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Abstract

In this paper, we propose a method of fus-
ing sentence information and word frequency
information for the SemEval 2021 Task 1-
Lexical Complexity Prediction (LCP) shared
task. In our system, the sentence informa-
tion comes from the RoOBERTa model, and the
word frequency information comes from the
Tf-1df algorithm. Use Inception block as a
shared layer to learn sentence and word fre-
quency information. We described the imple-
mentation of our best system and discussed
our methods and experiments in the task. The
shared task is divided into two subtasks. The
goal of the two subtasks is to predict the com-
plexity of a predetermined word. The evalua-
tion index of the task is the Pearson correlation
coefficient. Our best performance system has
Pearson correlation coefficients of 0.7434 and
0.8000 in the single-token subtask test set and
the multi-token subtask test set, respectively.

1 Introduction and Background

Language and writing are the main ways we trans-
mit knowledge and information. An accurate and
efficient understanding of the meaning expressed in
the text is of great significance to our learning and
production. Vocabulary complexity and reading
comprehension are inextricably linked, and overly
complex terms may bring bad results (DuBay,
2004). The research of Leroy et al. showed that the
use of vocabulary simplification technology is one
of the ways to effectively improve readers’ reading
comprehension ability (Leroy et al., 2013). Accu-
rately predicting lexical complexity can make the
system better guide users to use appropriate text, or
customize text according to their needs. Especially
when some ordinary readers are reading technical
text content (Wei et al., 2009). Lexical complexity
detection and complex lexical simplification have
attracted the attention of the NLP community, and

systems have been developed to simplify the text of
second language learners (Shardlow, 2014), native
speakers with low literacy levels (Specia, 2010),
and people with dyslexia (Rello et al., 2013).

The topic of the shared task of SemEval 2021
Task 1 is “Lexical Complexity Prediction (LCP)”.
The task data set uses English text data in a sin-
gle language (Shardlow et al., 2020). There are
two subtasks in the task, which are the subtasks for
predicting the complexity of a single token and mul-
tiple tokens (Shardlow et al., 2021). In this article,
we give the method and task result of predicting
word complexity. Our system uses a method that
combines sentence, word frequency, and context
information. The acquisition of sentences and con-
text information uses the RoBERTa model (Liu
et al., 2019b). The word frequency information
comes from the Tf-Idf algorithm (Ramos et al.,
2003). The complexity is a continuous value, so
the whole task can be regarded as a regression task.
We provide the model code used in this task '.

2 Related Work

Previously held similar to this shared task are Se-
mEval 2016 task 11: Complex Word Identification
(CWI2016) (Paetzold and Specia, 2016a), Complex
Word Identification Shared Task 2018 (CWI12018)
(Yimam et al., 2018).

In CWI2016, the system voting method used
by Paetzold et al. has achieved excellent results
in sharing tasks (Paetzold and Specia, 2016b). In
CWI2018, Butnaru uses a kernel-based learning
method for complex word identification (Butnaru
and Ionescu, 2018). Sian and other methods using
integrated voting have also achieved good scores
(Gooding and Kochmar, 2018). In addition to the
above methods, some common methods are applied
to these tasks. For example, SVM, random forest,

"https://github.com/Hub-Lucas/task 1
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(a) The training set data of a single token
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(b) The training set data of two tokens

Figure 1: The word cloud diagrams of the text data of the training set of a single token and two tokens provided by
the task organizer team. The result shown in the figure is the data after removing the stop words.

artificial neural network system, naive Bayes, deci-
sion tree, etc. (Paetzold and Specia, 2016a; Yimam
et al., 2018).

3 Data and Methods

3.1 Data Description

We obtain data sets related to this task from the task
organizer team. The data set includes training data
set and test data set. We analyze the structure and
characteristics of the data set. The training data set
includes ID, Corpus, Sentence, Token, Complexity.
The texts in the data set come from different fields,
and Corpus represents which corpus the data set
belongs to. Token is the target word we need to
predict the complexity of the task. Complexity is
a continuous value between 0-1. It represents the
complexity score of the token in the sentence. Com-
pared with the training data set, the test set only
does not contain the aforementioned Complexity
part. We need to use our method to predict the
complexity of the Token specified in the test set in
Sentence. Table 1 shows the examples of the data
we used in the task.

In subtask 1, 7662 and 917 different sample data
constitute the training set and the validation set.
In subtask 2, 1517 and 184 different sample data
constitute the training set and the validation set. In
our system, we use Tf-Idf encoding information
as an externally introduced word embedding. We
use word cloud graphs to visualize the text data in
the two subtasks. The word cloud image clearly
shows us the characteristics of word frequency dis-
tribution in the text data set. We can easily see
those words that appear frequently. Figure 1 show
the word cloud diagrams of the text data of two
different subtasks.
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Figure 2: The model structure and data flow we used in
the task.

3.2 Methods

The best result score we submitted is based on the
system developed by RoBERTa, Tf-Idf, and Incep-
tion. Besides, we also use a BERT-based system to
compare the result scores of different systems on
the same verification set. Both BERT (Devlin et al.,
2018) and RoBERTa’s models (Liu et al., 2019b)
are based on improvements in transformer archi-
tecture (Vaswani et al., 2017). RoBERTa has made
some improvements to BERT and achieved bet-
ter results than BERT. RoBERTa removed the task
of predicting the next sentence in the pre-training
phase and also used a new dynamic Masking mech-
anism. At the same time, RoOBERTa has longer
training time, larger batches, and more training
data. Based on the working principle of LSTM
(Olah, 2015) and considering the issue of training
time, we chose Inception based on the CNN struc-
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ID corpus sentence token complexity
subtask1-01  bible He raises his hands against his friends. hands 0.0278
subtask1-02 europarl The first is Johann Wolfgang von Goethe. Goethe 0.5
subtask2-01 bible You shall tread on their high places.. high places 0.1625
subtask2-02 europarl The first is legislative efficacy. legislative efficacy 0.3833

Table 1: The training set sample data we use in the task. Subtask 1 has only one token, and subtask 2 has two

tokens.

ture. The structure of the Inception Block used in
our system is an improvement based on the solu-
tion implemented by Szegedy et al. (Szegedy et al.,
2015). In the Inception block, we use the Conv1d
convolution provided by Pytorch to adapt to our
needs in the task. Inception Block has convolution
kernels of different sizes, and can use windows of
different sizes to extract non-continuous semantic
features. At the same time, the parallel structure of
Inception Block can save training time. The struc-
ture of the transformer allows interaction between
the input sentence and the input token. We use
the output of ROBERTa and the output of Tf-Idf
weighted RoBERTa as different inputs of Inception
Block, so that Inception Block can capture differ-
ent information. Different classifiers are used to
process the output results from different inputs of
the Inception Block.

In step 1, we spliced the text data (Sentence) and
the target word (Token) in the data with (SEP).
Then the spliced result is used as the input of
RoBERTa and Tf-Idf. In step 2, we use the output
of Tf-Idf to weight the output of ROBERTa. In step
3, we use the weighted result of the previous step
and the output result of RoOBERTa as the input of
the Inception Block. Here, the Inception Block is
used as a shared layer to learn the output results
of RoBERTa and the output results of ROBERTa
weighted by Tf-Idf. In step 4, two linear classifiers
are used to process the output from the Inception
Block. In step 5, the output results of the two linear
classifiers are averaged. In step 6, the average value
is output as the final prediction result of the system.

4 Experiment and Results

In this section, we will introduce the data prepro-
cessing methods and experimental settings we used
in the task and the final results.

4.1 Data Preprocessing

In the part of data processing, we deleted the stop
words in the text data. For the stop word list, we

use the stop word package provided by NLTK. To
use the Tf-Idf algorithm to obtain a weighted out-
put, and to ensure that the shape of the text code
processed by the Tf-1df algorithm is consistent with
the shape of the RoBERTa output, we removed the
part of the text code that exceeded the maximum
sentence. For those text encodings that are less
than the maximum sentence length, we perform
zero padding. The encoding of Tf-Idf is obtained
using the toolkit provided by gsim (Rehaiek and
Sojka, 2010) 2. For the validation set, we randomly
select 20% from the pre-processed training set as
our validation set during the training process. The
remaining 80% of the training set is used as our
training set during the training process.

4.2 Experiment setting

During our training model, we designed 4 different
models and observed the result scores of differ-
ent models on the validation set. We adjust the
parameters as much as possible to obtain the best
results for each different model, so different sys-
tems may have different parameter combinations.
The overall design and data flow of the BERT+Tf-
Idf+Inception system is the same as the system we
introduced in Figure 2. The difference is that we
replace the RoBERTa model in Figure 2 with the
BERT model. In all experiments, we use Radam
(Liu et al., 2019a) as the optimizer and MSELoss
as the loss function.

¢ RoBERTa+Tf-Idf+CNN: The epoch, batch
size, maximum sequence length, and learn-
ing rate for the model are 4, 32, 60, and 4e-5,
respectively.

e BERT+T{-1df+CNN: The epoch, batch size,
maximum sequence length, and learning rate
for the model are 4, 32, 60, and 3e-5, respec-
tively.

* RoBERTa: The epoch, batch size, maximum

*https://github.com/RaRe-Technologies/gensim

600



Team subtask Pearson Spearman MAE MSE R2

Topl 1 0.7886  0.7369 0.0609 0.0062 0.6172
Top2 1 0.7882  0.7425 0.0610 0.0061 0.6210
Top3 1 0.7790  0.7355 0.0619 0.0064 0.6062
Our 1 0.7434  0.6995 0.0658 0.0073 0.5486
Topl 2 0.8612  0.8526 0.0616 0.0063 0.7389
Top2 2 0.8575 0.8529 0.0672 0.0072 0.7035
Top3 2 0.8571 0.8548 0.0675 0.0072 0.7012
Our 2 0.8000  0.7797 0.0754 0.0089 0.6323

Table 2: The scores of the top three teams and our team on the test set announced by the task organizer. Mean
absolute error (MAE), Mean squared error (MSE), R-squared (R2). 61 and 38 different teams submitted results for

subtask 1 and subtask 2, respectively.

sequence length, and learning rate for the
model are 4, 32, 60, and 3e-5, respectively.

* BERT: The epoch, batch size, maximum se-
quence length, and learning rate for the model
are 4, 32, 60, and 3e-5, respectively.

5 Results and Analysis

According to the Pearson correlation coefficient,
the results submitted by the teams participating
in the two subtasks are ranked. In the published
results, the task organizer team also announced
some other evaluation indicators. These evaluation
indicators are Spearman correlation (Rho), Mean
absolute error (MAE), Mean squared error (MSE),
R-squared (R2). We compare the scores of Pearson
correlation coefficient results obtained by several
different methods proposed in the experimental
part. The results of these different methods can be
found in Table 3.

Compare our result scores on the validation
set of the two subtasks. First of all, our system
can predict the word complexity required in the
task. Secondly, under the same data and parame-
ters, the score obtained by the RoBERTa model is
higher than the score obtained by the BERT model.
Then, the scores we get on the RoOBERTa+Tf-
ifd+Inception and BERT+Tf-ifd+Inception sys-
tems are higher than the single use of the RoOBERTa
model and the use of the BERT model. Finally, the
above performance proves the feasibility of the im-
proved method we used.

After comparing the result scores of differ-
ent systems on the verification set, we used the
RoBERTa+Tfifd+Inception system to predict the
results of the test set and successfully submitted it
to the task organizer team. Our test set prediction
result scores are 38th and 22nd respectively in the
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Method Pearson(1) Pearson(2)
RoBERTa+Tf- 0.7651 0.8072
ifd+Inception

BERT+Tt- 0.7426 0.7850
Ifd+Inception

RoBERTa 0.7327 0.7846
BERT 0.7255 0.7644

Table 3: The scores of the Pearson correlation coeffi-
cient results obtained by our different systems on the
validation set. The validation set comes from 20% of
the training set provided by the task organizer. Pear-
son(1) is the result score of the Pearson correlation co-
efficient of subtask 1. Pearson(2) is the result score of
the Pearson correlation coefficient of subtask 2.

ranking lists of the two subtasks. Table 2 shows the
test set result scores of the top three teams and our
team announced by the task organizer team.

6 Conclusion

In this article, we describe the system our team
has developed for shared tasks in SemEval 2021
taskl LCP. The system combines lexical, syntac-
tic, and contextual semantic features. We describe
and analyze the tasks, data, experiments, and re-
sults. We compared the results of the ROBERTa
model and the BERT model. In the final test set
prediction result score ranking, our results in the
competition ranked middle. In future work, we will
study how the complexity of the phrase is affected
by the context in the sentence. For our model and
method, we can also try to introduce other types
of word embedding, and use different models to
fuse the output of RoBERTa and the output of word
embedding.
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