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Abstract

This paper describes a system submitted by
team BigGreen to LCP 2021 for predict-
ing the lexical complexity of English words
in a given context. We assemble a feature
engineering-based model with a deep neu-
ral network model founded on BERT. While
BERT itself performs competitively, our fea-
ture engineering-based model helps in extreme
cases, eg. separating instances of easy and
neutral difficulty. Our handcrafted features
comprise a breadth of lexical, semantic, syn-
tactic, and novel phonological measures. Vi-
sualizations of BERT attention maps offer in-
sight into potential features that Transformers
models may learn when fine-tuned for lexical
complexity prediction. Our ensembled predic-
tions score reasonably well for the single word
subtask, and we demonstrate how they can be
harnessed to perform well on the multi word
expression subtask too.

1 Introduction

Lexical simplification (LS) is the task of replacing
difficult words in text with simpler alternatives. It
is relevant in reading comprehension, where early
studies have shown infrequent words lead to more
time spent by a reader fixated on it, and that ambi-
guity in a word’s meaning adds to comprehension
time (Rayner and Duffy, 1986). Complex word
identification (CWI) is believed to be a fundamen-
tal step in the automation of lexical simplification
(Shardlow, 2014). Early techniques for conducting
CWI suffer from a lack of robustness, from simpli-
fying all words to then study its efficacy (Devlin,
1998), to applying thresholds on features like word
frequency (Zeng et al., 2005).

This year’s Lexical Complexity Prediction (LCP)
shared task (Shardlow et al., 2021) forgoes the treat-
ment of word difficulty as a binary classification
task (Paetzold and Specia, 2016a; Yimam et al.,

2018) and instead measures degree of complexity
on a continuous scale. This choice is intriguing as
it mitigates a dilemma with previous approaches
of having to treat words extremely close to a deci-
sion boundary (suppose a threshold deems a word’s
difficulty) identically to those that are far away, ie.
extremely easy or extremely difficult.

Teams are asked to submit predictions on un-
labeled test sets for two subtasks: predicting on
English single word and multi word expressions
(MWEs). For each subtask, BigGreen presents a
machine learning-based approach that fuses the pre-
dictions of a feature engineering-based regressor
with those of a feature learning-based deep neural
network model founded on BERT (Devlin et al.,
2018). Our code is made available on GitHub.1

2 Related Work

Previous studies have looked at estimating the
readability of a given text at the sentence-level.
Mc Laughlin (1969) regresses the number of poly-
syllabic words in a given lesson against the mean
score for students quizzed on said lesson, yielding
the SMOG Readability Formula. Dale and Chall
(1948) offer a list of 768 (later updated to 3,000)
words familiar to grade-school students in reading,
which they find correlates with passage difficulty.
An issue with traditional readability metrics seems
to be the loss of generality at the word-level.

Shardlow (2013) tries a brute force approach
where a simplification algorithm is applied to each
word of a given text, deeming a word complex only
if it is simplified. However, this suffers from the as-
sumption that a non-complex word does not require
further simplification. They also try assigning a fa-
miliarity score to a word, and determining whether
the word is complex or not by applying a threshold.

1https://github.com/Aadil101/
BigGreen-at-LCP-2021

https://github.com/Aadil101/BigGreen-at-LCP-2021
https://github.com/Aadil101/BigGreen-at-LCP-2021
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Corpus Subtask Train Trial Test
Bible Single Word 2574 143 283

Multi Word 505 29 66
Biomed Single Word 2576 135 289

Multi Word 514 33 53
Europarl Single Word 2512 143 345

Multi Word 498 37 65

Table 1: LCP train, trial, and test sets.

We avoid thresholding our features in this study as
we find it unnecessary, since raw familiarity scores
can be used as features in regression-based tasks.

Results from CWI at SemEval-2016 (Zampieri
et al., 2017) suggest vote ensembling predictions of
the best performing models as an effective strategy,
while several top-performing models (Paetzold and
Specia, 2016b; Ronzano et al., 2016; Mukherjee
et al., 2016) appear to use linguistic information be-
yond just word frequency. This inspires our use of
ensemble techniques, and a foray into phonological
features as a new point of research. Results from
CWI at SemEval-2018 show feature engineering-
based models outperforming deep learning-based
counterparts, despite the latter having generally
better performances since SemEval-2016.

3 Data

3.1 CompLex Dataset
Shardlow et al. (2020) present CompLex, a novel
dataset in which each target expression (a single
word or two-token MWE) is assigned a continuous
label denoting its lexical complexity. Each label
lies in range 0-1, and represents the (normalized)
average score given by employed crowd workers
who record an expression’s difficulty on a 5-point
Likert scale. We define a sample’s class as the
bin to which its complexity label belongs, where
bins are formed using the following mapping of
complexity ranges: [0, 0.2) → 1, [0.2, 0.4) → 2,
[0.4, 0.6) → 3, [0.6, 0.8) → 4, [0.8, 1] → 5. Tar-
get expressions in CompLex have 0.395 average
complexity and 0.115 standard deviation, reflecting
an imbalance in favor of class 2 and 3 samples.

Each target expression is accompanied by the
sentence it was extracted from, drawn from one of
three corpora (Bible, Biomed, and Europarl). A
summary of the train, trial,2 and test set samples is

2In our study we avoid the trial set as we find it to be less
representative of the training data, opting instead for training
set cross-validation (stratified by corpus and complexity label).

provided in Table 1.

3.2 External Datasets
We use four additional corpora to extract term
frequency-based features from:

• English Gigaword Fifth Edition (Gigaword):
this comprises articles from seven English
newswires (Parker et al., 2011).

• Google Books Ngrams, version 2 (GBND):
this is used to count occurences of phrases
across a corpus of books, accessed via the
PhraseFinder API (Trenkmann).

• British National Corpus, version 3 (BNC):
this is a collection of written and spoken En-
glish text (Consortium et al., 2007).

• SUBTLEXus: this consists of American En-
glish subtitles, offering a multitude of word
frequency lists (Brysbaert and New, 2009).

4 BigGreen System & Approaches

In this section, we overview features fed to our fea-
ture engineering-based model, as well as training
techniques for the feature learning-based model.
We describe our features in detail in Appendix A.
Note that fitted models for the single word subtask
are then harnessed for the MWE subtask.

4.1 Feature Engineering-based Approach
4.1.1 Feature Extraction
We aim to capture a breadth of information pertain-
ing to the target word and its context. Most features
follow heavily right-skewed distributions, prompt-
ing us to also consider the log-transformed version
of each feature. For the MWE subtask, features are
extracted independently for head and tail words.

4.1.1.1 Lexical Features

These are features based on lexical information
about the target word:

• Word length: length of the target word.

• Number of syllables: number of syllables in
the target word, via the Syllables library.3

• Is acronym: whether the target word is a se-
quence of capital letters.

3https://github.com/prosegrinder/
python-syllables

https://github.com/prosegrinder/python-syllables
https://github.com/prosegrinder/python-syllables


669

4.1.1.2 Semantic Features

These features capture the target word’s meaning:

• WordNet features: the number of hyponyms
and hypernyms associated with the target
word in WordNet (Fellbaum, 2010).

• GloVe word embeddings: we extract
300-dimension embeddings pre-trained on
Wikipedia-2014 and Gigaword (Pennington
et al., 2014) for each (lowercased) target word.

• ELMo word embeddings: we extract for
each target word a 1024-dimension contex-
tualized embedding pre-trained on the One
Billion Word Benchmark (Peters et al., 2018).

• GloVe context embeddings: we obtain the
average 300-dimension GloVe word embed-
ding over each token in the given sentence.

• InferSent context embeddings: we obtain
4096-dimension InferSent embeddings (Con-
neau et al., 2017) for each sentence.

4.1.1.3 Phonetic Features

These features compute the likelihood that sound-
able portions of the target word would arise in En-
glish language. We estimate ground truth transition
probabilities between any two units (phonemes or
characters) using Gigaword:

• Phoneme transition probability: we con-
sider the min/max/mean/standard deviation
over the set of transition probabilities for the
target word’s phoneme bigrams.

• Character transition probability: analogous
to that above, over character bigrams.

4.1.1.4 Word Frequency & N-gram Features

These features are expressly included due to their
expected importance as features (Zampieri et al.,
2017). Gigaword is the main corpus from which
we extract word frequency measures (for both lem-
matized and unlemmatized versions of the target
word), summed frequency of the target word’s byte
pair encodings (BPEs), as well as summed frequen-
cies of bigrams and trigrams. We complement these
features with their IDF-based analogues. Lastly, we
use the GBND, BNC, and SUBTLEXus corpora
to extract secondary word frequency, bigram, and
trigram measures.

4.1.1.5 Syntactic Features

These are features that assess the syntactic struc-
ture of the target word’s context. We construct the
constituency parse tree for each sentence using a
Stanford CoreNLP pipeline (Manning et al., 2014).

• Part of speech (POS): tag is assigned using
NLTK’s pos tag method (Bird et al., 2009).

• Depth of parse tree: the parse tree’s height.

• Depth of target word: distance (in edges) be-
tween target word and parse tree’s root node.

• Is proper: whether the target word is a proper
noun/adjective, detected using capitalization.

4.1.2 Training
Prior to training, we Z-score standardize all fea-
tures. For the single word subtask, we fit Lin-
ear, Lasso (Tibshirani, 1996), Elastic Net (Zou and
Hastie, 2005), Support Vector Machine (Platt et al.,
1999), K-Nearest Neighbors (Wikipedia, 2021),
and XGBoost (Chen and Guestrin, 2016) regres-
sion models.

After identifying the best performing model by
Pearson correlation, we seek to mitigate the imbal-
anced nature of the target variable, ie. multitude of
class 1,2,3 and lack of class 4,5 samples: we devise
a sister version of our top-performing model, fit
upon a reduced training set. For the reduced set,
we tune percentages removed from classes 1-3 by
performing cross-validation on the full training set.

4.2 Approach based on Feature Learning

Our handcrafted feature set relies heavily on target
word-specific features. Beyond N-gram and syntac-
tic features, it is a cursory analysis of the context
surrounding the target word. We seek an alterna-
tive, automated approach using feature learning.

4.2.1 Architecture
LSTM-based approaches have been used to model
the contexts of target words in past works (Hart-
mann and Dos Santos, 2018; De Hertog and Tack,
2018). An issue with a single LSTM is its ability to
read tokens of an input sentence sequentially only
in a single direction (eg. left-to-right). It inspires
us to try a Transformer-based approach (Vaswani
et al., 2017), architectures that process sentences as
a whole (instead of word-by-word) by applying at-
tention mechanisms upon them. Attention weights



670

are useful as they can be interpreted as learned re-
lationships between words. BERT (Devlin et al.,
2018) is one such model used for a variety of natu-
ral language understanding (NLU) tasks.

Multi-Task Deep Neural Network (MT-DNN)
proposed by Liu et al. (2019) offers state-of-the-
art results for multiple NLU tasks by incorporat-
ing benefits of both multi-task learning and lan-
guage model pre-training. We are able to initialize
MT-DNN’s shared text encoding layers with a pre-
trained BERT base model (cased), and fine-tune
its later layers for 5 epochs, using a mean squared
error loss function and default hyperparameters.
Such hyperparameter settings are provided in Ap-
pendix B. Note that the model is fine-tuned on only
the CompLex corpus.

4.2.2 Input Layer
Data is fed to the model’s input layer in Premise-
AndOneHypothesis format, premise and hypothesis
being sentence and target word/MWE, respectively.
The data is preprocessed by a BERT tokenizer,
backed by Hugging Face (Wolf et al., 2020).

4.2.3 Output Layer
Our model’s output layer produces the predicted
lexical complexity for a given target word/MWE.
Additionally, we extract attention maps across each
of the model’s attention heads, for each test set
sample. These will be assessed in Section 6.3.

4.3 Ensembling
Our best performing feature engineering-based re-
gression model yields two sets of predictions (from
fitting on full and reduced training sets, respec-
tively). We default to using the full predictions,
then tune a threshold, where predictions higher than
the threshold (likely of class 4,5 samples) are over-
written with the reduced predictions. We compute
a weighted average ensemble of these predictions
with those of our MT-DNN model to obtain a final
set of predictions for the single word subtask.

For the MWE subtask, the fitted models from the
previous subtask are harnessed to predict lexical
complexities for the head and tail words. We then
compute a weighted average ensemble of these
predicted complexities and the predictions of an
MT-DNN model trained on MWEs.

5 Results

We present the performances of BigGreen’s sys-
tem on each subtask in Tables 2 and 3.

Model Pearson Rank
XGBoostfull 0.7589 -
XGBoostreduced 0.7456 -
XGBoostfull+reduced 0.7576 -
MT-DNN 0.7484 -
Ensemble (submission) 0.7749 8/54
Best competition results 0.7886

Table 2: Test set results for single word subtask.

Model Pearson Rank
XGBoostfull+red.(head) 0.7164 -
XGBoostfull+red.(tail) 0.7188 -
MT-DNN 0.7890 -
Ensemble (submission) 0.7898 25/37
Ensemble (improved) 0.8290 *14/37
Best competition results 0.8612

Table 3: MWE subtask test set results. (*projection)

6 Analysis

6.1 Performance

For feature selection, we find success in selecting
the top-300 features by mutual information and
removing quasi-constant features. The pruned fea-
ture set is passed to wrapper/embedded methods
and a variety of regressors for model comparison.
We find an XGBoost regressor (with hyperparame-
ters tuned via grid search) to excel consistently for
the single word subtask. As shown in Table 2, we
rank in the top 15% by Pearson correlation.

For the MWE subtask, performances are re-
ported in Table 3. Note that our submitted pre-
dictions differ from post-competition predictions.
We previously used a training procedure resem-
bling that for the single word subtask: (1) filter
methods for feature selection, (2) XGBoost for re-
gression, (3) ensembling with MT-DNN. We had
passed the entire MWE as input to our XGBoost
and MT-DNN models. We hypothesize that the
fewer number of training samples available for this
subtask contributed to the prior procedure’s lack-
luster performance. This inspired us to incorporate
the predictive capabilities of our fitted single word
subtask models by applying them independently on
the MWE’s constituent head and tail words. This
gives us predicted complexities for the head and tail
words each, which when ensembled with the pre-
dictions of our MT-DNN model (that, mind you, is
trained on the entire MWE) yields superior results
to those submitted to competition.
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Figure 1: Feature importances for XGBoostfull.
Definitions of the features are shown in Appendix A.

Figure 2: Attention head correlation between word
frequency and total attention received by word,
averaged across 100 random test set samples.

6.2 Feature Contribution

In total we consider 110 features, in addition to
our multidimensional embedding-based features
and log-transformed features. We inspect the esti-
mated feature importance scores produced by the
XGBoostfull model to find that term frequency-
based features (eg. unigrams, bigrams, trigrams)
are of overwhelming importance (see Figure 1).
This raises concern for whether the MT-DNN
model too relies on term frequencies to make its
predictions, and if not, the linguistic features it may
have learned upon fine-tuning. Of the remaining
features having non-zero feature importances, most
appear to be dimensions of target word-based se-
mantic features (ie. GloVe or ELMo embeddings).

Figure 3: Head 3-9 attention map for a random sample.

6.3 BERT Attention

Attention maps have in previous works been
assessed to demonstrate linguistic phenomena
learned by a Transformer’s specialized attention
heads (Voita et al., 2019; Clark et al., 2019). We
extract attention maps from MT-DNN’s underlying
fine-tuned BERT architecture. For each sample in
the single word test set, we obtain an attention map
from each of the BERT base model’s 144 attention
heads (ie. 12 heads per 12 layers).

Based on the precedence given to term frequency
features by the XGBoostfull model, we hypothe-
size that for certain attention heads, the degree to
which BPEs attend to one another varies relative to
their word’s rarity in lexicon. This follows the find-
ings of Voita et al. (2019), who identify heads in
which lesser frequent tokens are attended to semi-
uniformly by a majority of sentence tokens.

To test our hypothesis, we estimate for each at-
tention head the Pearson correlation between word
frequency and average attention given to each word
in the context.4 As illustrated in Figure 2, we find
multiple attention heads appearing to specialize at
directing attention towards the most or least fre-
quent words (depending on sign of the correlation).
Vertical stripe patterns like that in Figure 3 emerge
as a result of attention originating from a spectrum
of tokens. The findings seem to affirm the fun-
damental relevancy of word frequency to lexical
complexity prediction, corroborating our intuition.

4We compute attention given to a word as the sum of
attention given to its constituent BPEs. We use the GBND
corpus to extract word frequencies, though any large corpora
would suffice.
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7 Conclusion

In this paper, we report inspirations for a system
submitted by BigGreen to LCP SharedTask 2021,
performing reasonably well for the single word sub-
task by adapting ensemble methods upon feature
engineering and feature learning-based models. We
see potential in future deep learning approaches,
acknowledging the need for complementary word
frequency-based handcrafted features for the time
being. We surpass our submitted results for the
MWE subtask, by utilizing the predictive capabili-
ties of our single word subtask models.

Avenues for improvement include better data ag-
gregation, as a relative lack of class 4,5 samples
seems to hurt Pearson correlation across extremely
complex samples. An approach may involve syn-
thetic data generation using SMOGN (Branco et al.,
2017). Shardlow et al. (2020) acknowledge a
reader’s familiarity with a genre may affect per-
ceived word complexity. However, the CompLex
dataset lacks information on each annotator’s ex-
pertise or background, which may offer valuable
new insights.
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A Feature Descriptions

Here, we describe in greater detail the various fea-
tures that were experimented with for our feature
engineering-based model. Note that while this dis-
cussion regards the single word subtask, for the
MWE subtask we compute the same features but
for each of the head and tail words, respectively.

A.1 Lexical Features
word len

• Character length of the target word.

num syllables

• Number of syllables in the target word, via
the Syllables library.

is acronym

• Boolean for whether the target word is all
capital letters.

A.2 Semantic Features
num hyperyms

• Number of hyperyms associated with the tar-
get word. The target word is initially dis-
ambiguated using NLTK’s implementation of
the Lesk algorithm for Word Sense Disam-
biguation (WSD) (Lesk, 1986), which finds
the WordNet Synset with the highest number
of overlapping words between the context and
different definitions of each Synset.

num hyponyms

• Number of hyponyms associated with the tar-
get word. Procedure for finding this is analo-
gous to that for num hyperyms.

glove word

• 300-dimension embedding for each target
word, pre-trained on Wikipedia-2014 and Gi-
gaword. Target word is lowercased for ease.

elmo word

• 1024-dimension embedding for each target
word, pre-trained on the One Billion Word
Benchmark corpus.

glove context

• 300-dimension average of GloVe word em-
beddings (see glove word above) for each
word in the given context. Each word is low-
ercased for simplicity.

infersent embeddings

• 4096-dimension embedding for the context.

A.3 Phonetic Features
char transition min

• Minimum of the set of character transition
probabilities for each character bigram in the
target word. Ground truth character transition
probabilities between any two English charac-
ters are estimated over Gigaword.

char transition max

• Maximum of the set described above.

char transition mean

• Mean of the set described above.

char transition std

• Standard deviation of the set described above.

phoneme transition min

• Minimum of the set of phoneme transition
probabilities for each character bigram in the
target word. Ground truth phoneme transi-
tion probabilities between any two phonemes
are estimated over the Gigaword corpus. The
phoneme set considered is that of the CMU
Pronouncing Dictionary.5

phoneme transition max

• Maximum of the set described above.

phoneme transition mean

• Mean of the set described above.

phoneme transition std

• Standard deviation of the set described above.

A.4 Word Frequency & N-gram Features
A.4.1 Gigaword-based
tf

• Target word term frequency. Note that all term
frequency-based features are computed using
Scikit-learn library’s CountVectorizer
(Pedregosa et al., 2011).

tf lemma

• Term frequency of the lemmatized target word.
Lemmatization is performed using NLTK’s
WordNet Lemmatizer.

5http://speech.cs.cmu.edu/cgi-bin/
cmudict

http://speech.cs.cmu.edu/cgi-bin/cmudict
http://speech.cs.cmu.edu/cgi-bin/cmudict


675

tf summed bpe

• Sum of term frequencies of each BPE in the
target word. BPE tokenization is performed
using Hugging Face’s BERT Tokenizer.

tf ngram 2

• Sum of the term frequencies of each bigram
in the context containing the target word.

tf ngram 3

• Sum of the term frequencies of each trigram
in the context containing the target word.

tfidf

• Term frequency-inverse document frequency.

tfidf ngram 2

• Sum of the term frequency-inverse document
frequencies of each bigram in the context con-
taining the target word.

tfidf ngram 3

• Sum of the term frequency-inverse document
frequencies of each trigram in the context con-
taining the target word.

A.4.2 Google N-gram-based
google ngram 1

• Term frequency of the target word.

google ngram 2 head

• Term frequency of leading bigram in the con-
text containing the target word.

google ngram 2 tail

• Term frequency of trailing bigram in the con-
text containing the target word.

google ngram 2 min

• Minimum of the set of term frequencies of
bigrams in context containing the target word.

google ngram 2 max

• Maximum of the set described above.

google ngram 2 mean

• Average of the set described above.

google ngram 2 std

• Standard deviation of the set described above.

google ngram 3 head

• Term frequency of leading trigram in the con-
text containing the target word.

google ngram 3 mid

• Term frequency of middle trigram in the con-
text containing the target word.

google ngram 3 tail

• Term frequency of trailing trigram in the con-
text containing the target word.

google ngram 3 min

• Minimum of set of term frequencies of tri-
grams in the context containing target word.

google ngram 3 max

• Maximum of the set described above.

google ngram 3 mean

• Average of the set described above.

google ngrams 3 std

• Standard deviation of the set described above.

A.4.3 SUBTLEXus-based
FREQcount

• Number of times target word appears in cor-
pus.

CDcount

• Number of films in which target word appears.

FREQlow

• Number of times the lowercased target word
appears in corpus.

CDlow

• Number of films in which the lowercased tar-
get word appears.

SUBTLWF

• Number of times the target word appears per
million words.

SUBTLCD

• Percent of films in which target word appears.
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A.4.4 BNC-based
bnc frequency: Target word term frequency.

A.5 Syntactic Features
parse tree depth

• Height of context’s constituency parse tree.
Parse trees are obtained using a Stanford
CoreNLP pipeline.

token depth

• Depth of the target word with respect to root
node of the context’s constituency parse tree.

num words at depth

• Number of words at the depth of the target
word (see token depth above) in the con-
text’s constituency parse tree.

is proper

• Boolean for whether target word is a proper
noun/adjective, based on capitalization.

POS {CC, CD, DT, EX, FW, IN, JJ,
JJR, JJS, LS, MD, NN, NNP, NNPS,
NNS, PDT, POS, PRP, PRP$, RB,
RBR, RBS, RP, SYM, TO, UH, VB,
VBD, VBG, VBN, VBP, VBZ, WDT, WP,
WP$, WRB}

• Booleans indicating the target word’s part-of-
speech tag. Tags considered are those used
in the Penn Treebank Project.6 Tags are esti-
mated using NLTK’s pos tag method.

A.6 Readability Features
automated readability index,
avg character per word,
avg letter per word,
avg syllables per word,
char count, coleman liau index,
crawford, fernandez huerta,
flesch kincaid grade,
flesch reading ease,
gutierrez polini,
letter count, lexicon count,
linsear write formula, lix,
polysyllabcount, reading time,
rix, syllable count,
szigriszt pazos, SMOGIndex,
DaleChallIndex

• Algorithms applied using Textstat library im-
plementations, most being readability metrics.

6https://www.ling.upenn.edu/courses/
Fall_2003/ling001/penn_treebank_pos.html

A.7 Other Features

ppl

• Perplexity metric, as defined by the Hugging
Face library.7 For each token in the context,
we use a pre-trained GPT-2 model to estimate
the log-likelihood of the token occurring given
its preceding tokens. A sliding-window ap-
proach is used to handle the large number of
tokens in a context. The log-likelihoods are
averaged, and then exponentiated.

ppl aspect only

• Similar approach to that described above,
where only log-likelihoods of tokens compris-
ing the target word are averaged.

num OOV

• Number of words in the context that do not
exist in the vocabulary of Gigaword.

corpus bible, corpus biomed,
corpus europarl

• Booleans indicating the sample’s domain.

B Model Hyperparameters

Here we provide optimized hyperparameter set-
tings that may help future developers with repro-
ducing results, namely with training our models.

B.1 XGBoost

Below are tuned parameters used for all of our
XGBoost models. Parameters not listed are given
default values as specified in documentation:8

colsample bytree: 0.7
learning rate: 0.03
max depth: 5
min child weight: 4
n estimators: 225
nthread: 4
objective: ‘reg:linear’
silent: 1
subsample: 0.7

7https://huggingface.co/transformers/
perplexity.html

8https://xgboost.readthedocs.io/en/
latest/

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://huggingface.co/transformers/perplexity.html
https://huggingface.co/transformers/perplexity.html
https://xgboost.readthedocs.io/en/latest/
https://xgboost.readthedocs.io/en/latest/
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B.2 MT-DNN
MT-DNN uses yaml as its config file format. Be-
low are the contents of our task config file:
data format: PremiseAndOneHypothesis
enable san: false
metric meta:
- Pearson
- Spearman
n class: 1
loss: MseCriterion
kd loss: MseCriterion
adv loss: MseCriterion
task type: Regression

B.3 Ensemble
Threshold above which a sample is assigned its
reduced prediction (ie. XGBoostreduced prediction)
instead of its full prediction (ie. XGBoostfull
prediction): 0.59. Note that this threshold is used
to compute our XGBoostfull+reduced prediction.

Weighted average ensemble (single word subtask):
- Weight for XGBoostfull+reduced prediction: 0.5
- Weight for MT-DNN prediction: 0.5

Weighted average ensemble (MWE subtask):
- Weight for XGBoostfull+reduced(head): 0.28
- Weight for XGBoostfull+reduced(tail): 0.17
- Weight for MT-DNN prediction: 0.55


