

The CEREBRA model is first trained to map the 
CARWord representations in each sentence to 
SynthWords (The “forward” side of Figure 3). It 
uses a standard three-layer backpropagation neural 
network (BPNN). Gradient descent is performed 
for each word, changing the connection weights of 
the network to learn this task (Rumelharth, et al., 
1986). 

The BPNN was trained for each of the eleven 
fMRI subjects for a total of 20 repetitions each, 
using different random seeds. Complete training 
thus yields 20 different networks for each subject, 
resulting in 20 sets of 786 predicted SynthWord 
representations, that is, one word representation for 
each sentence where the word appears. 

3.3   Sentence Prediction to Change CARs 

For the Prediction task, the sentences are 
assembled using the predicted SynthWords by 
averaging all the words that occur in the sentence, 
yielding the prediction sentence called SynthSent. 
For the Interpretation task, in addition to the 
construction of the predicted sentence, further 
steps are required. First, the prediction error is 
calculated by subtracting the newly constructed 
predicted SynthSent from the original fMRISent. 
Then, the error is backpropagated to the inputs 
CARWords for each sentence (The “backward” 
side of Figure 3). However, following the FGREP 
method the weights of the network no longer 
change. Instead, the error is used to adjust the 
CARWords in order for the prediction to become 
accurate. 

This process is performed until the prediction 
error is very small (near zero) or cannot be 
modified (CARWords already met their limits, i.e., 
0 or 1), which is possible since FGREP is run 
separately for each sentence. These steps are 
repeated 20 times for each subject. At the end, the 
average of the 20 representations is used to 
represent each of the 786 context-based words 
(CARWord Revised), for each subject. 

(w'1+w'2+w'3)/3

SynthSent

W2:builtW1:engineer W3:computer W2:built W3:computer

forward backward

SynthSent
(Revised)

CARWord

W1:engineer
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?
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fMRISent

CARWord Revised
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Eventually, the Revised CARWord represents the 
word meaning for the current sentence such that, 
when combined with other Revised CARWords in 
the sentence, the estimate of sentence fMRI 
becomes correct. 

4   Data Collection and Processing 

The CEREBRA model is based on the following 
sets of data: A sentence collection prepared by 
Glasgow et al. (2016), the semantic vectors (CAR 
ratings) for the words obtained via Mechanical 
Turk, and the fMRI images for the sentences, 
collected by the Medical College of Wisconsin 
(Anderson et al., 2016, 2017, 2018, 2019; Binder 
et al., 2016a, 2016b). Additionally, fMRI 
representations for individual words (called 
SynthWord) were synthesized by averaging the 
sentence fMRI. 

4.1   Sentence Collection  

A total of 240 sentences were composed of two to 
five content words from a set of 242 words (141 
nouns, 39 adjectives and 62 verbs). The words 
were selected toward imaginable and concrete 
objects, actions, settings, roles, state and 
emotions, and events. Examples of words include 
doctor, car, hospital, yellow, flood, damaged, 
drank, accident, summer, chicken, and family. An 
example of a sentence containing some of these 
words is The accident damaged the yellow car. 

4.2   Semantic Word Vectors 

In a separate study Binder et al. (2016a, 2016b) 
collected CAR ratings for the original 242 words 
through Amazon Mechanical Turk. In a scale of 
0-6, the participants were asked to assign the 
degree to which a given concept is associated with 
a specific type of neural component of experience 
(e.g. “To what degree do you think of a church as 
having a fixed location, as on a map?”).  

Approximately 30 ratings were collected for 
each word. After averaging all ratings and 
removing outliers, the final attributes were 
transformed to unit length yielding a 66-
dimensional feature vector such as the one shown 
in Figure 1 for the word church. Note that this 
semantic feature approach builds its vector 
representations by mapping the conceptual content 
of a word (expressed in the questions) to the 
corresponding neural systems for which the CAR 
dimensions stand. This approach thus contrasts 

with systems where the features are extracted from 
text corpora and word co-occurrence with no direct 
association to perceptual grounding (Baroni et. al., 
2010; Burgess, 1998; Harris, 1970; Landauer & 
Dumais, 1997; Mikolov et al., 2013). 

4.3   Neural fMRI Sentence Representations 

If indeed word meaning changes depending on 
context, it should be possible to see such changes 
by directly observing brain activity during word 
and sentence comprehension. Binder and his team 
collected twelve repetitions of brain imaging data 
from eleven subjects by recording visual, sensory, 
motor, affective, and other brain systems.  

To obtain the neural correlates of the 240 
sentences, subjects viewed each sentence on a 
computer screen while in the fMRI scanner. The 
fMRI patterns were acquired with a whole-body 
Three-Tesla GE 750 scanner at the Center for 
Imaging Research of the Medical College of 
Wisconsin (Anderson, et al., 2016). The sentences 
were presented word-by-word using a rapid serial 
visual presentation paradigm, with each content 
word exposed for 400ms followed by a 200ms 
inter-stimulus interval. Participants were instructed 
to read the sentences and think about their overall 
meaning. 

The fMRI data were pre-processed using 
standard methods. The transformed brain 
activation patterns were converted into a single-
sentence fMRI representation per participant by 
taking the voxel-wise mean of all repetitions 
(Anderson et al., 2016; Binder et al., 2016a, 
2016b). To form the target for the neural network, 
the most significant 396 voxels per sentence were 
then chosen. The size selection mimics six case-
role slots of content words consisting of 66 
attributes each. The voxels were further scaled to 
[0.2..0.8].  

4.4   Synthetic fMRI Word Representations 

The Mapping CARs task in CEREBRA (described 
in Section 3.2) requires fMRI images for words in 
isolation. Unfortunately, the collected neural data 
set does not include such images. Therefore, a 
technique developed by Anderson et al. (2016) was 
adopted to approximate them. The voxel values for 
a word were obtained by averaging all fMRI 
images for the sentences where the word occurs. 
These vectors, called SynthWords, encode a 
combination of examples of that word along with 
other words that appear in the same sentence. Thus,
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the SynthWord representation for mouse obtained 
from Sentence 56:The mouse ran into the forest 
and Sentence 60:The man saw the dead mouse 
includes aspects of running, forest, man, seeing, 
and dead, altogether. This process of combining 
contextual information is similar to several 
semantic models in  computational linguistics 
(Baroni et al., 2010; Burgess, 1998; Landauer et al., 
1997; Mitchell & Lapata, 2010). Additionally, in 
other studies, this approach has been used 
successfully to predict brain activation (Anderson 
et al., 2016, 2017, 2018, 2019; Binder, et al., 2016a, 
2016b; Just, et al., 2017).  

Due to the limited number of sentences, some of 
SynthWords became identical and were excluded 
from the dataset. The final collection includes 237 
sentences and 236 words (138 nouns, 38 adjectives 
and 60 verbs). Similarly, due to noise inherent in 
the neural data, only eight subject fMRI patterns 
were used for this study. 

5   Experiments 

CEREBRA’s context-based representations were 
evaluated through several computational 
experiments as well as through a behavioral 
analysis. The computational experiments quantify 
how the CAR representation of a word changes in 
different sentences for individual cases by 
correlating these changes to the CAR 
representations of the other words in the sentence 
(OWS). The behavioral study evaluates the 

CEREBRA context-based representations against 
human judgements. 

5.1   Analysis of an Individual Example 

Earlier work showed that (1) words in different 
contexts have different representations, and (2) 
these differences are determined by context. These 
effects were demonstrated by analyzing individual 
sentence cases across multiple fMRI subjects 
(Aguirre-Celis & Miikkulainen, 2017, 2018).  

Particularly, in this example the attributes of the 
adjective-noun combinations are analyzed on the 
centrality effect for the word small, as expressed in 
Sentence 42: The teacher broke the small camera, 
and Sentence 58: The army built the small hospital. 
Centrality expresses the idea that some attributes 
are true to many different concepts but they are 
more important to some concepts than others 
(Medin & Shoben, 1988). For example, it is more 
important for boomerangs to be curved than for 
bananas. 

Figure 4 shows the differences for small in these 
two contexts. The left side displays all 66 attributes 
for the two sentence representations averaged 
across subjects, and the right side displays the 
context-based representations averaged across all 
subjects for camera and hospital.  
The size dimensions (e.g., Small and Large), 
demonstrated the centrality principle for these 
specific contexts. The left side of Figure 4 shows 
Sentence 42 (e.g., small camera) with salient 
activation for the central attribute Small and low  

  
                    (a) Averaged sentences across subjects                                         (b) Averaged concepts across subjects 
Figure 4: The effect of centrality on two contexts for the word small. (a) The average for all subjects for the two 
sentences. (b) The new camera and hospital representations averaged for all subjects. In the left side of the figure, the 
new CARs for Sentence 42 have salient activations for an object, denoting the camera properties like Dark, Small, 
Manipulation, Head, Upper Limb, Communication, and emotions such as Sad (e.g., broke the camera). The new 
CARs for Sentence 58, has high feature activations for large buildings describing a Large, and Heavy structure such 
as a hospital. In the right side of the figure, for each word the central attributes are highlighted to emphasize how 
same dimensions are more important to some concepts than others. The centrality effect correlation analysis (Medin 
& Shoben, 1988). 
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activation for the non-central attribute Large. In 
contrast, Sentence 57 (e.g., small hospital) presents 
low activation on the non-central attribute Small 
but high activation  on the central attribute Large. 

These findings suggest that these attributes are 
essential to small objects and big structures, 
respectively. However, the size dimension alone 
cannot represent the centrality effect completely. 

Additionally, given that both camera and 
hospital are inanimate objects, the right side of 
Figure 4 shows that they share low weightings on  
human-related attributes like Biomotion, Face, 
Body, and Speech. However, they also differ in 
expected ways, including salient activations on 
Darkness, Color, Small and Large size, and 
Weight. As part of the sentence context, the 
activations include human-like attributes such as 
Social, Human, Communication, Pleasant, Happy, 
Sad and Fearful. Overall, each sentence 
representation moves towards their respective 
sentence context (e.g., camera or hospital).  

5.2   Aggregation Analysis 

Further work verified the above conclusions in the 
aggregate through a statistical analysis across an 
entire corpus of sentences. The goal was to 
measure how the CARs of a word changes in 
different sentences, and to correlate these changes 
to the CARs of the other words in the sentence 
(OWS). In other words, the conceptual 

combination effect was quantified statistically 
across sentences and subjects (Aguirre-Celis & 
Miikkulainen, 2019, 2020b). 

The hypothesis is based on the idea that similar 
sentences have a similar effect, and this effect is 
consistent across all words in the sentence. In order 
to test this hypothesis it is necessary to (1) form 
clusters of similar sentences for the entire 
collection, and (2) calculate the average changes on 
the words identified by the role they play for the 
same cluster of sentences. Through correlations, it 
is possible to demonstrate how similar sentences 
cause analogous changes in words that play 
identical roles in those sentences. 

The results are shown in Figure 5. The 
correlations are significantly higher for new CARs 
than for the original CARs across all subjects and 
all roles. Furthermore, the AGENT role represents 
a large part of the context in both analyses (i.e., 
modified and original CARs). Thus, the results 
confirm that the conceptual combination effect 
occurs reliably across subjects and sentences, and 
it is possible to quantify it by analyzing the fMRI 
images using the CEREBRA model on CARs. As 
a summary, the average correlation was 0.3201 
(stdev 0.020) for original CAR representations and 
0.3918 (stdev 0.034) for new CAR representations. 

Thus, this process demonstrated that changes in 
a target word CAR originate from the OWS. For 
instance, if the OWS have high values in the CAR  

 
Figure 5: Correlation results per subject cluster and word roles. Average correlations analyzed by word class for eight 
subjects comparing original and new CARs vs. the average of the OWS respectively. A moderate to strong positive 
correlation was found between new CARs and the OWS, suggesting that features of one word are transferred to OWS 
during conceptual combination. Interestingly, the original and new patterns are most similar in the AGENT panel, 
suggesting that this role encodes much of the context.  The results show that the effect occurs consistently across 
subjects and sentences. 
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Table 1: Comparing CEREBRA predictions with human judgements. (a) Distribution analysis and inter-rater 
agreement. The top table shows human judgement distribution for the three responses “less” (-1), “neutral” (0), 
and “more” (1). The bottom table shows percentage agreement for the four participants. Humans agree 47% of 
the time. (b) Matching CEREBRA predictions with human data, compared to chance baseline. The table shows 
the average agreement of the 20 repetitions across all subjects. CEREBRA agrees with human responses 54% 
while baseline is 45% - which is equivalent to always guessing “more”, i.e., the largest category of human 
responses. (c) Statistical analysis for CEREBRA and baseline. The table shows the means and variances of 
CEREBRA and chance models for each subject and the p-values of the t-test, showing that the differences are 
highly significant. Thus, the context-dependent changes are actionable knowledge that can be used to predict 
human judgements. 

 
 
spatial dimension for Path, then that dimension in 
the modified CAR should be higher than in the 
original CAR, for such target word. The 
CEREBRA model encodes this effect into the 
CARs where it can be measured.  

5.3   Behavioral Study 
While Sections 5.1 and 5.2 showed that 
differences in the fMRI patterns in sentence 
reading can be explained by context-dependent 
changes in the semantic feature representations of 
the words. The goal of this section is to show that 
these changes are meaningful to humans. 
Therefore, human judgements were compared 
against CEREBRA predictions (Aguirre-Celis & 
Miikkulainen, 2020a, 2020b). 

 
Measuring Human Judgements: A survey was 
designed to characterize context-dependent 
changes by asking the subject directly: In this 
context, how does this attribute change? Human 
judgements were crowdsourced using Google 
Forms. The complete survey was an array of 24 
questionnaires that included 15 sentences each. For 
each sentence, the survey measured 10 attribute 
changes for each target word. Only the top 10 
statistically most significant attribute changes for 
each target words (roles) were used. Overall, each 

questionnaire thus contained 150 evaluations. The 
24 questionnaires can be found at: 
https://drive.google.com/drive/folders/1jD
CqKMuH-SyTxcJ7oJRbr7mYV6WNNEWH?usp=sharing 

Human responses were first characterized 
through data distribution analysis. Table 1 (a) 
shows the number of answers “less” (-1), “neutral” 
(0), and “more” (1) for each participant. Columns 
labeled P1, P2, P3, and P4 show the answers of the 
participants. The top part of Table 1 (a) shows the 
distribution of the raters’ responses and the bottom 
part shows the level of agreement among them. As 
can be seen from the table, the participants agreed 
only 47% of the time. Since the inter-rater 
reliability is too low, only questions that were the 
most reliable were included, i.e., where three out of 
four participants agreed. There were 1966 such 
questions, or 55% of the total set of questions.  

 
Measuring CEREBRA’s Predictions: The 
survey directly asks for the direction of change of 
a specific word attribute in a particular sentence, 
compared to the word’s generic meaning. Since the 
changes in the CEREBRA model range within 
(-1,1), in principle that is exactly what the model 
produces. However, during the experiments it was 
found that some word attributes always increase, 
and do so more in some contexts than others. This 

HUMAN&RESPONSES &&&&&&&PARTICIPANTS&AVERAGE&AGREEMENT&

&&&&&&DISTRIBUTION RATINGS HUMAN CEREBRA CHANCE
Resp/Part P1 P2 P3 P4 AVG % !1 618 463 8

!1 2065 995 645 1185 1223 34.0% 0 456 3 0
0 149 1120 1895 1270 1109 30.8% 1 892 587 886
1 1386 1485 1060 1145 1269 35.3% TOTAL 1966 1053 894

TOT 3600 3600 3600 3600 3600 100% &&&&&&&&&&&&&&&&&&AVERAGE 54% 45%

&&&&&&&&PARTICIPANT (b) Matching Predictions
AGREEMENT&ANALYSIS&

P1 P2 P3 P4 AVERAGE % SUBJECTS CEREBRA CHANCE pAvalue
P1 0 1726 1308 1650 1561 43% MEAN VAR MEAN VAR
P2 1726 0 1944 1758 1809 50% S5051 1033 707.25 894 6.01 3.92E!24
P3 1308 1944 0 1741 1664 46% S9322 1035 233.91 894 7.21 6.10E!33
P4 1650 1758 1741 0 1716 48% S9362 1063 224.41 894 11.52 5.22E!36

S9655 1077 94.79 894 7.21 3.89E!44
TOTAL 6751 S9701 1048 252.79 895 12.03 1.83E!33
AVG&xPART 1688 S9726 1048 205.82 894 4.62 1.73E!35

S9742 1075 216.77 895 7.21 1.65E!37
AVERAGE 11Particip1match1each1other 47% S9780 1039 366.06 894 2.52 6.10E!30

      (a) Human Responses (c) Statistical Significance
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effect is well known in conceptual combination 
(Hampton, 1997; Wisniewsky, 1998), contextual 
modulation (Barclay, 1974, Barsalou et al., 1987, 
1993), and attribute centrality (Medin & Shoben, 
1988). The direction of change is therefore not a 
good predictor of human responses.  

These changes need to be measured relative to 
changes in the OWS. Thus, the approach was based 
on asking: What is the effect of CARs used in 
context as opposed to CARs used in isolation? This 
effect was measured by computing the average of 
the CEREBRA changes (i.e., new minus original) 
of the different representations of the same word in 
several contexts, and subtracting that average 
change from the change of the target word. 
 
Matching CEREBRA’s Predictions with 
Human Judgements: In order to demonstrate that 
the CEREBRA model has captured human 
performance, the agreements of the CEREBRA 
changes and human surveys need to be at least 
above chance. Therefore a baseline model that 
generated random responses from the distribution 
of human responses was created. The results are 
reported in Table 1 (b), and the statistical 
significance of the comparisons in Table 1 (c). 

The CEREBRA model matches human 
responses in 54% of the questions when the 
baseline is 45% - which is equivalent to always 
guessing “more”, i.e., the largest category of 
human responses. The differences shown in  Table 
1 (c) are highly statistically significant for the eight 
subjects. These results show that the changes in 
word meanings (i.e., due to sentence context 
observed in the fMRI and interpreted by 
CEREBRA) are real and meaningful to humans 
(Aguirre-Celis & Miikkulainen, 2020a, 2020b).  

6   Discussion and Future Work 

This paper described how the CAR theory, the 
fMRI images, and the CEREBRA model form the 
groundwork to characterize dynamic word 
meanings. The CEREBRA model generates good 
interpretations of word meanings considering that 
the dataset was limited and was not originally 
designed to address the dynamic effects in 
meaning. In future work, it would be interesting to 
replicate the studies on a more extensive data set. 
A fully balanced stimuli including sentences with 
identical contexts (e.g., The yellow bird flew over 
the field vs. The yellow plane flew over the field) 
and contrasting contexts (e.g., The aggressive dog 

chased the boy vs. The friendly dog chased the 
boy), could help characterize the effects in more 
detail. The context-based changes should be even 
stronger, and it should be possible to uncover more 
refined effects. Such data should also improve the 
survey design, since it would be possible to 
identify questions where the effects can be 
expected to be more reliable. 

Similarly, it would be desirable to extend the 
fMRI data with images for individual words. The 
CEREBRA process of mapping semantic CARs to 
SynthWords and further to sentence fMRI refines 
the synthetic representations by removing noise. 
However, such representations blend together the 
meanings of many words in many sentences. Thus, 
by acquiring actual word fMRI, the observed 
effects should become even more clear. 

One disadvantage on CEREBRA is that it is 
expensive to collect fMRI patterns and human 
ratings at a massive scale compared to running a 
statistical algorithm on a data repository. 
Furthermore, any changes to the model (e.g., 
adding features) would require new data to be 
collected. On the other hand, such data provides a 
grounding to neural processes and behavior that 
does not exist with statistical approaches. 

Concept representation in the CAR approach 
can be compared to other methods such as 
Conceptual Spaces (CS; Gardenfors, 2004; 
Bechberger & Kuhnberger, 2019), and 
distributional semantic models (DSMs; Anderson 
et. al., 2013; Bruni et al., 2014; Burgess, 1998; 
Landauer & Dumais, 1997; Mikolov et al., 2013; 
Mitchell & Lapata, 2010; Silberer & Lapata, 
2014). The CAR theory and CS characterize 
concepts with a list of features or dimensions as the 
building blocks. The CAR theory provides a set of 
primitive features for the analysis of conceptual 
content in terms of neural processes (grounded in 
perception and action). The CS framework 
suggests a set of “quality” dimensions as relations 
that represent cognitive similarities between 
stimuli (observations or instances of concepts). CS 
is also considered a grounding mechanism that 
connects abstract symbols to the real world. The 
CAR and CS approaches include similar 
dimensions (i.e., weight, temperature, brightness) 
and some of those dimensions are part of a larger 
domain (e.g., color) or a process (e.g., visual 
system). Whereas CAR theory is a brain-based 
semantic representation where people weigh 
concept dimensions differently based in context, 
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DSMs are not grounded on perception and motor 
mechanisms. Instead, DSM representations reflect 
semantic knowledge acquired through a lifetime of 
linguistic experience based on statistical co-
occurrence. DSMs do not provide precise 
information about the experienced features of the 
concept itself (Anderson et al., 2016). In 
CEREBRA, this grounding provides a multimodal 
approach where features directly relate semantic 
content to neural activity. 

7   Conclusions  

The CEREBRA model was constructed to test the 
hypothesis that word meanings change 
dynamically based on context. The results suggest 
three significant conclusions: (1) context-
dependent meaning representations are embedded 
in the fMRI sentences, (2) they can be 
characterized using CARs together with the 
CEREBRA model, and (3) the attribute weighting 
changes are real and meaningful to human 
subjects. Thus, CEREBRA opens the door for 
cognitive scientists to achieve better understanding 
and form new hypotheses about how semantic 
knowledge is represented in the brain. 
Additionally, the context-based representations 
produced by the model could be used for a broad 
range of artificial natural language processing 
systems, where grounding concepts as well as 
understanding novel combinations of concepts is 
critical. 
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