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Abstract 

In this paper we describe our participation 

in the Lexical Complexity Prediction 

(LCP) shared task of SemEval 2021, which 

involved predicting subjective ratings of 

complexity for English single words and 

multi-word expressions, presented in 

context. Our approach relies on a 

combination of distributional models, both 

context-dependent and context-

independent, together with behavioural 

norms and lexical resources. 

1 Introduction 

In our day-to-day life, outside the laboratory, we 

almost never come across single words or pairs of 

words, in isolation. Instead, such verbal stimuli are 

typically embedded within sentences or phrases, 

and our understanding of individual words and 

word pairs is influenced by their linguistic contexts 

(e.g., by disambiguating their intended meaning). 

Hoewever, almost all behavioural norms collected 

so far focus only on single words or word pairs 

(Johns, Jamieson, & Jones, 2020). 

Therefore, the Lexical Complexity Prediction 

(LCP) shared task (Shardlow, Evans, Paetzold, & 

Zampieri, 2021), hosted at SemEval 2021, 

constitutes a timely and valuable contribution to 

the study of context-dependent semantics. The task 

requires competitors to predict subjective ratings of 

complexity for words or pairs of words, presented 

within sentences. As mentioned by the organisers, 

being able to automatically estimate contextualised 

complexity ratings would have several practical 

applications, such as detecting and simplifying 

portions of text that might be particularly difficult 

                                                           
1 https://github.com/armandrotaru/TeamAndi-LCP  

to understand for second language learners, and 

people with low literacy levels (e.g., as a result of 

suffering from a reading impairment). 

The dataset for the competition is CompLex 2.0 

(Shardlow, Cooper, & Zampieri, 2020; Shardlow, 

Evans, & Zampieri, 2021), consisting of passages 

from the Bible, the proceedings of the European 

Parliament, and biomedical journal articles. The 

training data covers 7,662 single words (2,574 

bible, 2,512 europarl, and 2,576 biomed), and 

1,517 multi-word expressions (505 bible, 498 

europarl, and 514 biomed). The test data covers 

917 single words (283 bible, 345 europarl, and 289 

biomed), and 184 multi-word expressions (66 

bible, 65 europarl, and 53 biomed).   

In this paper we describe our submission to the 

competition, based on distributional models, both 

context-dependent and context-independent, as 

well as behavioural norms/lexical resources1. The 

best results are obtained by combining the three 

classes of predictors. However, the improvement in 

performance over using just context-independent 

models is small, and, in practice, might be 

compensated by their impressive vocabulary size 

and ease of use.  

2 General Description 

In order to predict word complexity in context, we 

combined information from three type of sources, 

namely behavioural norms/lexical resources, and 

distributional models. With respect to the latter, we 

included two distinct classes of models: 

• context-independent models, which 

output the same vector representation for a 

given word, regardless of the context in 

which the word is encountered; 
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• context-dependent models, which output a 

potentially different representations for a 

given word, as a function of the context in 

which the word is presented.  

Our approach was very similar to that employed 

in (Rotaru, 2020), for predicting ratings of 

concreteness in context.  

Firstly, we used behavioural norms collected for 

a wide variety of psycholinguistic factors, as well 

as lexical resources. More specifically, we focused 

on norms for concreteness (Brysbaert, Warriner, & 

Kuperman, 2014; Paetzold & Specia, 2016), 

imageability (Paetzold & Specia, 2016), semantic 

diversity (Hoffman, Lambon Ralph, & Rogers, 

2013), age of acquisition (Kuperman, Stadthagen-

Gonzalez, & Brysbaert, 2012; Paetzold & Specia, 

2016), familiarity (Paetzold & Specia, 2016), 

emotional dimensions (i.e., valence, arousal, and 

dominance; Mohammad, 2018), and sensorimotor 

dimensions (i.e., modality strengths for the tactile, 

auditory, olfactory, gustatory, visual, and 

interoceptive modalities; interaction strengths for 

the mouth/throat, hand/arm, foot/leg, head 

excluding mouth/throat, and torso effectors; 

Lynott, Connell, Brysbaert, Brand, & Carney, 

2019). We also included complexity ratings 

(Maddela & Xu, 2018), lexical decision response 

times and accuracies (Keuleers, Lacey, & 

Brysbaert, 2012), contextual diversity counts (Van 

Heuven, Mandera, Keuleers, & Brysbaert, 2014), 

frequency counts (Van Heuven et al., 2014; Lin et 

al. 2012), prevalence counts (Brysbaert, Mandera, 

McCormick, & Keuleers, 2019), and CEFR word 

lists (Council of Europe, 2001). Nearly all these 

measures are correlated with word complexity. 

Secondly, we employed context-independent 

distributional models, namely Skip-gram 

(Mikolov, Chen, Corrado, & Dean, 2013), GloVe 

(Pennington, Socher, & Manning, 2014), and 

ConceptNet NumberBatch (Speer, Chin, & Havasi, 

2017). Such models have been used in order to 

accurately predict a range of psycholinguistic 

variables (e.g., Hollis, Westbury, & Lefsrud, 2017; 

Utsumi, 2020), which suggests that they could be 

useful in accounting for complexity ratings. 

Thirdly, we employ context-dependent 

distributional models, namely BERT (Devlin, 

Chang, Lee, & Toutanova, 2019), RoBERTa (Liu 

et al., 2019), ELECTRA (Clark, Luong, Le, & 

Manning, 2020), ALBERT (Lan et al., 2020), and 

DeBERTa (He, Liu, Gao, & Chen, 2020). Given 

that such models achieve human-level 

performance in various linguistic tasks (e.g., those 

in the GLUE benchmark; Wang et al., 2018), and 

that they were designed to process rich contextual 

information, they could be a valuable tool for 

predicting ratings of complexity in context. 

3 System Description 

We tested three groups of predictors, both in 

isolation and combined. The first group was 

obtained from comprehensive datasets of 

subjective ratings (concreteness, age of 

acquisition, etc.), task performance measures (i.e., 

response times and accuracies in the lexical 

decision tasks), as well as frequency, contextual 

diversity, and prevalence counts, plus CEFR word 

lists (see the references from the beginning of the 

previous section). In order to extend the coverage 

of the subjective ratings, we did not use the original 

data, but instead relied on extrapolated ratings for 

more than 70,000 words. The extrapolation was 

based on the Skip-gram, GloVe, and ConceptNet 

NumberBatch models, using linear regression over 

the concatenated vector dimensions. For the 

(already extrapolated) ratings from (Paetzold & 

Specia, 2016), as well as for the frequency, 

contextual diversity, and prevalence counts, we 

employed only the normed values, as they already 

have very good coverage. We also used only the 

original lexical decision data, given that response 

times and accuracies are difficult to extrapolate, 

and did not try to extend the CEFR word lists, due 

to methodological difficulties. For the single word 

datasets, we employed all the previously 

mentioned factors, whereas for the multi-word 

expression datasets, we only employed our own 

extrapolated factors. 

The second group was generated from Skip-

gram, GloVe, and ConceptNet NumberBatch 

embeddings. The vocabulary of the models was 

that described in the discussion above. 

For the first two sources of information, and for 

each selected variable V (e.g., semantic diversity), 

we generated either four predictors, in the case of 

the single word datasets, or nine predictors, in the 

case of the multi-word expression datasets. The 

single word predictors consisted of V(w), V(c), 

V(w) * V(c), and abs(V(w) - V(c)), while the multi-

word expression predictors consisted of V(w1), 

V(w2), V(c), abs(V(w1) - V(c)), abs(V(w2) - V(c)), 

abs(V(w1) - V(w2)),  V(w1) * V(c), V(w2) * V(c), 

V(w1) * V(w2), where: 
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• V(w) denotes the value of V corresponding 

to the single word w (e.g., w = “sons”). If 

w is not present in our norms/models, we 

set V(w) to the average value of V, 

computed over the entire vocabulary; 

• V(w1) and V(w2) denote the values of V 

corresponding to the words w1 and w2 

(e.g., w1 = “skillful”, w2 = “workman”), 

that make up the multi-word expression w1 

w2 (i.e., w1 w2 = “skillful workman”). As 

before, if w1 and/or w2 are not present in 

our norms/models, we set V(w1) and/or 

V(w2) to the average value of V, computed 

over the entire vocabulary; 

• V(c) denotes the value of V corresponding 

to the context c in which the single word 

w, or multi-word expression w1 w2, are 

encountered (e.g., w = “sons”, c = “The 

____ of Perez: Hezron, and Hamul.“; or w1 

w2 = “skillful workman”, c = “He made it 

the work of a ____.”). Computing this 

value involves calculating the average 

V(c) = 
∑ 𝑉(𝑐𝑖)
𝑁
𝑖=1

𝑁
, where V(ci) is the value of 

V corresponding to the i-th context word, 

calculated as described previously, and N 

is the number of context words.  

These predictors allowed us to include both the 

individual contributions of the single word w, or 

the multi-word expression w1 w2, and the context c, 

as well as certain interactions between the former 

and the latter. 

The third group was derived from the BERT, 

RoBERTa, ELECTRA, ALBERT, and DeBERTa 

models. We used the standard (base) versions of 

each model (i.e., without task-specific fine-tuning), 

as described in the original papers, with the 

exception of ELECTRA, where we employed the 

small, base, and large versions of the model. The 

implementations of the models were all obtained 

from the Hugging Face repository (Wolf et al., 

2020). The predictors consisted only of the 

activations for the single word w, or the multi-word 

expression w1 w2, averaged over the last four 

hidden layers.  

To predict ratings of complexity in context, we 

employed ridge regression (lambda = 3000), for 

the single word dataset, and a combination of ridge 

regression (lambda = 1250) and gradient-boosted 

decision trees, for the multi-word expression 

dataset, after zero centering all the aforementioned 

predictors. 

4 Results and Discussion 

The results for English are shown Figure 1, for 

various sets of predictors and regularization 

strengths. For reasons of space, we only present the 

results for ridge regression, but note that similar 

patterns of performance are obtained for gradient-

boosted decision trees and other types of models, 

such as shallow neural networks. Results are 

averaged over 10 rounds of 10-fold cross-

validation, using only the training dataset.  

The results indicate that context-independent 

models (Fig. 1b) outperform behavioural norms 

(Fig. 1a), and context-dependent models (Fig. 1c-

f). A likely reason for the superiority of context-

independent models over context-dependent 

models is the fact that the former were trained on 

huge corpora (i.e., 100-840 billion tokens), while 

the latter were trained on considerably smaller 

corpora (i.e., 3-33 billion tokens). However, in 

spite of this significant training disadvantage, 

context-dependent models produce competitive 

levels of performance, a finding which can likely 

be attributed to several factors, such as the highly 

non-linear integration of contextual information, 

the use of self-attention mechanisms, and that of 

more sophisticated learning objectives.  

Combining the three classes of predictors 

produces a relatively small improvement in 

predictive performance, as compared to relying on 

any single class. This reflects a very high degree of 

redundancy between the complexity-related 

information present in the three types of predictors.  

Interestingly, even for the largest set of 

predictors, consisting of 13,400 variables per 1,517 

data points, the degree of regularization does not 

appear to matter much, indicating little overfitting. 

Finally, there is a small, but systematic 

difference in performance between single words 

and multi-word expressions, in favour of the latter, 

even though the training set for single word stimuli 

is roughly five times larger than that for multi-word 

stimuli. A potential explanation for this finding 

might be that the individual variability in meaning 

for multi-word expressions is smaller than that for 

single words, given that expressions should be 

more informative than single words, in virtue of 

their length (i.e., two words vs one word). 

Within the competition, our models ranked 4th  

(r = .78, ρ = .73, MAE = .064), in the single word 

sub-task, and 6th (r = .85, ρ = .84, MAE = .067), in 

the multi-word expression sub-task.  
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Figure 1. Pearson correlations between predicted and actual complexity ratings, for various groups of predictors 

and regularization strengths (i.e., values of lambda). For single words, in subfigures (a)-(e), min(lambda) = 100, 

while in subfigure (f), min(lambda) = 400. For multi-word expressions, in subfigures (a)-(e), min(lambda) = 50, 

while in subfigure (f), min(lambda) = 200. 

 

 

 

 



659 
 
 

5 Conclusions 

Our results suggest that several approaches can be 

quite successfully employed in order to predict 

ratings of complexity in context, for both single 

words and multi-word expressions. In terms of 

performance, the best predictors are those derived 

from context-independent models (e.g., Skip-

gram), but relatively good results can be obtained 

also by using context-dependent models (e.g., 

BERT) and behavioural norms (e.g., subjective 

ratings of familiarity). Moreover, given that their 

vocabulary covers a remarkable number of words 

(i.e., more than 500 thousand, for each of the Skip-

gram, GloVe, and ConceptNet NumberBatch 

models), and that they are very easy to use off-the- 

shelf, context-independent models represent a 

particularly promising approach to predicting 

ratings of complexity in context. 
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