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Abstract

Source-free domain adaptation is an emerging
line of work in deep learning research since
it is closely related to the real-world environ-
ment. We study the domain adaption in the
sequence labeling problem where the model
trained on the source domain data is given. We
propose two methods: Self-Adapter and Selec-
tive Classifier Training. Self-Adapter is a train-
ing method that uses sentence-level pseudo-
labels filtered by the self-entropy threshold
to provide supervision to the whole model.
Selective Classifier Training uses token-level
pseudo-labels and supervises only the clas-
sification layer of the model. The pro-
posed methods are evaluated on data provided
by SemEval-2021 task 10 and Self-Adapter
achieves 2nd rank performance.

1 Introduction

Domain adaptation (DA) is the task of applying
an algorithm trained on a source domain data to a
different target domain data with limited/undefined
labels. DA has gotten significant attention as an al-
ternative of fine-tuning approach (Ganin and Lem-
pitsky, 2015; Saito et al., 2018; Tzeng et al., 2017),
especially in situations rich supervision is not possi-
ble (Morerio et al., 2018). DA is an important way
of overcoming the data shortage of deep learning
since it enables the utilization of knowledge from
other labeled data.

Source-free DA is then proposed to cope with
such data sharing in the general setting of DA, the
data distribution in the source domain and the tar-
get domain are related but different (Storkey and
Sugiyama, 2007), and annotated samples from the
source domain are available during the training pro-
cess. However, many of the data resources are not
allowed to be shared in real-life environments as
there are increasing concerns for privacy issues.
For example, Twitter has a regulation that prevents

sharing tweet text. The policy is even more rig-
orous in the financial/clinical domain under the
privacy protection issue.

Unlike conventional DA, one can not get ac-
cess to the source domain data in source-free DA
but is provided a model trained on the source do-
main data. About source-free DA in computer vi-
sion, several approaches have been proposed; (Sa-
hoo et al., 2020) assumes the target domain data
is a transformation from the source domain data
along natural axes such as brightness and contrast;
(Kundu et al., 2020) proposes universal DA that
is trained via two-stage learning of procurement
and deployment; (Kim et al., 2020) progressively
updates the target model with pseudo-labels which
are selected under self-entropy criterion.

As for natural language processing (NLP), the
application of source-free DA is slightly more com-
plicated since sentences are usually considered as
having discrete representations. In this context,
SemEval-2021 task 10 has proposed a challenge
that is related to source-free domain adaptation for
semantic processing.

In this paper, we propose Self-Adapter for the
time expression recognition sub-task in SemEval-
2021 task 10. Following (Kim et al., 2020), we
employ pseudo-labels from the target domain to
further supervise the model trained on the source
domain data, while the entropy-based evaluation of
reliable pseudo-labels is adopted in consideration
of the discrete text data. In addition, we adopt
Sloughing trick to prevent over-fitting.

To demonstrate the efficacy of the Self-Adapter,
we evaluate the proposed method on the dataset by
(Laparra et al., 2018). We also compare the pro-
posed method with several variations and another
method we come up with, named Selective Classi-
fier Training (SCT). In the end, the Self-Adapter
has achieved 2nd rank in the official evaluation
period getting 0.811 F1 which is 1.7 percentage
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points higher than the RoBERTa-based sequence
tagging model pre-trained only on source data.
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Figure 1: Training pipeline of Self-Adapter. At the be-
ginning of every stage of training, RSM is initialized
with ‘reliable’ samples generated by both fixed and
trainable models. A trainable model is supervised us-
ing samples - source-oriented pseudo-labels and target-
oriented pseudo-labels - stored in RSM.

2 Systems Description

Our proposed methods have three operations in
common: (1) generating pseudo-labels, (2) filter-
ing out pairs of reliable samples and pseudo-labels
based on models’ self-confidence, and (3) doing
supervised learning using the pseudo-labels. We
concentrate on sorting out ‘reliable’ pseudo-labels
since training with incorrect labels harms the per-
formance of the model.

Self-entropy is usually treated as an indicator
of self-confidence (Zou et al., 2018; Saporta et al.,
2020). We adopt normalized self-entropy as the
evaluation metric for pseudo-labels:

H(xt) = −
1

logNc

∑
l(xt)log(l(xt)) (1)

where xt denotes each token that makes up a sen-
tence X ∈ X. l(xt) denotes the predicted proba-
bility of the predicted label by the classifier, and
Nc refers to the total number of labels.

Specifically, we propose two adaptation meth-
ods to efficiently fit the model trained on a source
domain to a target domain: Self-Adapter and SCT.

2.1 Method 1: Self-Adapter
We propose Self-Adapter which is a self-learning
method under the supervision of reliable sample

memory (RSM). RSM is a set of data with pseudo-
labels that consists of two parts, source-oriented
pseudo-labels and target-oriented pseudo-labels,
and each of them represents the knowledge learned
from the source domain and new features to learn
from the target domain. We further apply a trick
called ‘Sloughing’ which helps prevent over-fitting.
The overall workflow of Self-Adapter is shown in
Figure 1.

2.1.1 Reliable Sample Memory
RSM is the pairs of input sentences and the corre-
sponding pseudo-labels obtained from a Siamese-
like network structure. Two RoBERTa-based (Liu
et al., 2019) classifiers are initialized with a
RoBERTa-based sequence tagging model fine-
tuned only on source train data, which is given
as a baseline model in the task. One of the branch
maintains fixed weight parameters while another is
fine-tuned during training.

Both branches of the network take a target do-
main sentence X as an input and output a set of
probabilities for labels each token should be as-
signed to. We utilize the self-entropy as the evalu-
ation metric for the self-confidence of each token.
If the self-confidence of each token is smaller than
the predefined threshold, the pair of input sentences
with the pseudo-labels generated by the model is
kept as a part of RSM.

The fixed part of the network consistently out-
puts the same pairs (X̂s, Ŷs) which are called
source-oriented pseudo-labels. The trainable part
of the network outputs different pairs (X̂t, Ŷt)
called target-oriented pseudo-labels after each up-
date and both are stored in the RSM. All sentence-
label pairs in RSM, both source-oriented pseudo-
labels and target-oriented pseudo-labels, are used
to train the trainable part of the network in a super-
vised manner. We call the cycle in which RSM are
updated as a stage and each stage is composed of
several epochs.

2.1.2 Sloughing trick
After sufficient update of RSM, we generate
pseudo-labels with RSM and do another self-
entropy filtering to gain new reliable samples. Sub-
sequently, we re-initialize the trainable part of the
network with the parameter of the baseline and
train it under the supervision of the new reliable
samples. We call this procedure Sloughing. Since
many of the reliable samples in each RSM update
overlaps, over-fitting tends to happen over time.
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The Sloughing then efficiently prevents over-fitting
by newly initializing a model which is not fitted to
test data yet.
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Figure 2: Training pipeline of Selective Classifier
Training. RTM is updated at the start of each step of
training. In multi-branch network whose two branches
Cs2t and Ct share a fixed RoBERTa-based feature ex-
tractor, loss of Cs2t branch is calculated by supervision
with source-oriented token-wise pseudo-labels and loss
of Ct branch is calculated by supervision with target-
oriented token-wise pseudo-labels.

2.2 Method 2: Selective Classifier Training

Selective Classifier Training is a training method
that consists of a RoBERTa-based feature extractor
and multi-branch classifiers. The feature extractor
and classifiers are initialized with the RoBERTa-
based sequence tagging model fine-tuned only on
source train data, given as baseline model in the
development phase. In SCT, only the classifiers are
updated under the supervision of Reliable Token
Memory (RTM).

2.2.1 Reliable Token Memory
RTM is the pairs of tokens and their pseudo-
labels obtained from a network with two separate
branches. Both the branches share the fixed feature
extractor which is the same with the feature extrac-
tor of the SCT training pipeline. Two classifiers,
a trainable classifier Ct and a fixed classifier Cs,
make predictions on contextual embedding passed
from the feature extractor.

To update RTM, we first get contextual embed-
dings for all tokens in target domain sentences
by putting in all sentences as input of shared fea-
ture extractor and we get prediction on each to-
ken embeddings. Token embeddings f̂i whose
normalized self-entropy predicted by Ct are lower

than the threshold θ are called reliable token-wise
samples. The pseudo-labels of reliable token-
wise samples predicted by Cs are called source-
oriented token-wise pseudo-labels. The pseudo-
labels of reliable token-wise samples predicted by
Ct are called target-oriented token-wise pseudo-
labels. The pairs of reliable token-wise samples
and their source-oriented token-wise pseudo-labels,
and the pairs of reliable token-wise samples and
their target-oriented token-wise pseudo-labels con-
sists RTM.

2.2.2 Multi-branch network

With RTM, we train a multi-branch network in
which each branch shares a fixed feature extrac-
tor. They divide into two classifiers Cs2t and Ct.
Loss of Cs2t branch is calculated by supervision
with source-oriented token-wise pseudo-labels and
loss of Ct branch is calculated by supervision with
target-oriented token-wise pseudo-labels. RTM
updates at the start of each step of training.

The loss function is formulated as

Ltotal = (1− α)Ls2t + αLt (2)

where Ls2t and Lt indicates loss function of Cs2t

branch and Ct respectively. α is a weight between
two branches. We gradually increase α from 0 to 1
to deal with high instability in the early stages of
learning, in the same way as (Kim et al., 2020). In
the test phase, we use the classification probability
of the Ct branch.

3 Experiments

We evaluate our two models: Self-Adapter, SCT
and their variations. The baseline on the devel-
opment data is a RoBERTa-based sequence tag-
ging model pre-trained on only the source data:
de-identified clinical notes from the Mayo Clinic,
called Source-Trained. Also, there is another base-
line Dev-Tuned on the test data which is the source
pre-trained model (i.e., Source-Trained) fine-tuned
on the labeled development data. The development
data is the annotated news portion of the SemEval-
2018 Task 6 data. Test data is a set of annotated
documents extracted from food security warning
systems. development data consists of 1580 sen-
tences and test data consists of 3911 sentences. The
total number of labels is 65, where label 0 indicates
non-time entity, and label 1-64 indicates different
types of time entities.
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Method F1 Precision Recall

SCT 0.784 0.814 0.756
SA 0.808 0.819 0.797

SA+Sloughing* 0.812 0.822 0.801
SA-filtering 0.771 0.774 0.768

Source-Trained 0.771 0.768 0.775

Table 1: F1, Precision, Recall on development data.
The model submitted to the competition is marked with
*. SA indicates Self-Adapter and SA+Sloughing is a
system where Sloughing is applied on a model trained
with Self-Adapter. SA-filtering is a system whose train-
ing pipeline is the same as Self-Adapter except that
confidence filtering is not done. Source-Trained is a
RoBERTa-based sequence tagging model pre-trained
on only the source data: de-identified clinical notes
from the Mayo Clinic, given as baseline model in the
development phase of the competition.

3.1 Experimental setup

For all of our models, we set normalized self-
entropy threshold θ = 0.1 except when applying
Sloughing trick, on which θ = 0.01. We train
Self-Adapter for 3 stages. Each iteration con-
sists of 4 epochs with batch size 1 (sentence-level)
and the learning rate is fixed as 5e-5. In Self-
Adapter, pseudo-labels are updated at every stage.
In Self-Adapter combined with Sloughing, we ap-
ply Sloughing for 3 times, 4 epochs training with
batch size 1 (sentence-level) is done every time.
The learning rate is fixed as 5e-5. In SCT, pseudo-
labels are updated every epoch. We train 2 epochs
with batch size 4 (token-level) and the learning rate
is scheduled with inverse decay scheduler same as
(Kim et al., 2020), with initial learning rate 5e-5.
We use Adam optimizer in all models.

3.2 Experimental results and analysis

Table 1 and Table 2 shows the performance of
the proposed methods on development and test
data respectively. Each method is evaluated with
Precision, Recall, and F1. Precision is the ra-
tio of correctly predicted positive observations to
the total predicted positive observations. Recall
is the ratio of correctly predicted positive observa-
tions to all observations in the actual class. F1 is
the weighted average of Precision and Recall. Our
major concern is F1, which is the most preferred
indicator of accuracy in text classification tasks.

On both data, Self-Adapter combined with
Sloughing performs the best in F1 and Self-Adapter
performs the second-best. SCT does not provide

Method F1 Precision Recall

SA 0.81 0.874 0.754
SA+Sloughing* 0.811 0.873 0.757
Source-Trained 0.794 0.849 0.746

Dev-Tuned 0.804 0.827 0.782

Table 2: F1, Precision, Recall on the test data. The
model submitted to the competition is marked with *.
SA indicates Self-Adapter and SA+Sloughing is a sys-
tem where Sloughing is applied on a model trained with
Self-Adapter. Source-Trained is a RoBERTa-based se-
quence tagging model pre-trained on only the source
data: de-identified clinical notes from the Mayo Clinic
and Dev-Tuned is a the source pre-trained model (i.e.,
Source-Trained) fine-tuned on the labeled development
data.

significant improvement of F1 compared to Self-
Adapter. Self-Adapter without confidence filtering
performs almost the same as Source-Trained on
every evaluation metric.

3.2.1 Impact of confidence filtering

Our confidence filtering proves to be effective in
dealing with the uncertainty of pseudo-labels. Self-
Adapter, whose core is confidence filtering, in-
creases 3.7, 1.6 percentage points of F1 on develop-
ment data and test data for each. The system whose
training pipeline is the same as Self-Adapter ex-
cept that confidence filtering is not done performs
almost the same as the Source-Trained.

3.2.2 Necessity of training feature extractor

Well-trained BERT embeddings contain both syn-
tactic (Hewitt and Manning, 2019) and semantic
(Coenen et al., 2019) information of words. How-
ever, this is only when the model is fine-tuned with
data from the domain same as the target domain.
It is well known that embedding models trained
on different domains poorly capture the domain-
specific vocabularies and word semantics due to
domain shift. (Sarma et al., 2018)

Since RoBERTa is a BERT-based language
model, the same issue arises on RoBERTa used
in this task. Thus if the feature extractor used for
embedding words is fixed during training, the em-
beddings obtained do not provide sufficient infor-
mation to the classifier, resulting in a limitation
to improving performance. This is also shown
through experimental results in which Self-Adapter
outperforms SCT.
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3.2.3 Inefficiency of Sloughing
In Self-Adapter, the model learns from almost all
sentences in development data and test data. Only
333 sentences out of 1580 and 917 sentences out
of 3911 were filtered in development data and test
data for each despite the high threshold we set (θ
= 0.1). It affects the magnitude of the effect of
the Sloughing in our method. Sloughing improves
performance on both development and test data,
but not enough to be taken as meaningful. 0.04
percentage points of F1 on development data and
0.1 percentage points of F1 on test data increase by
application of Sloughing.

Somewhat discouraging effect of Sloughing is
due to the setting of our task, in which training is
done with almost all samples in test data, despite
confidence filtering. We expect Sloughing to be
more effective in the setting where the bigger pro-
portion of samples are filtered and thus the ability
for generalization on unseen data is more important.
However, verification of these hypotheses will be
carried out as a follow-up study.

4 Conclusion

In this paper, we propose novel training methods
Self-Adapter and Selective Classifier Training that
improve model performance on the target domain
only by leveraging the RoBERTa-based model pre-
trained on source data. Both models rely on self-
learning with highly credible pseudo-labels that
are filtered based on self-entropy, differ only in
the range of trainable parts. Also, we propose
Sloughing trick to prevent over-confidence of the
model by softening the network output. Our work
is highly applicable in the real world since we have
achieved remarkable improvement in performance
using only a few test data which is not annotated at
all, without any manual supervision.
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