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Abstract
Domain adaptation assumes that samples from
source and target domains are freely accessi-
ble during a training phase. However, such as-
sumption is rarely plausible in the real-world
and may causes data-privacy issues, especially
when the label of the source domain can be
a sensitive attribute as an identifier. SemEval-
2021 task 10 focuses on these issues. We par-
ticipate in the task and propose novel frame-
works based on self-training method. In our
systems, two different frameworks are de-
signed to solve text classification and sequence
labeling. These approaches are tested to be ef-
fective which ranks the third among all system
in subtask A, and ranks the first among all sys-
tem in subtask B.

1 Introduction

Deep neural networks have achieved remarkable
success in a variety of applications across different
fields while with huge expense of laborious large-
scale training data annotation. To avoid expensive
data labeling, domain adaptation(DA) methods was
proposed to fully utilize previously labeled datasets
and unlabeled data on hand in a transductive man-
ner, which obtained promising results in sentiment
analysis, part-of-speech tagging, machine transla-
tion, etc. (Glorot et al., 2011; Yang and Eisenstein,
2014; Chu and Wang, 2018)

Unsupervised Domain Adaptation(UDA) aims
to reduce the domain shift between labeled and un-
labeled target domains. Early works (Blitzer et al.,
2006; Pan et al., 2010) learnt domain-invariant fea-
tures to link the target domain to the source domain.
Along with the growing popularity of deep learning,
plenty of works benefited from its powerful repre-
sentation learning ability for domain adaptation.
Those methods typically minimized the distribu-
tion discrepancy between two domains (Plank et al.,
2014), or deployed adversarial training (Ganin and
Lempitsky, 2015; Bousmalis et al., 2016; Li et al.,
2018).

However, a crucial requirement in the methodol-
ogy of these methods is that all samples from both
domains are freely available during the training pro-
cess, which is inefficient in data transmission and
may violate the data privacy policy. For example,
it is not allowed to share tweet texts according to
Twitter policies, though tweet IDs can be shared.
The situation is even more common in clinical NLP,
where patient health information must be protected,
and annotations over health text, when released at
all, often require the signing of complex data use
agreements.

SemEval 2021 task 10 focuses on the problem
of source-free domain adaptation for semantic pro-
cessing. Subtask A of task 10 is negation detection
which aims to classify clinical event mentions (e.g.,
diseases, symptoms, procedures) for whether they
are being negated by their context. Traditional sys-
tems, such as one of the first algorithms NegEx
(Chapman et al., 2001) was based on rules. Sub-
sequently, syntax-based methods were developed
(Huang and Lowe, 2007; Mehrabi et al., 2015). In
recent years, some researchers explored new gener-
ation of transfer learning models (BERT) to solve
this task (Khandelwal and Sawant, 2019), outper-
forming the previous state-of-the-art systems by a
significant margin.

Subtask B of task 10 is time expression recogni-
tion which aims to find time expressions in text. It
is a sequence labeling task as (Laparra et al., 2018)
described in their work. A few of works combined
traditional machine learning with rules achieved
good performances (Olex et al., 2018). Some stud-
ies got character-level contextual embeddings (Xu
et al., 2019) and applied to this task, yielding ma-
jor performance improvements over the previous
state-of-the-art.

In this paper, we propose two different unsuper-
vised frameworks for each subtask in source-free
setting. For negation detection task, we design a
framework which obtain pseudo labels with high
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confidence by using reliable pseudo labels as proto-
types. For time expression recognition, we design
an unsupervised teacher-student framework with
Mean Teacher.

2 System description

For subtask A, we used a pseudo-labeling training
method. To reduce the uncertainty from the pseudo
labels, we only chose those with high confidence
to fine-tune the model. Finally, we ensembled 5
models to make the model have better robustness
and results. For subtask B, we started by data pre-
processing. Then, we enlarged the training set with
pseudo-labeled sentences, which were predicted on
the test set by teacher model. In addition, Mean
Teacher helps to generate better pseudo labels. Fi-
nally, we used the ensemble model to make predic-
tions and add manual expressions. Each module
will be introduced in detail in the following sec-
tions.

2.1 subtask A: Negation detection

2.1.1 Pre-processing
Samples in the test data was split by punctuation to
a single sentence which included the entity being
detected.This was done to avoid the impact of the
irrelevant context. All white spaces were removed.

2.1.2 Architecture
For negation detection, we utilized the RoBERTa-
base (Liu et al., 2019) pretrained model fine-
tuned on the 10,259 instances (902 negated) in the
SHARP Seed dataset which is different from the
target domain. To adapt the source domain to the
target domain, we kept the feature extractor of the
source model fixed and trained the classifier mod-
ule by using pseudo labels with high confidence
(He and Zhou, 2011). It aims to learn a domain-
specific classifier learning module.

Our model is composed of two parts, the first
part is Adaptive Prototype Memory (APM) (Kim
et al., 2020), which provides pseudo labels with
high confidence for the target model. The second
part is the target model where parameters of the
feature extractor are fixed, i.e., does not participate
in training.The overall architecture of our model is
shown in Fig.1

Pseudo Labeling: Pseudo labeling (Lee et al.,
2013) was originally proposed for semi-supervised
learning. Since Pseudo labeling is a simple and
efficient method, it gains popularity in other trans-

Figure 1: Overall flow of subtask A framework. In the
figure, D, F, C and L represent Data, Feature extractor
Classifier and Loss, respectively. The subscripts s and
t indicate whether they come from the source domain
or the target domain. Dashed lines indicate fixed model
parameters.

ductive learning problems like Domain Adapta-
tion. The main idea is to label unlabeled data with
the maximum predicted probability and perform
fine-tuning together with labeled data. For this task,
we don’t have labeled training data, so our method
uses a more reliable pseudo-labels to fine-tune the
model.

APM: To obtain reliable pseudo labels, predic-
tion uncertainty is measured by self-entropy, i.e.,
H(x) = −

∑
p(x)log(p(x)). The smaller the en-

tropy is, the more confidence of the prediction
is. First of all, we calculated the normalized self-
entropy of target samples.

H(xt) = −
1

logNc
(xt)log(l(xt))

where Nc refers to the number of classes, l(xt) is
the output of the target classifier, xt represents the
samples from the target domain. The next step is to
select the reliable part among all target samples, i.e.,
the part with smaller entropy. In order to minimize
the influence of incorrect pseudo labels, we chose
20% as a threshold to get reliable samples. So the
top 20% target samples of the smaller entropy are
stored in the APM.

Based on prototypes from APM module which
can represent each class, we can assign labels to
unlabeled target data according to similarity score:

S(xt) =
1

|Mc|
∑

pc∈Mc

pTc ft
||pc||2||ft||2
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where c represents two classes, i.e., “negated” or
“not negated”, ft and pc stand for the embedded
feature of target data and prototype respectively.

Loss Function: Pseudo labels generated by the
first part are used to train the classifier of the tar-
get model. During the training process, to avoid
the influence of unstable pseudo labels, our loss
consists of two parts. One is the loss of the source
classifier, and the other is the loss of the trainable
target classifier.

Ltotal(Dt) = (1−α)Lsource(Dt)+αLtarget(Dt)

At the beginning, loss of the source classifier ac-
counts for a large proportion, it is added for reg-
ularization, because the generated label may be
unstable. With the increase of training steps, the
proportion of source decreases gradually, while
the proportion of the loss of the target classifier
increases.

2.1.3 Ensembling
To obtain a more robust model, we trained five
models by changing the hyper parameters, and inte-
grated the five models by voting ensemble method.
Test data were passed through the ensembled model
as the final output of the system.

2.2 Subtask B: Time expression recognition

Figure 2: Overall flow of subtask B framework

2.2.1 Pre-processing
• Denoising: Since the first two lines of the

development set text are the descriptions of
the file name and would not appear in the
test set, we removed the first two lines of all
verification set texts.

• Training set: Development set and randomly
selected partial test set.

2.2.2 Teacher and Student architecture
The main part of our system for subtask B is the
teacher-student framework (Liang et al., 2020),
which is an unsupervised method. Specifically, The
teacher model is initialized by student model. To
avoid losing too much information of other classes,
we proposed to use soft labels. Recall that for the n-
th token in the m-th sentence, the output probability
simplex over C classes is denoted as:

[fn,1 (Xm; θ) , . . . , fn,C (Xm; θ)] .

After the teacher model generated
soft labels from training set (let denote{
Sm = [sm,n]

N
n=1

}M
m=1

the soft pseudo-labels
generated from teacher model), in order to further
address the uncertainty in the data, we selected
tokens based on the prediction confidence. That is
to say, we selected a set of high confidence tokens
from the m-th sentence by

Hm =
{
n : max

c
sm,n,c > ε

}
,

where ε ∈ (0, 1) is a tuning threshold. The high
confidence selection essentially enforces the stu-
dent model to better fit tokens with high confidence,
and therefore is able to improve the model robust-
ness against low-confidence tokens. Loss1 is de-
noted as:

Loss1 =
1

M

M∑
m=1

`KL

(
S(t)
m , f (Xm; θ)

)
where `KL(·, ·) denotes the KL-divergence-

based loss:

`kl(Sm, f(Xm; θ)) =
1

|Hm|
∑

n∈Hm

C∑
c=1

−sm,n,clogfn,c(Xm; θ).

2.2.3 Mean Teacher
In our architecture, we also added Mean Teacher
loss to update student model. Mean Teacher (Tar-
vainen and Valpola, 2017) is a simple but effec-
tive method to improve teacher model performance.
After the weights of the student model have been
updated with gradient descent, the teacher model
weights are updated as an moving average of the
student weights as follows:
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θ′t = αθ′t−1 + (1− α)θt,

where α is a smoothing coefficient hyperparam-
eter. Loss2 denote Mean Teacher loss (same as the
formula in 2.2.2), but `KL(·, ·) denotes:

`kl(Sm, f(Xm; θ)) =
1

N

N∑
n=1

C∑
c=1

−sm,n,clogfn,c(Xm; θ).

Accordingly, the student model can be optimized
by minimizing the loss (consists of Loss1 and
Loss2).

The process described above is repeated periodi-
cally to train the student model. Eventually, early
stopping is adapted to prevent student model from
overfitting.

2.2.4 Post-processing
• Ensembling: Ensemble has shown its power

on effectively improving the robustness and
accuracy of each individual prediction (Opitz
and Maclin, 1999; Rokach, 2010). By ensem-
bling predictions from models with different
hyper-parameters or architectures, we can get
better results than each individual model. In
our system, we set different hyper-parameters
on learning rate and random seed. In this case,
two ensembled model generate predictions in-
dividually and we take the union of the two
independent predictions as model predictions.

• Manual rules: Through observation on the
data, we obtained a set of feature words
which appear frequently. Specifically, we
labeled feature words “daily” and “annual”
with “Calendar-Interval”, label “minutes” and
“decades” with “Period”, label “ago” and “be-
fore” with “Before” etc.

3 Experiments

3.1 Data
SemEval 2021 Task 10 released the training, devel-
opment and test dataset.

For subtaskA, the development data is the i2b2
2010 Challenge Dataset, a de-identified dataset of
notes from Partners HealthCare, containing 2886
unlabeled train instances (entities in sentence con-
text), and 5545 dev instances with a corresponding
labeling for with negation status. The test data is
from the MIMIC III corpus v1.4, which is much

Train Dev Test
Positive - 1115 958
Negative - 4430 8622

Total 2886 5545 9580

Table 1: Data distribution of subtask A.

messier than the development data. The detailed
statistics are shown in Table 1.

For subtask B, we found that the category labels
were severely imbalanced. Specifically, the training
set and the dev set have label types which are not
mutually exclusive. In addition, the dev set labels
is mainly distributed in Month-Of-Year, Day-Of-
Month, Period, etc., while the test set labels are
mainly distributed in Month-Of-Year, Season-Of-
Year, Year, etc.

3.2 Evaluation Metrics

F1, Precision and Recall were used to evaluate
the performance of both subtask A and subtask B.
The evaluation will verify whether the predicted
“label” is the same as the desired “label” which is
annotated by human workers, and then calculate its
F1 scores, precision and recall.

3.3 Experimental Details

Hyper-Parameters of subtask A. Since we were
training the model with unlabeled data, we added
the same amount of dev and test data as train data
to fine-tune the model to get better results. We
use an Adam optimizer to tune the parameters with
learning rate = 5e-5, max seq length = 128, batch
size = 32, seed = 40 and we trained each model for
2 epochs. Then we used the APM module to get
M = 400 prototypes which represents each class.
By computing the similarity between each target
sample and all prototypes in APM, we obtained
8658 pseudo-labels with high confidence.

Hyper-Parameters of subtask B. For subtask
B, we trained our two ensemble model (each with
three models) on unlabeled data with seed = 32,42,
learning rate = 2e-5,2.5e-5,3e-5, we trained each
model for 5 epochs with early stopping. We also
used an AdamW optimizer to tune the parameters
with epsilon = 1e-6, batch size = 16.

4 Results

The performance of our system and the task base-
lines for both subtasks are shown in following ta-
bles.
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Model F1 Precision Recall
Baseline 0.660 0.917 0.516
Baseline(fine-tuned) 0.730 0.908 0.611
SFDA w/o Lsource 0.674 0.874 0.548
SFDA w/o APM 0.686 0.927 0.545
SFDA 0.717 0.936 0.581
SFDA+ensemble 0.736 0.913 0.616

Table 2: Results of different ablation experiments for
subtask A. All the models are trained on training data,
development data and test data.

Table 2 shows the results of several ablation ex-
periments. Compared with models without APM
or Lsource, we found that adding both together im-
proved the performance of the model. The voting
ensemble model of single models trained with ex-
tra development and test data outperforms all other
models and achieves the highest F1 score.

Model F1(dev) F1(test)
SFDA(t) w/o Lsource 0.838 0.661
SFDA(t) w/o APM 0.814 0.717
SFDA(t) 0.859 0.707
SFDA(t)+ensemble 0.873 0.720
SFDA(t+d) w/o Lsource 0.864 0.689
SFDA(t+d) w/o APM 0.851 0.668
SFDA(t+d) 0.868 0.718
SFDA(t+d)+ensemble 0.870 0.725

Table 3: Results of models trained on different data
sets. SFDA(t) refers to the model trained on train data
and SFDA(t+d) represents the model trained on both
train data and development data.

Table 3 shows the results of models trained on
different data sets. Since we don’t need labeled
data to train the model, we added development and
test data to train the model. Compared with our
final model which was trained on three data sets,
models trained on fewer data sets, i.e., only on
train data or on both train data and development
data perform less well.

Figures 3 and 4 show the confusion matrix of
the classification results of baseline model and our
model on the test dataset. This corresponds to Base-
line and SFDA+ensemble in Table2, respectively.
Compared with baseline, we predicted more true
positive samples. However, the false prediction of
negative samples as positive has increased. As a
result, the recall and F1 score of our model have
been improved, but the precision has decreased a
little.

Figure 3: The confusion matrix of the baseline model

Figure 4: The confusion matrix of our model

Table 4 shows the results of several ablation ex-
periments. Without soft labels, we can find that F1
score drop significantly. A possible explanation is
that the soft labels preserve more information and
generate better labels. Based on soft labels, MT
and manual rules marginally improve the F1 scores.
Finally, the ensemble model (MT+soft+rules) out-
performs all other models and achieves the highest
F1 score.

Table 5 shows the results of our model trained
on dev set. Compared with the dev set, the F1 of
the test set dropped by an average of 2%.

Error analysis. For subtask A, we conducted
statistics and analysis on the classification results
of Baseline model and our best model. There are
474 sentences that both Baseline model and our
best model predict correctly. The entity being de-
tected usually follow the word that express negative

1Model pre-trained on only the source data (official pro-
vided).

2Model pre-trained on the source data and then fine-tuned
on the dev set (official provided).

3Here MT refer to Mean Teacher.
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Model F1 Precision Recall
Baseline1 0.794 0.849 0.746
Baseline(fine-tuned)2 0.804 0.827 0.782
MT3 0.755 0.747 0.763
soft 0.807 0.859 0.761
MT+soft 0.801 0.854 0.754
MT+soft+rules 0.812 0.863 0.767
MT+soft+rules(ensemble) 0.815 0.847 0.785

Table 4: Results of different ablation experiments for
subtask B. Our models are trained on training set.

Model F1(dev) F1(test)
Baseline 0.746 0.794
Baseline(fine-tuned) - 0.804
MT 0.767 0.747
soft 0.815 0.791
MT+soft 0.813 0.799
MT+soft(ensemble) 0.832 0.814

Table 5: Results of subtask B. Our models are trained
on dev set.

meanings in these sentences closely. e.g. ”... no
<e>erythema </e>...”, ”... denies <e>chest pain
</e>...” ... There are 116 sentences that our model
predicts correctly but the baseline predicts incor-
rectly. In this part, there are some long-distance
keywords or parallel phrases. e.g. ”... No tobacco,
EtOH, or <e>IV drug use </e>” There are 348
sentences that are not predicted correctly by both
models. For these, we consider to add some hand-
craft rules to improve the results of the model.

For subtask B, we conducted a manual error
analysis. For the raw text “during the harvest
season”, both our model and baseline model in-
correctly labeled “harvest” with “Season-Of-Year”
instead of “harvest season”, “harvest” is just the
activity, though if it instead said “harvest season”,
we would annotate that whole thing as a “Season-
Of-Year”. For the raw text “February (27,661)”,
baseline model incorrectly label “27” with “Day-
Of-Month” while our model didn’t, which proves
the effectiveness of our architecture. In addition,
we list a detailed description of the recall of subtask
B in Table 6.

5 Conclusion

We introduce two different frameworks which are
both based on self-training method for text clas-
sification and sequence labeling in SemEval 2021
task 10, in order to address the problems of source-

free, labeled training data scarcity. In subtask
A, we used a metric learning method, combin-
ing pseudo labeling with prototype network and
achieve good results. In subtask B, we employed
teacher-student framework, and then we propose to
use high-confidence soft labels to further improve
the self-training. Our system takes third place in
subtask A and first place in subtask B.

In future, we would like to introduce adversarial
training and more data augmentation approaches in
our model to further facilitate source-free domain
adaptation.
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