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Abstract

This paper revisits feature engineering ap-
proaches for predicting the complexity level
of English words in a particular context using
regression techniques. Our best submission
to the Lexical Complexity Prediction (LCP)
shared task was ranked 3rd out of 48 systems
for sub-task 1 and achieved Pearson correlation
coefficients of 0.779 and 0.809 for single words
and multi-word expressions respectively. The
conclusion is that a combination of lexical, con-
textual and semantic features can still produce
strong baselines when compared against human
judgement.

1 Introduction

Lexical complexity is a factor usually linked to
poor reading comprehension (Dubay, 2004) and
the development of language barriers for target
reader groups such as second language learners
(Saquete et al., 2013) or native speakers with low
literacy levels, effectively making texts less acces-
sible (Rello et al., 2013). For this reason, complex
word identification (CWI) is often an important
sub-task in several human language technologies
such as text simplification (Siddharthan, 2004) or
readability assessment (Collins-Thompson, 2014).

The Lexical Complexity Prediction (LCP)
shared task of Semeval-2021 (Shardlow et al.,
2021) proposes the evaluation of CWI systems by
predicting the complexity value of English words
in context. LCP is divided into two sub-tasks: Sub-
task 1, predicting the complexity score for single
words; Sub-task 2: predicting the complexity score
for multi-word expressions. In our participation in
both sub-tasks, we treat the identification of com-
plex words as a regression problem, where each
word is given a score between 1 and 5, given the
sentence in which it occurs. In order to do this,
we have evaluated sub-sets of word and sentence
features against different machine learning models.

Our best submissions achieved Pearson correlation
coefficients of 0.779 and 0.809 for single words
and multi-word expressions respectively.

In Section 2 we review related work for this
task. Section 3 and 4 introduce the data and feature
engineering approaches respectively. In Section
5 the performance of different machine learning
models is analysed. In Section 6 we present the
obtained results. Finally, in Section 7 we draw our
conclusions and outline future work.

2 Related Work

Previous CWI studies applied to the English lan-
guage have relied mostly on word frequencies, psy-
cholinguistic information (Devlin and Tait, 1998),
lexicons and other word-based features such as
number of characters or syllable counts (Shardlow,
2013), which considered in most cases the target
word in isolation. In order to address the limita-
tions of word-level approaches more recent work
made use of contextual and sentence information
such as measuring the complexity of word n-grams
(Ligozat et al., 2012), applying language models
(Maddela and Xu, 2018) or treating the problem as
a sequence labelling task (Gooding and Kochmar,
2019).

In this paper, we not only evaluate many of the
traditional word-based features found in the lit-
erature but we also pay attention to the context
surrounding the target by generating additional bi-
gram and sentence features. In the end, we demon-
strate that a careful selection of simple features is
still competitive against more novel approaches for
this task.

3 Datasets

CompLex (Shardlow et al., 2020), which was the
official dataset provided by the organizers, contains
complexity annotations using a 5-point Likert scale

554

Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 554-559
Bangkok, Thailand (online), August 5-6, 2021. ©2021 Association for Computational Linguistics



for 7,662 words and 1,517 multi-word expressions
(MWE) from three domains: the Bible, Europarl,
and biomedical texts.

External datasets and models are historically al-
lowed and used in SemEval as a way of comple-
menting the original training set. Likewise, based
on previous experiences, external resources can
also correlate better with the evaluation labels than
the official task resources in certain scenarios (Mos-
quera, 2020). For this reason, related datasets from
previous CWI shared tasks such as CWI 2016 (Paet-
zold and Specia, 2016) and CWI 2018 (gtajner
et al., 2018) were considered and evaluated as both
extra training data and for deriving additional fea-
tures. However, the performance of our models
during the validation step not only didn’t improve
but worsened when attempting to use them.

4 Feature Engineering

The 51 features used in order to detect the complex-
ity of single words and each component of MWEs
are as follows:

Word length (word_len): The length in charac-
ters of the target word.

Syllable count (syl_count): Target word syllable
count.

Morpheme length (morpheme_len): Number of
morphemes for the target word.

Google frequency (google_freq): The frequency
of the target word based on a subset Google ngram
corpus .

Wikipedia word frequency (wiki_freql): The
frequency of the target word based on Wikipedia .

Wikipedia document frequency (wiki_freq2):
The number of documents in Wikpedia where the
target word appears.

Complexity score (comp_lex): Complexity
score for the target word from a complexity lex-
icon (Maddela and Xu, 2018).

Number of morphemes (morpheme_len): Num-
ber of morphemes in the target word.

Zipf frequency (zip_freq): The frequency of
the target word in Zipf-scale as provided by the
wordfreq (Speer et al., 2018) Python library.

Kucera-Francis word (kucera_francis): Kucera-
Francis (Kucera et al., 1967) frequency of the target
word.

"https://github.com/hackerb9/gwordlist
“https://github.com/alex-pro-dev/english-words-by-
frequency/blob/master/wikipedia_words.zip
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Kucera-Francis lemma (st_kucera_francis):
Kucera-Francis (Kucera et al., 1967) frequency of
the target word lemma.

Is stopword (stop): True if the target word is an
stopword.

Is acronym (acro): Heuristic that is set to True
if the target word is a potential acronym based on
simple casing rules.

Average age of acquisition (age): At what age
the target word is most likely to enter someone’s
vocabulary (Kuperman et al., 2012).

Average concreteness (concrete): Concreted-
ness rating for the target word (Brysbaert et al.,
2014).

Lemma length (lemma_len): Lemma length of
the target word.

Word frequency (COCA) (word_freq): Fre-
quency of the target word based on the COCA
corpus (Davies, 2008).

Lemma frequency (COCA) (lemma _freq): Fre-
quency of the lemmatized target word based on the
COCA corpus (Davies, 2008).

(consonant_freq): Frequency of consonants in
the target word.

Number word senses (wn_senses): Number of
senses of the target word extracted from WordNet
(Fellbaum, 2010).

Number of synonyms (synonyms): Number of
synonyms of the target word from WordNet.

Number of hypernyms (hypernyms): Number
of hypernyms of the target word from WordNet.

Number of hyponyms (hyponyms): Number of
hyponyms of the target word from WordNet.

WordNet min-depth (wn_mindepth): Minimum
distance to the root hypernym in WordNet for the
target word.

WordNet max-depth (wn_maxdepth): Maxi-
mum distance to the root hypernym in WordNet for
the target word.

Number of Greek or Latin affixes
(greek_or_latin_affix): True if the target word
contains Greek or Latin affixes 3.

Bing frequency (bing_counts): The frequency
of the target word based on the Bing n-gram corpus
(Wang et al., 2010).

Bi-gram frequency (ph_mc2): Bi-gram fre-
quency for the target and its preceding word in
Google Books Ngram Dataset obtained via the
phrasefinder API 4.

*https://github.com/sheffieldnlp/cwi
*https://phrasefinder.io/api



Volume count (ph_vc2): The number of books
where the target and its preceding word appeared
in the Google Books Ngram Dataset obtained via
the phrasefinder APIL.

Year of appearance (ph_fy2): The first year
where the target and its preceding word appeared
in the Google Books Ngram Dataset obtained via
the phrasefinder APL.

SUBTLEX-US frequency (FREQcount): Tar-
get word frequency based on SUBTLEX-US cor-
pus (Brysbaert et al., 2012).

SUBTLEX-US number of films (CDcount):
Number of films in which the target word appears
in the SUBTLEX-US corpus.

SUBTLEX-US frequency lowercase (FRE-
Qlow): Number of times the target word appears
in the SUBTLEX-US corpus starting with a lower-
case letter

SUBTLEX-US number of films lowercase (Cd-
low): Number of films in which the target word
appears starting with a lower-case letter in the
SUBTLEX-US corpus.

SUBTLEX-US frequency per million (SUB-
TLWF): Target word frequency per million words
in the SUBTLEX-US corpus.

SUBTLEX-US log frequency (LglOWF): The
base-10 logarithm of the absolute frequency of the
target word plus one in the SUBTLEX-US corpus.

SUBTLEX-US percentage of films (SUB-
TLCD): The percentage of the films where the
target word appears in the SUBTLEX-US corpus.

SUBTLEX-US log number of films (Lg10CD):
The base-10 logarithm of the number of films in
which the target word appears in the SUBTLEX-
US corpus.

SUBTLEX-UK frequency (LogFreqZipf): The
base-10 logarithm of the target word frequency
in Zipf-scale for the SUBTLEX-UK corpus
(Van Heuven et al., 2014).

SUBTLEX-UK Cbeebies frequency (LogFre-
gCbeebiesZipf): The base-10 logarithm of the tar-
get word frequency in Zipf-scale for the Cbeebies
subset of SUBTLEX-UK corpus

SUBTLEX-UK CBBC frequency (LogFreqCB-
BCZipf): The base-10 logarithm of the target word
frequency in Zipf-scale for the CBBC subset of
SUBTLEX-UK corpus

SUBTLEX-UK BNC frequency (LogFreqB-
NCZipf): The base-10 logarithm of the target word
frequency in Zipf-scale for the BNC subset of
SUBTLEX-UK corpus

ANC word frequency (anc): Frequency of the
target word based on the American National Cor-
pus (ANC) (Ide and Macleod, 2001).

Kincaid grade level (sentence_Kincaid): Kin-
caid grade level of the whole sentence.

ARI score (sentence_ARI): Automated readabil-
ity index (Senter and Smith, 1967) of the whole
sentence.

Coleman-Liau score (sentence_Coleman-Liau):
Coleman-Liau readability score (Coleman and
Liau, 1975) of the whole sentence.

Flesch score (sentence FleschReadingEase):
Flesh reading ease score (Flesch, 1948) of the
whole sentence.

Gunning-Fog (sentence_GunningFogIndex):
Gunning-Fog readability index (Gunning et al.,
1952) of the whole sentence.

LIX score (sentence LIX): LIX readability
score (Anderson, 1983) of the whole sentence.

SMOG index (sentence_SMOGIndex): SMOG
readability index (Mc Laughlin, 1969) of the whole
sentence.

RIX score (sentence RIX): RIX readability
score (Anderson, 1983) of the whole sentence.

Dale-Chall index (sentence_DaleChalllndex):
Dale-Chall readability index (Chall and Dale, 1995)
of the whole sentence.

All the readability features were calculated using
the readability Python library .

5 Machine Learning Approach

Since the labels in the training dataset were continu-
ous we have modelled both sub-tasks as regression
problems. For sub-task 1, we made use of Light-
GBM (LGB) (Ke et al., 2017) implementation of
gradient tree boosting. Minimal hyper-parameter
optimization was performed against our develop-
ment set, using a 0.01 learning rate and limiting
the number of leaves of each tree to 30 over 500
boosting iterations.

For sub-task 2, the complexity score of each
MWE component was obtained by using a linear
regression (LR) model and averaged with equal
weights.

By examining the feature importance for both the
LGB model in Figure 2 and the LR model in Fig-
ure 3 we can observe several sentence readability
features being identified as top contributors. While
some degree of correlation between the complex-
ity of the sentence and the target word was expect

Shttps://github.com/andreasvc/readability
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a priori, a machine learning model can also use
sentence-level complexity as a predictor of formal-
ity and genre (Mosquera and Moreda, 2011), thus
being able to differentiate between the different
sub-corpora present in the training data as seen in
Figure 1 .

025 europarl
biomed

0 5 10 15 20 5
sentence_DaleChallindex

Figure 1: Example of differences in readability across
the CompLex sub-corpora as measured by the Dale-
Chall index.

Feature importance

00 a0

Figure 2: LGB feature importance as the number of
times the feature is used in the model.

LR FEATURE IMPORTANCE

FEATURE NAMES

03 04 05 06

Figure 3: Linear regression weights.
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Model Dev Trial Test

Sub-task 1 LR 0.789 0.798 0.760
Sub-task 1 RF 0.792 0.824 0.766
Sub-task 1 LGB 0.801 0.841 0.779
Sub-task 2 LR 0.771 0.780 0.809
Sub-task 1 winner 0.788
Sub-task 2 winner 0.861

Table 1: Performance comparison of different models
for each sub-task and evaluation set using Pearson’s .

6 Results

For sub-task 1, we have evaluated the performance
of both linear and tree ensembles using the pro-
vided trial set and a randomly selected holdout
with 30% of the training data as development set.
The best performing model was gradient boosting.
See Table 1.

7 Conclusion and Future Work

In this paper, we present the system developed for
the Lexical Complexity Prediction task of SemEval
2021. Even though most of the features we made
use of are relatively common in previous works, we
demonstrate that a careful selection of lexical, con-
textual and semantic features at both target word
and sentence level can still produce competitive
results for this task. In a future work we would
like to explore different neural network architec-
tures and automated machine learning (AutoML)
approaches.
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