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Abstract

Extracting semantic information on measure-
ments and counts is an important topic in
terms of analyzing scientific discourses. The
8th task of SemEval-2021: Counts and Mea-
surements (MeasEval) aimed to boost research
in this direction by providing a new dataset
on which participants train their models to
extract meaningful information on measure-
ments from scientific texts. The competition
is composed of five subtasks that build on
top of each other: (1) quantity span identifi-
cation, (2) unit extraction from the identified
quantities and their value modifier classifica-
tion, (3) span identification for measured enti-
ties and measured properties, (4) qualifier span
identification, and (5) relation extraction be-
tween the identified quantities, measured en-
tities, measured properties, and qualifiers. We
approached these challenges by first identify-
ing the quantities, extracting their units of mea-
surement, classifying them with correspond-
ing modifiers, and afterwards using them to
jointly solve the last three subtasks in a multi-
turn question answering manner. Our best per-
forming model obtained an overlapping F1-
score of 36.91% on the test set.

1 Introduction

Our world revolves around quantities and units of
measurement present in all texts, ranging from sci-
entific texts to recipes. Nevertheless, the process of
automatically extracting measurements is not triv-
ial, considering that, in most situations, the quanti-
tative structures are ambiguous and are not present
in the same area within the text. Therefore, pars-
ing the semantic relations becomes a ubiquitous
task, since proper quantity identification leads to
transformations towards an easy to follow quan-
titative summary. Advantages of the previously
mentioned process can be found in medical pre-
scriptions (Adamo et al., 2015). As such, a system

that can robustly and confidently identify medi-
cation quantities, measurement units, as well as
the medication itself has the potential to become
a breakthrough for computer-based medicine and
consultations. Another use case resides in ERP sys-
tems where proper parsing of resource descriptions
facilitates the identification of similar or duplicate
items.

The MeasEval - Counts and Measurements com-
petition (Harper et al., 2021) organized by the 15th
International Workshop on Semantic Evaluation
(SemEval-2021) creates a new challenge in the
area of Natural Language Processing, proposing
five subtasks related to span identification, classi-
fication, as well as relation extraction, that aim to
improve the state of the art for the current field of
measurement information extraction. We created a
cascaded system to solve the stated problem that is
composed of: (1) a subsystem that identifies quan-
tities in the input text; (2) a subsystem that classi-
fies their value modifiers; (3) a subsystem that ex-
tracts their measurement unit; and (4) a subsystem
that then finds the appropriate measured entities,
measured properties, and qualifiers by asking ques-
tions related to entity-relations. Three pretrained
Transformer-based (Vaswani et al., 2017) language
models are experimented for subsystems (1) and
(4) of the cascaded system by fine-tuning them
on the specific task: Bidirectional Encoder Rep-
resentations from Transformers (BERT) (Devlin
et al., 2019), Robustly Optimized BERT Pretrain-
ing Approach (RoBERTa) (Liu et al., 2019), and
Science BERT (SciBERT) (Beltagy et al., 2019).
A character-level bidirectional Long Short-Term
Memory (BiLSTM) (Hochreiter and Schmidhuber,
1997) architecture was considered for subsystems
(2) and (3).

The rest of the paper is structured as follows.
The next section presents a series of solutions asso-
ciated with relation extraction, span identification,
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and measurement unit identification. The third sec-
tion outlines our approaches related to the subtasks
proposed by the competition. The fourth section
presents a performance evaluation of our systems
together with an error analysis, while the final sec-
tion concludes our work and outlines potential fu-
ture improvements.

2 Related Work

Span Identification. Papay et al. (2020) studied
the performance of various models designated for
different span identification tasks. Out of them,
we mention Conditional Random Fields (CRFs)
(Lafferty et al., 2001), LSTM cells with CRF,
BERT+CRF, LSTM+BERT+CREF, or handcrafted
features, usable with any of the previously men-
tioned models. At the same time, a language model
was specifically developed for the span identifica-
tion tasks, entitled SpanBERT (Joshi et al., 2020),
by masking an entire sequence instead of masking a
single word in its pretraining process. The authors
argued that SpanBERT obtained substantial gains
on span selection tasks, such as question answering
and coreference resolution.

Measurement Unit Identification. Berrahou
et al. (2013) proposed a two-step system for search
space size reduction, followed by unit extraction
from the previously obtained textual fragments.
Also, Hundman and Mattmann (2017) presented
a hybrid system composed of a CRF that identi-
fies quantities values and their units, followed by
a rule-based model to detect their corresponding
entities.

Relation Extraction. Zhang and Wang (2015)
adopted a model based on Recurrent Neural Net-
works (RNN) (Cho et al., 2014) composed of three
main elements: an embedding layer, a bidirectional
recurrent layer, followed by a max pooling layer
that produces the feature vector used for relation
classification. RNN-based models were also ap-
plied by Zhang et al. (2015) who adopted BiL-
STMs, or by Xiao and Liu (2016) who proposed
an architecture based on hierarchical RNNs along-
side an attention mechanism. Furthermore, several
convolutional neural network-based models with
various approaches were proposed, for example:
multi-level attention (Wang et al., 2016), attention-
based context vectors (Shen and Huang, 2016), or
multi-level features (word, lexical, sentence) (Zeng
etal., 2014). BILSTMs are also present in the work
of Lee et al. (2019) who implemented a mechanism

based on entity-aware attention using latent entity
typing. Jin et al. (2020) approached the relation
extraction task by employing a Graph Neural Net-
work system that modeled each relation as a node
and learned the dependencies between the nodes.

3 Method

Our approach on MeasEval consisted of a cascade
system composed of individual subsystems for each
of the problems in the first two subtasks, and then
jointly solving the last three subtasks with a single
subsystem.

3.1 Quantity Identification

The subtask of identifying quantities in text was
formalized as a sequence labeling problem with In-
side—Outside-Beginning (IOB) tags (Ramshaw and
Marcus, 1999) that were predicted by a pretrained
language model with a CRF on top of predicted
logits, as proposed by Avram et al. (2020). The
architecture is depicted in Figure 1.
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Figure 1: Quantity identification subsystem architec-
ture.

More formally, we project each output em-
bedding e; produced by the pretrained language
model into probability logits /; by using a feed-
forward network with a ReLLU activation as [; =
ReLU(W[e; + b;), where W is the correspond-
ing weight matrix and b; is the corresponding bias.
Then, we model the output conditional probabil-
ities for each tag y; by using the CRF learning
algorithm, as depicted in Eq. 1:

1 n
p(y‘l) = Eexp {nggl,yili + byi—hyi} (D

i=1

where Wy, , 4, and b, , ., are the weight matrix
and the bias of the CRF, and Z is a normalization
constant such that the probabilities sum up to one.
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Figure 2: Architectures used in unit extraction (left) and value modifiers classification (right) subsystems.

The entire subsystem is trained to maximizing
the log-likelihood of the data, while the Viterbi
algorithm (Forney, 1973) is used during inference
to find the most likely sequence of tags.

3.2 Unit Extraction and Value Modifier
Classification

For the second subtask, a character-level BILSTM
extracts the units from quantities and classifies their
corresponding value modifiers. We approached the
unit extraction in a similar way as the quantity iden-
tification, by treating the problem as a sequence tag-
ging; however, the pretrained language model was
replaced with BiLSTM cells. Moreover, instead of
predicting a label for each character (token), we
instead averaged the BiLSTM hidden states and
projected their average in an eleven-dimensional
vector (i.e., number of possible value modifiers)
for the classification. Then, a sigmoid activation
function was applied to obtain a vector that con-
tains the probability of the quantity to belong to
a class at each index. The architectures used for
unit extraction and value modifiers classification
are depicted in Figure 2.

3.3 Joint Entity Identification and Relations
Extraction

Subtask Grouping. The last three subtasks were
grouped into a single subtask where a pretrained
language model was fine-tuned to jointly identify
three elements: the span of the measured entities,
the measured properties, and their corresponding
qualifiers. The model extracts the relations between
the three elements and the previously extracted
quantities using a multi-turn question answering
(QA) architecture, as proposed by Li et al. (2019).
The pretrained language models used for this task
were identical to the ones from the quantity identi-
fication subtask.

Question Templates. The input to the subsys-
tem is created by appending a question before the

text that denotes a possible relation between a given
and a target entity. There are a total of six question
templates that can be filled with the corresponding
entities that cover all the possible relations, as de-
picted in Table 1. Then, the questions are asked in a
specific order to correctly identify the relations and
the span of the entities. First, starting with a given
quantity, the model is asked to identify its mea-
sured properties. If a measured property is found,
the model marks its span and links it to the quan-
tity with the HasQuant ity relation (question 1).
Second, the model is asked to identify the measured
entity with that corresponding measured property,
linking the two with the HasProperty relation
(question 2). Third, if no measured property is
found for a given quantity, the model is asked to di-
rectly identify the measured entity, marking the re-
lation between the measured entity and the quantity
directly with HasQuant ity (question 3). Finally,
once all quantities, measured entities, and proper-
ties are identified, the model is asked to identify
corresponding qualifiers and marks the relations
accordingly (questions 4-6 in table).

Model Output. The architecture proposed in
(Devlin et al., 2019) for SQuAD 2.0 (Rajpurkar
et al., 2018) is employed to create the output of
the subtasks; as such, two vectors are used for fine-
tuning: a starting vector .S and an ending vector
E. The probability of token ¢ to be the start of
a span is computed as a dot-product between the
embedding 7; and the start vector .S, followed by
a softmax applied over all the tokens of the input:
P = softmaz(T; - S). An analogous formula
computes the end probabilities of a span. Then, we
take the indices ¢ and j are taken to compute the
most probable span for an entity, where 7 < j max-
imizes the sum of log-likelihoods T} - S + T - E.
We compare for each query the previously defined
maximum sum with the sum of the start and end
log-likelihoods of the [CLS] token s, because
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# Relation Type Question

1 HasQuantity What is the measured property of the quantity _ ?

2 HasProperty What is the measured entity that has the measured property _____ of the quantity __ ?
3 HasQuantity What is the measured entity that has the quantity _ ?

4 Qualifies What is the qualifier corresponding to the quantity _ ?

5 Qualifies What is the qualifier corresponding to the measured entity ____?

6 Qualifies What is the qualifier corresponding to the measured property 7

Table 1: Question templates for each relation type.

there can be questions without an answer!. If this
sum is higher, then there is no such type of relation-
ship for that entity. A threshold added to the s,
is considered in order to provide a higher granu-
larity between questions with or without answers,
which was tuned on the development set to maxi-
mize F1-score.

Figure 3 introduces our architecture for entity
recognition and relation extraction. The question
tokens marked with Qst and the paragraph tokens
marked with Tok are fed as input, while the start
S and the end E logits are present at output.
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Figure 3: Joint entity recognition and relation extrac-
tion architecture as multi-turn question answering.

4 Performance Evaluation

4.1 Experimental Setup

Dataset Analysis and Processing. The provided
corpus for the competition was quite scarce, count-
ing 298 samples in both train and trial datasets.
The corpus contained texts from the scientific do-
main, counting a total of 7,979 unique words with
an average sentence length of approximately 160
words. For training our models, we merged the
train and trial subsets and randomly split them into
90% training and 10% development.

Pretrained Language Models. An Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate

'Only measured properties and qualifiers related questions

are allowed to not have an answer. Measured entity—related
questions must always have an answer.
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of 2e-5 was used for training the subsystem of the
first and last three subtasks. We experimented with
the large versions of BERT and RoBERTa, and with
the base version of SciBERT because there are cur-
rently no implementations available online of its
large variant. Each subsystem was fine-tuned for
10 epochs; the subsystems that employed large lan-
guage model variants were trained with a batch size
of 2 due to the computational constraints, whereas
the subsystems that employed base language model
variants used a batch size of 8.

BiLLSTM Networks. An Adam optimizer was
also employed for training the BILSTM networks
of the second subtask, but with a learning rate of
le-4. The models were trained for 25 epochs using
a batch size of 16. We stacked the LSTM cells
two times and used a hidden size of 64, with an
embedding of 32 dimensions for the characters.

4.2 Results

The results of each subsystem on the development
set are introduced in Table 3. SciBERT obtained
the highest F1-score on both quantity identification
and joint entity and relation extraction, although it
is smaller when compared with the other two mod-
els. On the second subtasks, the model achieved a
reasonable performance, 95.75% F1-score on unit
extraction and 88.94% F1-score on value modifier
classification.

The results of the cascaded system are presented
in Table 2 that introduces the global precision, re-
call, and F1-scores averaged across all subtasks,
as well as the exact match (EM) and overlap F1
scores” between the gold annotations and our pre-
dictions. As opposed to the performance of each
subsystem on the development set where SCciBERT
was the best performing model, ROBERTa obtained
the highest scores as a whole system, with an over-
lap F1-score of 39.05% on the development set and
36.91% on the test set, outperforming SciBERT

The overlap Fl-score was the metric by which the com-
petition systems were ranked.



Avg. Precision  Avg. Recall Avg. F1 EM Overlap F1

System Dev Test Dev Test Dev Test Dev Test Dev  Test
BERT-related 61.10 58.69 5228 48.05 56.63 52.84 31.61 2558 36.72 32.69
RoBERTa-related 60.04 61.01 56.05 52.66 58.14 56.53 3498 30.89 39.05 36.91
SciBERT-related 56.73 54.35 54.61 46.12 55.65 4990 30.82 23.71 35.89 30.30

Table 2: Results averaged across all five subtasks on the development and test sets.
Subsystem Precision Recall  F1 the correct unit would be ”m?” when encountering

Quantity identification a 7300 m x 400 m” quantity; however, our model
RoBERTa-CRF 90.77 92.85 91.26 found only "m” as unit.
BERT-CRF 9177 9372 92.38 Long Documents. Finally, several documents
SciBERT-CRF 91.60 95.02  93.00 ’ 3
Unit extraction and value modifier classification had a longe'r sequen‘ce length than 512 to'k ens
Unit Extraction 96.44 9527 9575 whep tokenized, which surpasses the maximum
Value Modifiers 91.82 86.65  88.94 admitted length by the pretrained language models;

Joint relation extraction and entity identification

RoBERTa-QA 71.04 7126  71.14
BERT-QA 72.18 71.09  71.63
SciBERT-QA 73.81 70.71 72.22

Table 3: Performance analysis on the development set.

with over 6% and over 3%, respectively. More
surprisingly, SciBERT also obtained a lower score
than BERT on both sets, having an overlap F1-
score lowered by 2% and 1%. We believe that
these differences between the scores of ROBERTa
and SciBERT were caused by the way the two mod-
els were evaluated as stand-alone subsystems or as
a whole system.

4.3 Error Analysis

Quantity Sensitivity. The main drawback in our
approach was that all other subtasks were highly
dependent on the quality of the extracted quantities
for the first subtask. To exemplify this, let us con-
sider the case where a modifier like "approximate”
is missed before a quantity; afterwards, it would be
impossible to correctly classify its modifiers. An-
other use case is when the subsystem misses the
measuring unit, with the same effect on the unit
extractor. Moreover, we noticed that the joint en-
tity and relation extraction was especially sensible
to partially identified quantities, producing mostly
bad outputs in these cases.

Measured Unit Inference. Another limitation
of our approach emerges when the unit extractor
does not identify all units in a sequence tagging
style. This happened in cases when the unit was
split across several places in the quantity, or when it
had to be predicted from the context. For instance,
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the workaround was to simply remove the tokens
after position 512. However, this solution has the
obvious effect of missing identifiable entities that
appear after this position.

5 Conclusions and Future Work

This paper introduces our approach that solves all
the five subtasks of the 8th task of SemEval-2021
competition in a cascaded manner. First, quantities
are identified as a sequence tagging task by using a
pretrained language model with a CRF layer. Then,
the measurement units are extracted and the mod-
ifiers are classified using BiLSTMs at character
level on the identified quantities. Finally, the mea-
sured entities, measured properties, and qualifiers
are jointly identified, together with their relations,
by using a multi-turn question answering approach
with hand-crafted questions specific to each rela-
tion type. Our best model obtained an F1-score
of 36.91% on the test set. We further emphasized
several limitations of our approach and showed that
the overall performance was highly sensitive to the
quality of the identified quantities.

A possible direction for future work is to test
the system using language models that can process
longer sequences, such as Longformer (Beltagy
et al., 2020) or BigBird (Zaheer et al., 2020), in
order to reduce the effect of missing entities simply
due to the sequence length. We also consider cre-
ating an ensemble model using several pretrained
language models to boost the overall performance,
as reported by Ionescu et al. (2020).

3 Approximately 4% of the documents had more than 512
tokens for each pretrained language model.
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